
MESSENGER Experiment Data Record Software Interface Specification for the Energetic Particle and Plasma Spectrometer Version 3I, 7/9/2015

Prepared by

Raymond Espiritu Erick Malaret Applied Coherent Technology (ACT) Corporation

Document Review

This document and the archive it describes have been through PDS Peer Review and have been accepted into the PDS archive.

George Ho, MESSENGER EPPS Instrument Scientist, has reviewed and approved this document.

Jim Raines, MESSENGER FIPS Instrument Engineer, has reviewed and approved this document.

Steve Joy, PDS PPI Node Representative, has reviewed and approved this document.

Susan Ensor, MESSENGER Science Operations Center Lead, has reviewed and approved this document

Revision History

Version Number	Date	Changes	
3B	11/14/2009	Updates for delivery 5.	
3C	01/07/2010	Added this revision history table. Minor edits.	
3D	06/16/2011	Replaced signature page with document review information.	
3D	06/16/2011	Added Experiment Data Record to document title.	
	10/31/11	Corrected EPPS_LONG.FMT EPS_ELEC_PIX_SIZ and EPS_ION_PIX_SIZ values in section 8.16.	
3E	12/15/11	Updated document version, date, and revision history. Other minor document header/page number edits.	
3F	5/25/12	Change references to <i>Data Management and Science Analysis Plan</i> to <i>Data Management and Archiving Plan</i> . Reference <i>Data Management and Archiving Plan</i> for delivery schedule and delete delivery schedule table 12 from section 7. Minor edits.	
3G	11/20/2014	Removed reference to .CSV file in sec. 5.4.1. Changed occurrences of "experimental" to "experiment" in references to EDRs.	
3Н	7/7/2015	Note use of clock partitions in time tags in product labels following January 8, 2013 S/C clock reset (Section 5.4.2 Time Standards). Update reference to PDS file naming standard (was 27.3 now 36.3, in Section 6.5). Update EPPS EDR data archive volume for mission (Section 6.6).	
31	7/9/2015	Update to Figure 1in Section 5.2.2.1. Update to sections 5.2.1, 5.2.2, and 5.2.3 to text to accurately reflect the number of current and retired data products.	

Table of Contents

1	Pur	pose and Scope of Document	6
	1.1	Purpose	
	1.2	Scope	6
2	Арр	licable Documents	6
3		tionships with Other Interfaces	
4	Role	es and Responsibilities	8
5	Data	Product Characteristics and Environment	8
U	5.1	Instrument Overview	
	5.1.1		-
	5.1.2	EPS Overview	10
	5.2	Data Product Overview	. 10
	5.2.1	EPS Data Products	11
	5.2.2		
	5.2.3	8 8	
	5.3	Data Processing	
	5.3.1	8	
	5.3.2		
	5.3.3 5.3.4		
	5.3.4 5.4	Labeling and Identification Standards Used in Generating Data Products	
	5.4.1	-	
	5.4.2		
	5.4.3		
	5.4.4	5	
	5.5	Data Validation	
c	Date	ailed Date Dreduct Creation	A A
6	6.1	niled Data Product Specification	
	6.2	Data Product Structure and Organization Handling Errors	
		Data Format Description	
		Label and Header Descriptions	
	6.5	File Naming Conventions	
	6.6	Archive Volume and File Size	
		Directory Structure and Contents for EPPS Documentation Volume	
	6.7.1	· · · · · · J	
		Directory Structure and Contents for EPPS Data Volume	
	6.8.1	Directory Contents	52
7	Arcl	nive Release Schedule to PDS	53
8	Арр	endices	53
	8.1	EPSHIGH.FMT Table Fields	
		EPSHI_HK.FMT Table Fields	
	8.3	EPSMED.FMT Table Fields	
	8.4	EPS_PHA.FMT Table Fields	
	8.5	EPS_HIRES.FMT Table Fields	
		EPS_LORES.FMT Table Fields	
	8.7	EPS_SUM.FMT Table Fields	. 92

8.8	EPS_SCAN.FMT Table Fields	
8.9	FIPS_HI.FMT Table Fields	
8.10	FIPS_HK.FMT Table Fields	
8.11	FIPS_MED.FMT Table Fields	
8.12	FIPS_PHA.FMT Table Fields	
8.13	FIPS_SCAN.FMT Table Fields	
8.14	FIPS_HRPVD.FMT Table Fields	
8.15	EPPS_STATUS.FMT Table Fields	
8.16	EPPS_LONG.FMT Table Fields	
8.17	SPICE Kernel Files Used in MESSENGER Data Products	
8.18	CODMAC/NASA Definition of Processing Levels	
8.19	MESSENGER Glossary and Acronym List	

1 Purpose and Scope of Document

1.1 Purpose

This document will serve to provide users of the MESSENGER Energetic Particle and Plasma Spectrometer (EPPS) data products with a detailed description of the EPPS instrument, data product generation, validation and storage. Note that the EPPS is made up of two instrument subsystems, the Fast Imaging Plasma Spectrometer (FIPS), and the Energetic Particle Spectrometer (EPS). The FIPS and EPS will be described in individual sections within this document. They will be referred to separately when necessary and referred to as the EPPS instrument when dealing with areas common to both instruments. The FIPS covers the lower energy range of particles and measures the mass per charge (M/Q), energy per charge (E/Q) and incoming direction of each charged particle. The EPS covers the higher energy range and measures mass, energy, and incoming direction of each particle. The MESSENGER EPPS data products are deliverables to the Planetary Data System (PDS) and the scientific community that it supports. All data formats are based on the PDS standard.

1.2 Scope

The EPPS science data are divided into two categories: Level 2 edited-raw data (referred to as experiment data records or EDRs) and processed data (referred to as reduced data records or RDRs). RDRs are generated from EDRs, and represent data calibrated to a physical unit such as particle intensity (Level 3), resampled Level 4 data products, or derived Level 5 data products. This SIS describes the EPPS EDR data products.

EDRs consist of unprocessed instrument-count data including a description of the observation geometry (boresight, spacecraft, and target). In those cases where on-board compression has been applied, the EDRs will contain the decompressed version of the compressed instrument data as downlinked to the SOC through the Deep Space Network (DSN). The decompressed EDR data will be delivered to the PDS as CODMAC Level 2 data. EPPS's EDR is formatted to include standard PDS labels, spectra, pulse-height analysis and housekeeping data (instrument count data are otherwise unprocessed). To make full scientific utilization of the archived EDR data, processing such as conversion of data values into engineering units, and geometric rectification may be necessary. A detailed description of all data products in the EPPS's EDR follows.

