Ulysses URAP RAR Average E-Field at 10 Minutes Data Description Ulysses URAP - Unified Radio and Plasma Wave Experiment Bundle PDS3 DATA_SET_ID = ULY-J-URAP-4-SUMM-RAR-AVG-E-10MIN-V1.0 ORIGINAL DATA_SET_NAME = ULY JUP URAP RADIO ASTRONOMY REC AVERAGE E-FIELD 10 MIN START_TIME = 1991-11-26T00:00:00.000 STOP_TIME = 1992-06-07T23:50:00.000 PDS3 DATA_SET_RELEASE_DATE = 1998-05-01 PRODUCER_FULL_NAME = ROGER HESS Collection Overview =================== A UDS data files Eight files are provided that conform to the UDS conventions regarding the naming of files and the format of the data. The eight files are divided into 4 pairs of files with each pair consisting of a file containing data averaged over a 10 minute period and a file containing the maximum data value during the same 10 minute period. The 4 pairs of file contain data for the RAR, the PFR, WFA - magnetic field, and WFA - magnetic field. A.1 Radio Astronomy Receiver To reduce the size of the files produced, the UDS files contain 25 frequency channels for the RAR - the upper 12 frequencies of the high receiver, and 13 lower frequencies which are aggregates of the low frequency channels so that they appear in approximately the same logarithmic steps as the high frequency receiver. Since the low frequency receiver steps are linear, there are different numbers of frequency channels that are combined to produce the UDS data. Following is a table giving the approximate center frequency of each UDS channel and the RAR frequencies that were combined to produce it. UDS center RAR frequency channel frequency channels (kHz) (kHz) 1 1.25 1.25 Low receiver 2 2.00 2.00 3 2.75 2.75 4 3.50 3.50 5 4.25 4.25 6 5.75 5.00 - 6.5 7 8.00 7.25 - 8.75 8 11.0 9.50 - 12.5 9 14.75 13.25 - 16.25 10 19.25 17.00 - 21.50 11 24.50 22.25 - 26.75 12 31.25 27.50 - 35.00 13 42.50 35.75 - 48.50 14 52.0 52.0 High receiver 15 63.0 63.0 16 81.0 81.0 17 100.0 100.0 18 120.0 120.0 19 148.0 148.0 20 196.0 196.0 21 272.0 272.0 22 387.0 387.0 23 540.0 540.0 24 740.0 740.0 25 940.0 940.0 Two files are produced for each day: they contain averages and peak values for 10 minute periods that start at 00:00:00 and end at 24:00:00. The time specified in the file is the beginning of each time period. The data are computed as follows: For all RAR data that falls within the 10 minute period being considered the average and peak values are found for each of the 76 channels. Next the channels are combined to produce the 25 UDS channels: the average of the combined channels yields the UDS averages and the peak of the combined channels yields the UDS peak value. Data ==== The names of the files are (following the PDS convention): Tyyddd.TAB : Average data Tyyddd.TAB : Peak data where: yy = Last two digits of year. ddd = Day of year (001..366). The files are Ascii and contain one line for each time period (even if there are no valid data for a time period) so they contain 144 lines each. The format of the data is indicated by the following Fortran read statement which can be used to read the files: DIMENSION F(25) READ(1,100) TIME,MODE_HI,MODE_LO,IBPS,F 100 FORMAT(A24,1X,A2,A1,A1,25(1X,1PE9.2)) where: TIME: Spacecraft event time in the format yyyy-mm-ddThh:mm:ss.sssZ. MODE_HI: mode of the high receiver: 1: Receiver in summed mode (X and Z antenna combined). 2: Receiver in separate mode(only X antenna). 3: Receiver switched mode during averaging period. 4: Receiver mode unknown. MODE_LO: mode of the low receiver 1: Receiver in summed mode (X and Z antenna combined). 2: Receiver in separate mode (only X antenna). 