In addition this SIS describes the EPPS documentation volume, which will contain products related to both the EDR and RDR level archives. The contents of the documentation volume will enable one to conduct useful analysis of the EDRs. The documentation volume is described in greater detail in section 6.6.

2 Applicable Documents

The MESSENGER EPPS SIS is responsive to the following Documents:

• Planetary Data System Standards Reference, Aug 1, 2003, Version 3.6. JPL D-7669, Part-2.

- MESSENGER Data Management and Archiving Plan. The Johns Hopkins University, APL. Document ID number 7384-9019
- MESSENGER Project Archive Generation, Validation, and Distribution Plan
- MESSENGER Mercury: Surface, Space Environment, Geochemistry, Ranging; A mission to Orbit and Explore the Planet Mercury, Concept Study, March 1999. Document ID number FG632/ 99-0479
- [PLR] Appendix 7 to the discovery program Plan; Program Level Requirement for the MESSENGER Discovery project; June 20, 2001.

This document references several other documents as well:

- Energetic Particle and Plasma Spectrometer (EPPS) Instrument Flight Software Specification, version 3. Horace Malcom, The Johns Hopkins University Applied Physics Laboratory document JHU/APL 7389-9041, November 12, 2003.
- FIPS Data Processing and Instrument Control, Steve Rogacki and Jim Raines, The University of Michigan Space Physics Research Laboratory document 082-170, rev. G, January 21, 2003.
- Livi et al. (The energetic particle spectrometer (EPS) on MESSENGER: Instrument description, characterization, and calibration, MESSENGER Project report, 2004.
- Zurbuchen et al. (The Fast Ion Plasma Spectrometer (FIPS) calibration report, MESSENGER Project report, 2004)
- Energetic Particle and Plasma Spectrometer (EPPS) Instrument Flight Software Specification, version 6. Horace Malcom/John Hayes, The Johns Hopkins University Applied Physics Laboratory document JHU/APL 7389-9041, rev B, July 12, 2008

This document has undergone several revisions. The following are those revisions available from the PDS:

- MESSENGER Software Interface Specification for the Energetic Particle and Plasma Spectrometer, Version 2F, 10/10/2006. First version delivered to PDS.
- MESSENGER Software Interface Specification for the Energetic Particle and Plasma Spectrometer, Version 2G, 12/10/2007. Second version delivered to PDS. This version describes Version V1.0 of the EPS and FIPS datasets. Minor changes.

3 Relationships with Other Interfaces

The EPPS EDR data products are stored on Hard Disk and in an SQL (Structured Query Language) relational database for rapid mission access during mission operations. The data products will be electronically transferred to the PDS Planetary Plasma Interactions (PPI) Node according to the delivery schedule in the MESSENGER Data Management and Archiving Plan. The data in the EDR files themselves will be stored in a PDS binary TABLE object unless stated otherwise (section 5.2).

Due to changes in the EPPS flight software, several new EDR's have been added, and several have been retired. In addition, the formats of some of the EDR's have been updated. Due to these changes, the EPS and FIPS data sets have been advanced to version

V2.0. These versions supersede and replace version V1.0. The new data set identifiers are:

- MESS-E/V/H/SW-EPPS-2-EPS-RAWDATA-V2.0
- MESS-E/V/H/SW-EPPS-2-FIPS-RAWDATA-V2.0

The following table summarizes the changes from V1.0 to V2.0. Also see tables 2 and 8, following for more details.

Table 1 Data Set Version Comparison				
EDR Data Set Version		Data Set Version 2.0		
	1.0			
EPSHIGH	Exits	Retired, FSW6, 8/18/2008		
EPSHI_HK	Exits	Retired, FSW5, 9/6/2007		
EPSMED	Exits	Retired, FSW6, 8/18/2008		
EPS_PHA	Exits	Changed, FSW6, 8/18/2008		
EPS_HIRES	Not Included	New, FSW6, 8/18/2008		
EPS_LORES	Not Included	New, FSW6, 8/18/2008		
EPS_SUM	Not Included	New, FSW6, 8/18/2008		
EPS_SCAN	Not Included	New, FSW6, 8/18/2008		
FIPS_HI	Exits	Changed, FSW5, 9/6/2007		
FIPS_HK	Exits	Retired, FSW5, 9/6/2007		
FIPS_MED	Exits	Retired, FSW5, 9/6/2007		
FIPS_PHA	Exits	Changed, FSW5, 9/6/2007		
FIPS_SCAN	Not Included	New, FSW6, 8/18/2008		
FIPS_HRPVD	Not Included	New, FSW6, 8/18/2008		
EPPS_STATUS	Exits	Retired, FSW5, 9/6/2007		
EPPS_LONG	Not Included	New, FSW5, 9/6/2007		

Table 1 Data Set Version Comparison

4 Roles and Responsibilities

The roles and responsibilities of the instrument teams, Applied Physics Lab (APL), Applied Coherent Technology (ACT), and the Planetary Data System (PDS) are defined in the MESSENGER Data Management and Archiving Plan.

5 Data Product Characteristics and Environment

5.1 Instrument Overview

The EPPS system encompasses two instrument subsystems – the Energetic Particle Spectrometer (EPS) and the Fast Imaging Plasma Spectrometer (FIPS). EPS covers the energy range of 25 to >500 keV for electrons, and 10 keV/nucleon to ~3 MeV total energy for ions. FIPS covers the energy/charge range of <50 eV/q to 20 keV/q. The Johns Hopkins University/Applied Physics Laboratory constructed the EPS instrument. It provides electron, high and low-energy ion as well as diagnostic events as a single stream of data that is placed into the EPS event FIFO for processing by the EPPS flight

software. The FIPS instrument was constructed by the University of Michigan Space Physics Research Laboratory. It provides a single serial stream of event data to the EPPS system at rates of up to 50K events/sec. The desired throughput for FIPS charged particle event processing as well as for EPS event processing is 5 kHz. FIPS generates a single 48-bit raw event packet format which includes a 1-bit header that identifies the event as a proton event or a non-proton event; an 11-bit TOF value; as well as a Wedge, Strip and ZigZag values (each 12 bits in size). In addition, the FIPS system generates counter and housekeeping information that the EPPS software can access via the I2C bus interface. Detailed descriptions of the EPS and FIPS sensor can be found, respectively, in Livi et al. (The energetic particle spectrometer (EPS) on MESSENGER: Instrument description, characterization, and calibration, MESSENGER Project report, 2004) and Zurbuchen et al. (The Fast Ion Plasma Spectrometer (FIPS) calibration report, MESSENGER Project report, 2004).

5.1.1 FIPS Overview

The Fast Imaging Plasma Spectrometer (FIPS) sensor is designed to measure the distributions and composition of magnetosphere ions as well as to characterize the nature of the planetary magnetic field of Mercury. It will do this by measuring the mass per charge, the energy per charge, and incident angles for particles entering the sensor. The particle intensity is also calculated from the event rate information.

The FIPS consists of an electrostatic analyzer (ESA), located at the entrance to the sensor, a post acceleration chamber between the output of the ESA and the carbon foil, and a time-of-flight telescope. The ESA at the entrance to the FIPS acts as a wide-angle lens for ions. It only allows ions with a specific energy/charge band to enter through its output plane. This band is stepped through 64 values to complete one measurement cycle (scan). The times spent in each step can, in principal, be set to arbitrary values, different for each step. However, FIPS is normally operated in one of two stepping rates, once step per second (normal mode) or one step per 100 milliseconds (burst mode). When delays due to high voltage ramp-ups are included, these result in cycle times of 64 sec and 8 sec, respectively. Associated with each step in a scan is a voltage setting, a threshold, a settling time, and a duration or time interval after which the next voltage step is performed. Ions exit the output plane of the ESA and are then accelerated in the post acceleration chamber. This acceleration is done to boost low energy ions to penetrate the carbon foil. The acceleration also helps to reduce energy straggling and angular scattering – effects that cause degradation in mass resolution and imaging. The carbon foil serves as the source for secondary electrons, which are scattered out by the penetration ions. After penetrating the foil, the particle resides within the TOF (time-offlight) chamber where velocity and incoming angle are computed. Velocity is determined by the time difference between the generation of secondary electrons in the start foil and a stop surface, and angle is determined by spatially imaging the position of the generation of the start secondary electrons. From the velocity, energy per charge, and the post acceleration potential it is then possible to calculate the mass per charge. The measured species for the FIPS range from H to Fe.

The FIPS instrument provides a single serial stream of event data to the EPPS system at rates of up to 50K events/sec. The EPPS software maintains a mass distribution spectrum for the FIPS instrument. This spectrum consists of a collection of two hundred fifty-six

9

bins (each 24 bits wide) that count the number of events corresponding to M/Q values. In addition the software maintains a set of 5 element energy spectra. Each FIPS spectrum corresponds to a specified M/Q range and consists of sixty-four 24-bit bins. For events whose M/Q values fall within one of the selected ranges, an energy value is computed and used to determine which bin within the corresponding spectrum to increment. The spectra are accumulated over an integral number of voltage scans, after which they are compressed and output in telemetry. FIPS also records 5 heavy ion energy-summed images (called "velocity distributions") for each of the same 5 M/Q values plus one for protons. A commanded number of raw events will be recorded at each scan level.

5.1.2 EPS Overview

The Energetic Particle Spectrometer (EPS) determines the distributions of the higher energy magnetospheric ion and electrons, including the composition of the ions to characterize the nature of the planetary field of Mercury. It does this by measuring the energy and velocity of the particles and then using a look-up table to determine the mass and therefore the species of particle. The measured species for the EPS include H, He, CNO, Fe, and electrons. Electrons are measured by solid-state detectors behind absorbing aluminum flashing.

The EPS sensor consists of a 60mm diameter, tuna-can-like cylinder, in which a start foil and stop foil, wrapped around opposite curved sides of the cylinder, constitute the timeof-flight chamber. An incoming particle hits the start foil and scatters one or more electron, which is attracted to the start anode ground. The particle continues and hits the stop foil, scattering other electrons, which are then attracted to the stop anode ground. The solid-state detectors outside of, but wrapped around the curved face of, the stop foil, then detect the particle and measure the energy state.

The detectors are arranged so that each detector senses the events within a given range of incidence angles. Each of the six detector modules is composed of four pixels: large and small ion and large and small electron. This provides 24 detector elements. At any one time, 12 of the 24 elements are used (6 ion and 6 electron detectors). Each of the six EPS detector modules also maintains its own spectrum via sixty-four 16-bit bins. Sixty-three bins will count the particle/energy combinations of interest, and one will count the remaining "background" events which do not fall in the particle/energy combinations of interest. The spectra are accumulated over a time set by ground command, after which they are compressed and reported in telemetry.

The EPS system also includes thirty-two 16-bit rate counters and three 24-bit rate counters that are read by the EPPS software every n seconds (n specified by command). EPS status and housekeeping data such as voltages, currents and temperatures are also periodically sampled.

5.2 Data Product Overview

The EDR data products generated by the EPS and FIPS subsystems, as well as the EPPS instrument status EDR, are described in this section. For all the EDR products there is a detached PDS label file which describes the contents of one data file. Each label file will

have the same base name as the data file it is describing, with the extension ".LBL" to denote a label file. The label file defines the start time and end of the observation, product creation time, and the structure of the binary (or ASCII) tables.

The data product overview will first cover the EDRs unique to the EPS and FIPS subsystems, then describe the EPPS Engineering and Status EDR. There are a total of 8 current and 8 retired EDR data products. Of the current products, five of these are science and ancillary data products for the EPS instrument. Two others are science and ancillary data products for the FIPS instrument. The last is the engineering and status data products for the entire EPPS instrument. Each data file contains the data collected on a given earth day.

5.2.1 EPS Data Products

The EPS portion of the data archive currently consists of five current and 3 retired EDR data products. The EPS instrument creates all of its different science data packets during one observation, but the packets are telemetered to the ground at different times. The different formats of these data packets do not lend themselves to standardization into one EDR file format. Therefore, different EDR formats have been developed, each of which captures one specific data grouping such as spectra or PHA data. A given EDR data file will contain all the observations obtained on same earth day. The following table shows the different EPS data products. Each data product is identified within the PDS label by a STANDARD_DATA_PRODUCT_ID value (shown in parentheses).

The table has been updated to reflect an instrument flight software (FSW) version 6 upload on 8/18/2008, henceforth known as the FSW6 upload. The software changed to consolidate and improve instrument telemetry allocation on EPS. During the time of instrument check out shortly after launch, EPS's time-of-flight section suffered a failure, subsequently, EPS lost its ability to measure ions by elemental mass species (can only now measure ion and electron). Hence a change of FSW is required to improve EPS's ion and electron data products. This software upload changed the packet formatting such that two EPS EDRs had to be retired and be replaced by two new EDRs. Two additional EDRs had to be created to store data from two new instrument packets. Finally, the format for the EPS PHA EDR has been updated to be support slight changes in the PHA data. The new PHA data format will be consistent for EDRs before and after the flight software upload. The new flight software code was uploaded on 8/18/2008 and implemented on 8/19/2008. Thus, data on or after 8/19/2008 is generated from FSW6.