3: Receiver switched mode during averaging period. 4: Receiver mode unknown. IBPS: telemetry bits-per-second 1: 128 bps. 2: 256 bps. 3: 512 bps. 4: 1024 bps. 5: Bit rate changed during averaging period. 6: Bit rate unknown. F: frequency data - channels 1..25 as defined above. Invalid or missing data are assigned the value -9.99e+10. Units: microvolt/Hz**.5 measured at the receiver input terminals. To convert to electric field strength the given data must be divided by the effective length of the antenna. This is complicated by the fact that the effective length depends on the antenna impedance which is affected by the plasma conditions local to the Ulysses spacecraft. The impedance will also depend on the frequency. In general, the RAR frequency channels that are well above the local electron plasma frequency are not affected by the plasma conditions and the effective length of 23 meters can be used. When the RAR is in summed, rather than separate, mode the determination of field strengths is even more difficult. Time resolution: 10 minutes. References: ======== Barrow, C.H., and A. Lecacheux, Radio Emission from Jupiter Observed by Ulysses Before and After Encounter, Astron. Astrophys, 271, 335-343, 1993. Canu, P., N. Cornilleau-Werhlin, C. de Villedary, P.J. Kellogg, C.C. Harvey, and R.J. MacDowall, Observation of Electron Plasma Waves Upstream of Jupiter's Bow Shock by the URAP Experiment on board the Ulysses Spacecraft, in Proc. of the 2nd European Workshop on Collisionless Shocks, Issy-les-Moulineaux, France, 30 Sept-2 Oct 1992. (https://doi:10.1016/0032-0633(93)90088-J) Canu, P., N. Cornilleau-Werhlin, C. de Villedary, P.J. Kellogg, C.C. Harvey, and R.J. MacDowall, Observations of Electron Plasma Waves Upstream of the Jovian Bow Shock, Plan. Space Sci., 41, 811-822, 1993. (https://doi:10.1016/0032-0633(93)90088-J) Desch, M.D., Jupiter Radio Bursts and Particle Acceleration, Ap. J. Supp., 90 541-546, 1994. (https://doi:10.1086/191872) Desch, M.D., W.M. Farrell, and M.L. Kaiser, Asymmetries in the Io plasma torus, J. Geophys. Res., 99, 17205-17210, 1994. (https://doi.org/10.1029/94JA01615) Farrell, W.M., R.J. MacDowall, M.D. Desch, M.L. Kaiser, R.G. Stone, P.J. Kellogg, N. Lin, N. Cornilleau-Wehrlin, P. Canu, S.J. Bame, and J.L. Phillips, Ulysses Observations of Auroral Hiss at High Jovian Latitudes, Geophys. Res. Let., 20, 2259-2262, 1993. (https://doi.org/10.1029/93GL01120) Farrell, W.M., R.J. MacDowall, R.A. Hess, M.L. Kaiser, M.D. Desch, and R.G. Stone, An Interpretation of the Broadband VLF Waves near the Io Torus as Observed by Ulysses, J. Geophys. Res., 98, 21177-21188, 1993. (https://doi.org/10.1029/93JA02591) Hoang, S., N. Meyer-Vernet, M. Moncuquet, A. Lecacheux, and B.M. Pedersen, Electron Density and Temperature in the Io Torus from Ulysses thermal plasma noise measurements, Plan. Space Sci. 41, 1011-1020, 1993. (https://doi:10.1016/0032-0633(93)90105-B) Kaiser, M.L., and M.D. Desch, in Planetary Radio Emissions III, Jovian Broadband Kilometric Radiation: New Observations from Ulysses, Proc. of the Third International Workshop, Graz, Austria, H.O Rucker, S.J. Bauer, and M.L. Kaiser, eds., pp. 35-43, 1992. Kaiser, M.L., M.D. Desch, W.M. Farrell, R.J. MacDowall, R.G. Stone, A. Lecacheux, B.