In addition, version 5 of the instrument flight software (FSW5), uploaded 9/6/2007, consolidated the EPS housekeeping data with FIPS housekeeping data in a new EDR, the EPPS_LONG. Thus the High Priority Housekeeping (EPS_HI_HOUSEKEEPING) EDR has also been retired.

Version 7 of the instrument flight software (FSW7), uploaded on 8/18/2009, did not affect the format of the EPS EDRs. Thus, data on or after 8/18/2009 is of the same format as data generated from the FSW6 upload. FSW7 does affect the FIPS EDRs and changes are detailed in section 5.2.2.

Current Data Products			
Data Product	Product Description		
EPS Pulse Height (EPS_PULSE_HEIGHT) EDR format changed by FSW6 on 8/18/2008	 PDS label file – describes data product and contains pointers to the data file: PHA Data – contains Pulse Height Analysis data in binary table format. The PHA data product is generated from the high, medium, or low priority science packet. The priority level will be identified within the PDS label. As of 8/18/2008 the PHA data product is generated from PHA data packets. There is no priority level associated with the PHA EDR since the high, medium, and low priority packets are retired on 8/18/2008. 		
EPS_High Resolution Spectra (EPS_HIRES_SPECTRA) New FSW6 EDR introduced on 8/18/2008, replaces EPS_HI_SPECTRA.	 PDS label file – describes the data product and contains pointers to the data file: Data file – high-res (energy channels) ion and electron energy spectra 		
EPS_Low Resolution Spectra (EPS_LORES_SPECTRA) New FSW6 EDR introduced on 8/18/2008, replaces EPS_MED_SPECTRA.	 PDS label file – describes the data product and contains pointers to the data file: Data file – lo-res (energy channels) ion and electron energy spectra and rate counters. 		
EPS Summary Spectra (EPS_SUMMARY_SPECTRA) New FSW6 EDR introduced on 8/18/2008	 PDS label file – describes the data product and contains pointers to the data file: Data file – Contains a subset of rate counters and low resolution energy spectra 		
EPS Scan (EPS_SCAN_RATES) New FSW6 EDR introduced on 8/18/2008	 PDS label file – describes the data product and contains pointers to the data file: Data file – Contains the integrated hardware counters over four energy thresholds. Each threshold setting and integration lasts ¼ second. 		
	Retired Data Products		
Data Product High Priority EPS Spectra (EPS_HI_SPECTRA) EDR retired by FSW6 on 8/18/2008	 Product Description PDS label file – describes the data product and contains pointers to the data file: Spectra Data – contains spectral data, hardware and software rate counters in binary table format. Data and counter values are taken from the High Priority (order that they download to ground) Science Packet 		
High Priority Housekeeping (EPS_HI_HOUSEKEEPING) EDR retired by FSW5 on 9/6/2007.	 PDS label file – describes the data product and contains pointers to the data file: Housekeeping ASCII table file – contains 33 fields of housekeeping data. 		
Medium Priority EPS Spectra (EPS_MED_SPECTRA) EDR retired by FSW6 on 8/18/2008	 PDS label file – describes data product and contains pointers to the data file: Spectra data – contains spectral data, hardware and software rate counters in binary table format. Data and counter values are taken from the Medium Priority (order that they download to ground) Science Packet. 		

Table 2 EPS Data Products

The EPS Spectra Data is stored as counts/accumulation for a number of defined data channels. The spectra are reported within 4 different classes of channels: high-resolution/low-resolution electron channels, and high-resolution/low-resolution ion channels. The channels are defined in Tables 2-5. The information provided in these tables is given for each of 6 different view directions. Note that the exact boundaries given with either energies or times-of-flight are subject to change via ground commands. Tables 2-5 list electron energy levels as recorded within the onboard sensors and electronics. The translations of those electronic levels to the energies of the incoming particles can be found in the Livi et al. (2004) Calibration report referenced at the beginning of this document.

Channel	E1 (electronic)	E2(electronic)	Comments
	keV	keV	
0	0	21	Below Discrimination
1	21	28	Below Discrimination
2	28	35	
3	35	56	
4	56	71	
5	71	112	
6	112	141	
7	141	224	
8	224	447	
9	447	708	
10	708	1000	
11			Overflow Channel

Table 4 EPS Low-resolution Ion Channels (Based on Energy)

Channel	E1 (electronic)	E2(electronic)	Comments
	keV	keV	
0	0	20	Below Discrimination
1	21	27	Below Discrimination
2	30	36	
3	43	57	
4	62	89	
5	88	140	
6	125	343	
7	177	537	
8	252	841	
9	357	2065	
10	507	2750	
11			Overflow Channel

Channel	E1 (electronic)	E2(electronic)	Comments
	keV	keV	
0	0	18	Below Discrimination
1	18	20	Below Discrimination
2	20	25	Below Discrimination
3	25	28	Below Discrimination
4	28	32	
5	32	35	
6	35	40	
7	40	45	
8	45	50	
9	50	56	
10	56	63	
11	63	71	
12	71	79	
13	79	89	
14	89	100	
15	100	112	
16	112	126	
17	126	141	
18	141	158	
19	158	178	
20	178	200	
21	200	224	
22	224	251	
23	251	282	
24	282	316	
25	316	355	
26	355	398	
27	398	447	
28	447	501	
29	501	562	
30	562	631	
31	631	708	
32	708	794	
33	794	891	
34	891	1000	
35			Overflow Channel

Table 5 EPS High-resolution Electron Channels	s (Based on Energy)
---	---------------------

Table 6 EPS High-resolution Ion Channels (Based on Energy)

Channel	E1 (electronic)	E2(electronic)	Comments
	keV	keV	
0	0	17	Below Discrimination
1	17	20	Below Discrimination

2	20	23	Below Discrimination
3	23	27	Below Discrimination
4	27	31	
5	31	36	
6	36	42	
7	42	49	
8	49	57	
9	57	66	
10	66	77	
11	77	89	
12	89	104	
13	104	120	
14	120	140	
15	140	162	
16	162	188	
17	188	219	
18	219	254	
19	254	295	
20	295	343	
21	343	398	
22	398	462	
23	462	537	
24	537	624	
25	624	724	
26	724	841	
27	841	977	
28	977	1135	
29	1135	1318	
30	1318	1531	
31	1531	1778	
32	1778	2065	
33	2065	2399	
34	2399	2750	
35			Overflow Channel

The element that is not represented in Tables 2-5 is directionality. The nominal total field-of-view (FOV) of EPS is 160° x 12°. Because the electron and ion Solid State Detectors (SSDs) are side-by-side, the total electron or high energy ion FOV in the long dimension is about 1/12 smaller (~13° smaller) or about 147°. And, the centers of the ion and electron FOV's are shifted with respect to each other by ~13°. Let us define two angles within the MESSENGER spacecraft coordinate system: "alpha" is the angle from the +Y(s/c) axis and within the Y(s/c)-Z(s/c) plane (with "plus" angles viewing towards the +Z(s/c) axis); "beta" is the angle for rotations away from the Y(s/c)-Z(s/c) plane. With these definitions, the total FOV of EPS is roughly: (-80° < alpha < +80°) and (-6° < beta < +6°). The ion FOV is (-67° < alpha < +80°) and (-6° < beta < +6°). The electron

FOV is $(-80^\circ < \text{alpha} < +67^\circ)$ and $(-6^\circ < \text{beta} < +6^\circ)$. For low energy ions (where the directionality is determined by microchannel plate anodes and not solid state detectors), the field-of-view is : $(-80^\circ < \text{alpha} < +80^\circ)$ and $(-6^\circ < \text{beta} < +6^\circ)$.

The direction within the ~160 degree field of view is determined for high-energy ions and for electrons with the determination of which solid state detector (SSD) was active. With the high-energy ion and electron segments, there are a total of 12 SSD elements active at any one time. The numbering scheme for these detector elements ranges between 0 and 11, with the even SSD elements corresponding to electrons and the odd SSD elements corresponding to ions. The "0" detector (an electron detector) is the one that looks most closely aligned with the -Z(s/c) axis, while the "11" detector looks most closely to the +Z(s/c) axis. In the data that is telemetered to the ground, the directionality of the electrons and ions is represented with a number between 0 and 5. For electrons the directions (0, 1, 2, 3, 4, 5) correspond to SSD's (0, 2, 4, 6, 8, 10). For high-energy ions the directions (0, 1, 2, 3, 4, 5) correspond to SSD's (1, 3, 5, 7, 9, 11).

There is a confusing element in the representation of the directionality of low energy ions (time-of-flight only). The directionality is now determined not with the SSD's but with the microchannel plate anodes. The numbering of the TOF Start-Anodes ranges between 0 and 5. An ion or electron that passes right over Start-Anode "0" (only the ion "stimulates" this start anode) strikes either SSD 10 or SSD 11. Thus, the Start-Anodes 5, 4, 3, 2, 1, and 0 map to SSD's (0, 1), (2, 3), (4, 5), (6, 7), (8, 9), and (10, 11), respectively. The confusing element is that the Low Energy Ion direction "5" (representing the firing of anode "5") corresponds roughly (not exactly) to the High Energy Ion direction "0", and the Low Energy Ion direction "0" corresponds to the High Energy Ion direction "5". This confusing element exists for historical reasons, and because this representation is how the directionalities are indicated on board the instrument, we believed that even more confusion would be introduced if we made a change within the data generated on the ground.

In FSW6, the high (energy) resolution spectral EDR product (EPS_HIRES_SPECTRA) is integrated for T*N1 seconds, where both T and N1 are commandable parameters. The EPS_HIRES_SPECTRA data are sent from the spacecraft in high priority telemetry packets. The low (energy) resolution spectral EDR product (EPS_LORES_SPECTRA) is integrated for T seconds (high time resolution) and contains rate data as well as the low energy spectra. The EPS_LORES_SPECTRA data are sent from the spacecraft in medium priority telemetry packets. The EPS_SUMMARY_SPECTRA EDR product contains both high and low energy spectra and is integrated over T*N1 (low time resolution). The EPS_SUMMARY_SPECTRA data are sent from the spacecraft in high priority telemetry packets. It provides redundant data and a quick look capability; it may be enabled or disabled by command.

In previous releases, these spectral products were identified by the priority with which the data packets were telemetered by the spacecraft to the ground. In FSW6, this naming convention has been discontinued. The following table clarifies the relationship between the EDR names and the various resolutions and priorities of the three principle products:

Product	Energy	Time Resolution	Telemetry
	Resolution	(Integration Time)	Priority
EPS_HIRES_SPECTRA	High (36 bins)	T*N1 (low)	High
EPS_LORES_SPECTRA	Low (12 bins)	T (high)	Medium
EPS_SUMMARY_SPECTRA	Both	T*N1 (low)	High

New in the FSW6 is the Scan data. In scan mode, EPS varies the energy thresholds integrating hardware rates at each threshold setting (defined in tables). The thresholds are changed three times, and then the base thresholds are restored. A scan is defined as four threshold settings, three offsets and one nominal. At each threshold step, a subset of the hardware rate counters is accumulated for ¼ second. The Scan mode gives EPS the ability to lower its electronics threshold by temporary suspending the processor operation.

5.2.1.1 Pulse Height Analysis (PHA) Event Data

PHA events are stored by the EPPS flight software in the EPS High, Medium, or Low priority Science packet, for data prior to FSW6. The following explains how PHA event data is collected for data prior to the FSW6 upload on 8/18/2008. PHA events are distributed among the packet buffers in round-robin fashion: the first detected event is stored into the high-priority packet buffer, the next event is stored in the medium-priority packet buffer, and the last event is stored into the low-priority packet buffer. Please note that there is no individual time tag per PHA event.

Each event allocated to a particular buffer is simply stored into the next slot within the buffer until the buffer fills up. Thereafter, a rotating priority PHA replacement scheme is used in deciding which events may be displaced from the filled buffer. The maximum number of PHA events saved per integration period for a particular packet is shown in the following table:

EPS Packet	Maximum number of PHA events saved during each
Туре	accumulation interval
High Priority	10
Medium	20
Priority	
Low Priority	300

 Table 7 Maximum PHA Events per Integration

Note that a given EPS science packet (which may or may not contain PHA events) is time tagged with one MET time (not per PHA event). PHA events are accumulated within an integration period depending on the priority of the given science packet. Each PHA event is time tagged with the same MET associated with the science packet in which it was contained. Thus, there will be a maximum of 10 High Priority events with the same MET, 20 Medium Priority events with the same MET or 300 Low Priority events with the same MET. A given PHA EDR data file will contain the observations obtained on the same earth day and arranged in time order. Therefore a given PHA EDR data file will contain a

set of N PHA events with the same MET, followed by another set of PHA events with the same MET, etc.

The FSW6 upload created a PHA packet for the express purpose of downloading PHA events. The EPS collects data for T*N1 seconds (where T=integration time and N1 is the integration time multiplier). If the integration is aborted then N1 will be the actual value instead of the commanded value. Over the T*N1 integration time, EPS saves PHA data in the order that it is seen. Each PHA packet can record a maximum of 934 PHA events. The events in a single PHA packet are time tagged with one MET time.