-M. Pedersen, and P. Zarka, Ulysses Observations of Escaping VLF Emissions from Jupiter, Geophys. Res. Let., 19, 649-652, 1992. (https://doi:10.1029/92GL00387) Kaiser, M.L., Time-variable Magnetospheric Radio Emissions from Jupiter, J. Geophys. Res., Vol. 98, pp. 18757-18765, 1993. (https://doi.org/10.1029/93JE01279) Kaiser, M.L., M.D. Desch, and W.M. Farrell, Clock-like Behavior of Jovian Continuum Radiation, Plan. Space Sci., 41, 1073-1077, 1993. (https://doi:10.1016/0032-0633(93)90110-N) Kaiser, M.L., M.D. Desch, W.M. Farrell, R.A. Hess, and R.J. MacDowall, Ordinary and Z-Mode Emissions from the Jovian Polar Region, Plan. Space Sci., 41, 977-985, 1993. (https://doi:10.1016/0032-0633(93)90102-8) Kellogg, P.J., K. Goetz, R.L. Howard, S.J. Monson, A. Balogh, and R.J. Forsyth, Measurement of Electric Fields and Plasma Flow Speeds in Jupiter's Magnetosphere, J. Geophys. Res., 98, 13307-13314, 1993. (https://doi.org/10.1029/92JA02982) Lecacheux, A., B.-M. Pedersen, P. Zarka, M.G. Aubier, M.L. Kaiser, M.D. Desch, W.M. Farrell, R.J. MacDowall, and R.G. Stone, In Ecliptic Observations of Jovian Radio Emissions by Ulysses: Comparison with Voyager Results, Geophys. Res. Let., 19, 1307-1310, 1992. (https://doi.org/10.1029/92GL01037) Lin, N., P.J. Kellogg, R.J. MacDowall, Y. Mei, N. Cornilleau- Wehrlin, P. Canu, C. de Villedary, L. Rezeau, A. Balogh, and R.J. Forsyth, ULF Waves in the Io Torus: Ulysses Observations, J. Geophys Res., 98, 21151-21162, 1993. (https://doi.org/10.1029/93JA02593) Lin, N., P.J. Kellogg, J.P. Thiessen, D. Lengyel-Frey, B.T. Tsurutani, and J.L. Phillips, Whistler Mode Waves in the Jovian Magnetosheath, J. Geophys. Res., 99, 23527, 1994. (https://doi.org/10.1029/94JA01998) MacDowall, R.J., M.L. Kaiser, M.D. Desch, W.M. Farrell, R.A. Hess, and R.G. Stone, Quasiperiodic Jovian Radio Bursts: Observations from the Ulysses Radio and Plasma Wave Experiment, Plan. Space Sci., 41, 1059-1072, 1993. (https://doi:10.1016/0032-0633(93)90109-F) Meyer-Vernet, N., S. Hoang, and M. Moncuquet, Bernstein Waves in the Io Torus: a Novel Kind of Electron Temperature Sensor, J. Geophys. Res., 98, 21163-21176, 1993. (https://doi.org/10.1029/93JA02587) Osherovich, V., R.F. Benson, J. Fainberg, R.G. Stone, and R.J. MacDowall, Sounder Stimulated Dn Resonances in Jupiter's Io Plasma Torus, J. Geophys. Res., 98, 18751-18756, 1993. (https://doi.org/10.1029/93JE01481) Reiner, M.J., J. Fainberg, R.G. Stone, R. Manning, M.L. Kaiser, M.D. Desch, B.-M. Pedersen, and P. Zarka, Source Characteristics of Jovian Narrow-Band Kilometric Radio Emissions, J. Geophys. Res., 98, 13163-13176, 1993. (https://doi.org/10.1029/93JE00536) Reiner, M.J., J. Fainberg, and R.G. Stone, Source Characteristics of Jovian Hectometric Emissions, J. Geophys. Res., 98, 18767-18777, 1993. (https://doi.org/10.1029/93JE01779) Reiner, M.J., J. Fainberg, and R.G. Stone, A New Component of Jovian Kilometric Radio Emission, J. Geophys. Res., 99, 6137-6144, 1994. (https://doi.org/10.1029/93JA03398) Stone, R.G., B.-M. Pedersen, C.C. Harvey, P. Canu, N. Cornilleau- Wehrlin, M.D. Desch, C. de Villedary, J. Fainberg, W.M. Farrell, K. Goetz, R.A. Hess, S. Hoang, M.L. Kaiser, P.J. Kellogg, A. Lecacheux, N. Lin, R.J. MacDowall, R. Manning, C.A. Meetre, N. Meyer-Vernet, M. Moncuquet, V. Osherovich, M.J. Reiner, A. Tekle, J. Thiessen, and P. Zarka, Ulysses Radio and Plasma Wave Observations in the Jupiter Environment, Science, 257, 1524-1531, 1992. (https://doi.org/10.1126/science.257.5076.1524) Thiessen, J.P., and P.J. Kellogg, Langmuir Wave Decay and Collapse in the Jovian Foreshock, Plan. Space Sci., 41, 823-832, 1993. (https://doi:10.1016/0032-0633(93)90089-K) Zarka P., B. P. Pedersen, R. Prange, P. Ferrando, S. Hoang, and P. Canu, Quelques resultats marquants de la rencontre Ulysses-Jupiter, Bulletin de la S.F.P., 90, 3-9, 1993.