FSW6 also retired the high, medium, and low priority packets and consequently the capture of PHA events within those packets. The only packet which contains EPS PHA events is the EPS PHA packet and is sent down as a medium priority packet; the file naming convention will reflect that FSW6 PHA EDRs are no longer associated with a priority level.

5.2.2 FIPS Data Products

The FIPS portion of the data archive currently consists of two current and 4 retired EDR data products. As with the EPS the data collected in one observation is downloaded at different times and in different packet formats. Therefore, different EDR formats have been developed, each of which presents a different grouping of the data. The following table shows the different FIPS data products and their files. Each data product is identified within the PDS label by a STANDARD_DATA_PRODUCT_ID value (shown in parentheses). Note: a FIPS Flight Software Upload (FSW5) was conducted on Sept 6, 2007 which implemented several changes to the FIPS science packets. This in turn changed the format of the FIPS EDRs. The EDRs prior to FSW5 were regenerated to reflect the updated format. The FSW5 upload also modified the FIPS High Priority Science Packet. Instead, that housekeeping data was added to the EPPS Status packet, which in turn led to the creation of the EPPS_LONG_STATUS EDR. The FIPS_HI_HOUSEKEEPING EDR is no longer generated for data collected on or after 9/6/2007.

This was superceded by a FIPS Flight Software Upload (FSW6) conducted on 8/18/2008, henceforth known as the FSW6 upload. This software upload changed the packet formatting such that the Medium Priority FIPS Spectra EDR had to be retired and was replaced by FIPS High Resolution Proton Velocity Distribution EDR. The FIPS SCAN EDR was created to store data from a new instrument packet. The new flight software code was uploaded on 8/18/2008 and implemented on 8/19/2008. Thus, data on and after 8/19/2008 is from the FSW6 load.

Another instrument flight software upload (FSW7) was conducted on 8/18/2009. This software upload enable the creation of Proton PHA events in addition to the existing Heavy Ion PHA events. Both types of PHAs are combined in a single EDR file. The PHA data are also exclusively generated by specific PHA packets. The naming convention for

FSW7 PHA EDRs has been updated to reflect this change. Additionally the FIPS High Resolution Proton Velocity Distribution EDR has been retired due to the FSW7 update.

The table below reflects the changes brought about by each successive FSW upload.

Specific changes to the FIPS EDR formats are described in a NOTE at the start of each FIPS format file.

Current Data Products		
Data Product	Product Description	
FIPS Pulse Height (FIPS_PULSE_HEIGHT) Format updated by FSW5 on 9/6/2007 FIPS SCAN (FIPS_SCAN)	 PDS label file – describes data product and contains pointers to the data file: PHA Data – contains FIPS Pulse Height Analysis data in binary table format. This data product is generated from either high, medium, or low priority FIPS packets. The priority level will be identified within the PDS label As of 8/18/2008 the PHA data product is generated from High or Low Priority spectra packets or from FIPS Scan packets. The file naming convention will identify the source packet. PDS label file – describes data product and contains pointers to the data file: 	
New FSW6 EDR	• Data file – contains rate counts sampled at each Deflection System High Voltage (DSHV) step in a FIPS scan.	
Retired Data	Retired Data Products (shown in retired time order)	
Data Product	Product Description	
High Priority FIPS Housekeeping (FIPS_HI_HOUSEKEEPING) EDR retired by FSW5 on 9/6/2007 Medium Priority FIPS Spectra (FIPS_MED_SPECTRA) EDR retired by FSW6 on 8/18/2008	 PDS label file – describes the data product and contains pointers to the data file: Housekeeping ASCII table file – contains 33 fields of housekeeping data (contained in the high priority science packet). PDS label file – describes data product and contains pointers to the data file: Spectra Data file – contains proton velocity distribution, hardware and software rate counters in binary table format. Data and counter values are taken from the Medium Priority Science Packet 	
High Priority FIPS Spectra (FIPS_HI_SPECTRA) Format updated by FSW5 on 9/6/2007 EDR retired by FSW7 on 8/18/2009 FIPS High Resolution Proton	 PDS label file – describes the data product and contains pointers to the data file: Spectra Data file – contains spectral and velocity distribution, hardware and software rate counters in binary table format. Data and counter values are taken from the High Priority Science Packet PDS label file – describes data product and contains 	
Velocity Distribution (FIPS_HIRES_PROTON_V) New FSW6 EDR EDR retired by FSW7 on 8/18/2009	 pointers to the data file: Data file – Contains a 32 x 32 high resolution proton velocity distribution, integrated over a 10 scan sequence. 	

 Table 8 FIPS EDR Data Products

Each of these items is explained in detail in the following sections. Much of this information is updated from 'FIPS Data Processing and Instrument Control'. Further details can be found in 'EPPS Instrument Flight Software Specification'. (See Section 2 of this document for full bibliographic information.)Rate Counters **Table 9 Rate Counters**

Item	Rate Counter	Bits	Derived from
	Name		
1	Start Events	10	Start Events Counter, i2c address 0x67 and 0x68
2	Valid Events	10	VE Counter, i2c address 0x6b and 0x6c
3	Proton Events	10	H Events Counter, i2c address 0x6d and 0x6e
4	Stop Events	10	Stop Events Counter, i2c address 0x69 and 0x6a
5	Events Processed	10	EPS internal counter

The rate counters are 32 bit values, which are compressed to 10 bits. The first 3 rate counters listed are retrieved from FIPS at the end of each energy/charge (E/q) step (typically 1 second per step). The Stop Events counter is retrieved periodically and included in the housekeeping data. The fifth, Events Processed, counter is internal to the EPS processor which, when compared with the Valid Event counter, shows how many events have been registered in hardware but not processed in software, due to time limitations. The rate counters are compressed using a 10 bit logarithmic compression code, 5 bits for mantissa and 5 bits for exponent (5/5 compression).

5.2.2.1 Mass Distribution and Element Energy Spectra

The **Mass Distribution** is a histogram of events classified by their Mass/charge (M/q). All events are included in this data, both proton and non-proton. The Mass Distribution data object consists of 128 bins of 24 bit counters (compressed to 10 bits using the 5/5 compression. Nominally, these 128 bins span 0.9 AMU to 42 AMU, in a log scale. Bin 0 contains the sum of all events with M/q below the usable range (nominally 0.9 AMU) while bin 127 contains the sum of all events with M/q above the usable range (nominally 42 AMU). This data product is accumulated over a full scan sequence (10 scans; taking typically ~670 s in nominal mode).

To find the bin to increment, the EPPS Flight software uses a lookup table based on the E/q step and the measured TOF value. This lookup table is generated in two parts: First, a table of M/q (in AMU/e) as a function of E/q step and TOF is calculated:

 $M/q = 2 (kU + |Va|) * TOF^{2} / (d^{2} * 1040 ns^{2} keV / cm^{2} AMU)$

where:

k = deflection system constant, approx 1.33
U= deflection system voltage, in kV
Va= post acceleration voltage, in kV
TOF = the measured Time of Flight, in ns
d = distance over which TOF is measured, in cm.

Note: This equation does not include a term for the carbon foil scattering and energy loss, which tends to spread the calculated M/q values for each species making in flight calculations less precise than is possible on the ground.

Second, the M/q values are binned logarithmically across the M/q range (nominally 0.9-42 AMU/e):

 $Mq_bin = (log(M/q) - log(0.9)) / ((log(42) - log(0.9))/128)$

The **Element Energy Spectra** represent the distribution of events over E/q that fall within a specified M/q range. There are 5 separate vectors, each corresponding to a different (commandable) M/q range, called Energy Vector Ranges. These are presented as histograms of 64 bins, each a 24 bit counter, compressed to 10 bits using 5/5 compression. For inclusion in a data packet, the bins for each vector are ordered in ascending order, 0-63, and the 5 vectors are ordered 1 through 5. This data product is accumulated over a full scan sequence (10 scans; typically 670 s in nominal mode).

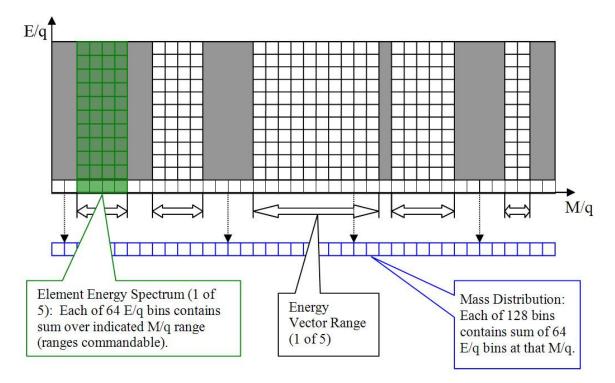


Figure 1Graphical depiction of relation among Element Energy Spectra, the MassDistribution and the E/q - M/q measurement space. Note: Not all E/q or M/q bins are depicted.

5.2.2.2 PHA Event Data

PHA words contain the full-capability measurements of single particle events. Each PHA word contains the TOF, E/q step, and (X, Y) location of the event on the start MCP. is accompanied by its associated DSHV step number, a 6-bit value. The LSB of the TOF value is dropped, 11 to 10 bit. The X and Y positions are calculated from the 12 bit

Wedge, Strip, and Zigzag data. First commanded offsets are subtracted from each value then the calculation below is performed:

The 28 bit packet is represented as follows in the following order:

DS voltage step	[6 bits]
TOF	[10 bits]
X = INT(128*Wedge/(Wedge+Strip+ZigZag))	[6 bits]
Y=INT(128*Strip/(Wedge+Strip+ZigZag))	[6 bits]

Since not all PHA words can be telemetered to the ground, a representative sample is transmitted according to a buffered, rotating priority scheme. As events are collected, the flight software stores up to 12 events per deflection system voltage step in a buffer. At the end of the scan, these events are read out in voltage step order, one from each voltage step. Within a voltage step, PHAs are read out in the same order that they were stored. When no PHA exists for a given voltage step, one is read from the next voltage step which has PHAs remaining, until the allowed number of PHAs (quota) for this scan have been selected. The quota is 128 PHAs per scan for High and Medium priority events. The quota for Low priority events is set by ground command, with a maximum of 617 PHA words. This scheme has the effect of downlinking a selection of PHAs which are as evenly distributed across voltage steps as possible, while still telemetering the full quota of PHA words.

High or Medium priority PHA events contain the DS voltage step, TOF, X, and Y values. Low priority PHA events contain the DS voltage step, Wedge, Strip, and ZigZag values. Proton PHA words are not included and thus never included in the data. The 'Valid Event' rate is then used to calculate the appropriate weight of each transmitted PHA word which would reconstruct the distribution of actual valid events.

The PHA events are included as part of the FIPS high, medium, or low science packets. As of FSW6 PHA events are also included as part of the FIPS Scan packet. There is only one MET time tag associated with a science packet, even though it may contain multiple PHA events. Thus, the FIPS PHA EDRs will contain multiple records with the same MET timestamp. The maximum number of PHA events with the same MET timestamp is dependent on the priority level of the PHA event. It is possible to narrow the MET time window associated with a set of PHA events by combination of the E/q step number with the stepping rate. See section 5.1.1 for a description of FIPS stepping rate and note that MET timestamps are for the end of the scan. This priority level is assigned based on the priority of the telemetered science packet containing the PHA event. The maximum number of PHA events type is shown in the following table:

FIPS Packet Type	Maximum number of PHA events contained in the packet
High Priority	64
Medium Priority or FIPS Scan	128

Table 10 Maximum PHA Events per Packet Type

Low Priority	617
Heavy Ion (FSW7)	617
Proton (FSW7)	1169

Note that a given FIPS science packet (which may or may not contain PHA events) is time tagged with one MET time. PHA events are accumulated within an integration period depending on the priority of the given science packet. Each PHA event is time tagged with the same MET associated with the science packet in which it was contained. Thus, there will be a maximum of 64 High Priority events with the same MET, 128 Medium Priority events with the same MET or 617 Low Priority events with the same MET. A given PHA EDR data file will contain the observations obtained on the same earth day and arranged in time order. Therefore a given PHA EDR data file will contain a set of N PHA events with the same MET, followed by another set of PHA events with the same MET, etc.

EDR priority designations have been eliminated with the introduction of FSW7. Now there are just 2 types of PHA packets – heavy ion and proton. However, the descriptions given above with regard to the MET time tags and EDR content still apply.

5.2.2.3 Velocity Distributions

FIPS is an imaging instrument that views into a region of solid angle that has conical symmetry and is bounded by 2 nested cones, with half angles of ~15 and ~75 degrees. The symmetry axis of the field of view points in the direction of (-0.74324, -0.383558, 0.548158) in spacecraft coordinates. In the back plane of the instrument the field of view is mapped onto a Cartesian (X, Y) coordinate system, with binned elements up to a resolution of 64 x 64. Distributions of the (X, Y) positions for each PHA represent the distributions of the velocity directions of particle events. These distributions are stored as 8 x 8 arrays of counters. The values X/8 and Y/8 are used as the row and column within the velocity distribution matrix to give the bin to be incremented.

Proton Velocity Distribution

This velocity distribution is calculated for only Proton events once per scan (typically \sim 65 s in nominal mode). The first bit in the event packet delivered by FIPS indicates whether it is a proton event.

Heavy Ion Velocity Distributions

This set of five velocity distribution arrays are calculated by including all PHA words in the same M/q ranges as those of the Element Energy Spectra. One set of these 5 distributions is produced every scan sequence (10 scans; ~670 s in nominal mode).

5.2.3 EPPS Engineering and Status Data Product

There is one current and one retired EDR data product containing the engineering and status information for the EPPS instrument – the EPPS Status EDR. This data product consists of an external PDS label file and its pointer to an ASCII table file. The data

product is in ASCII to facilitate the browsing of instrument status parameters with commonly available text readers during mission operations.

Note: a FIPS Flight Software Upload (FSW5) was conducted on Sept 6, 2007 which significantly changed the format of the EPPS Engineering and Status packet. Instead of changing the EPPS Engineering and Status EDR it was decided to create a new EDR, called EPPS_LONG_STATUS, to contain the content of the updated Status packet and retire the EPPS_STATUS EDR after FSW5.

Therefore the EPPS STATUS EDR covers the time period from launch to 9/5/2007. The EPPS_LONG_STATUS EDR will contain the engineering and status information for data collected on or after 9/6/2007.

5.3 Data Processing

5.3.1 Data Processing Level

There is one EPPS PDS Documentation Archive Volume and one EPPS PDS Data Archive Volume. The data volume will contain level 2 CODMAC(Committee on Data Management and Computation) data products, also known as EDRs. Each product will have a unique file name and conform to the file naming convention in section 6.5. All EDR products will be stored at the Applied Physics Laboratory/Science Operations Center (APL/SOC) during mission operations. Volumes will be electronically transferred to the PDS PPI Node following the procedure in section 5.3.3.

Inputs to the SOC will consist of telemetry in the form of CCSDS packets. Data downlink is telemetered through NASA's Deep Space Network (DSN) managed by the Jet Propulsion Laboratory in Pasadena, CA, and then forwarded to APL. Level 1 CODMAC data (spectra, pulse height analysis, engineering data) is extracted from the telemetry packets and stored online at the SOC. Level 2 CODMAC data (EDRs) is then generated by the 'PIPE-EPPS2EDR' software, which is run automatically at the SOC.

5.3.2 Data Product Generation

The EPPS EDR files will be produced by the MESSENGER Science Operations Center (SOC) operated jointly by APL and ACT. The 'PIPE-EPPS2EDR' software created by ACT creates the EDR products to the proper PDS labeled format. The EDR data products are made available to the MESSENGER Science Team for initial evaluation and validation. At the end of the evaluation and validation period, the data are organized and stored in the directory structure described in section 6.8 for transmittal to the PPI Node. The transmittal process is described in the following section, Data Flow. An initial release of the documentation volume will accompany the initial release of the data volume. Thereafter, there will be updates to the documentation volume whenever the EPPS team determines that they have a sufficiently improved calibration to warrant a new release. PDS will then provide public access to the data products through its online distribution system. These products will be used for engineering support, direct science analysis, and construction of other science products.

5.3.3 Data Flow

The MESSENGER SOC operates under the auspices of the MESSENGER Project Scientist to plan data acquisition, generate, and validate data archives. The SOC supports and works with the MOC, the Science Team, instrument scientists, and the PDS.

Figure 2 MESSENGER Data Flow shows the flow of data within the MESSENGER project and out to PDS. The MOC handles raw data flow to and from the MESSENGER spacecraft and the SOC converts the raw telemetry into EDRs. The Science Team validates the EDRs and notifies the SOC if corrections are needed. Documentation, EDRs, and science products are delivered to the PDS Planetary Plasma Interactions (PPI) node. SPICE kernels are delivered to the PDS Navigation and Ancillary Information (NAIF) node. The delivery process is detailed below.

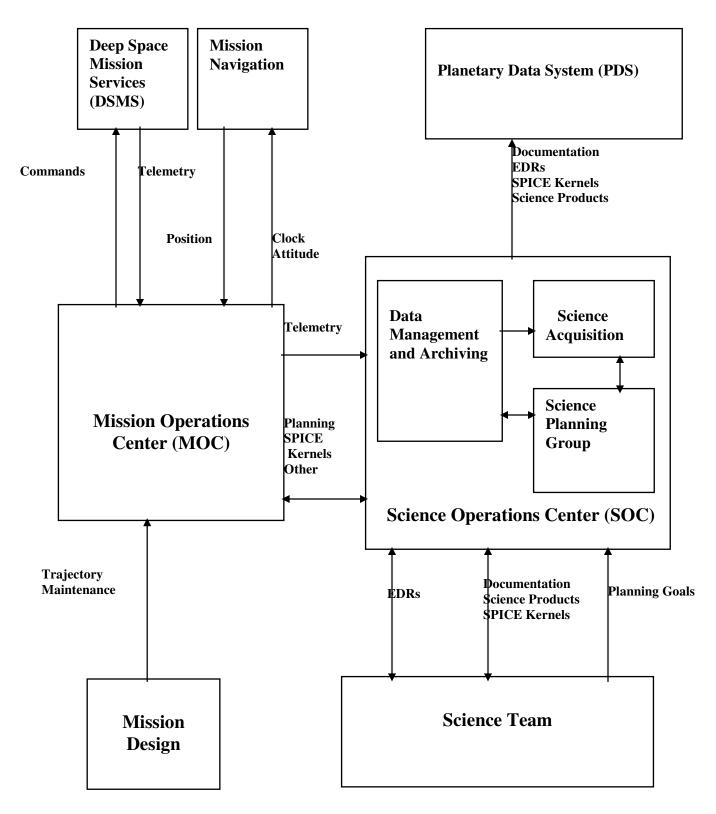


Figure 2 MESSENGER data flow

The MESSENGER SOC will deliver data for the EPPS EDR data volume to the PDS PPI Node in standard product packages. Each package will comprise data and ancillary data files, organized into directory structures consistent with the volume design described in section 6.8. The initial release will also contain the documents and required files for the EPPS documentation volume, organized into directory structures as described in section 6.7. Subsequent releases to the EPPS documentation volume will be at the discretion of the EPPS team and be delivered whenever the EPPS team determines that they have a sufficiently improved calibration to warrant a new release.

The following describes the electronic transfer process of releasing data to PDS for both the data volume and the documentation volume. This process will be implemented for the first PDS delivery. Future data deliveries will be assumed to follow the same process unless otherwise noted in an update of this document. Given the long duration of the mission the project reserves the option of exploring alternate data delivery methods for subsequent deliveries. As such, the method of electronic transfer may change and will be revised accordingly in the SIS. Any changes to the delivery process will be noted in an update to the SIS document and will include the specific dates which will use the new delivery process. The delivery of products to the data volume will follow the schedule in the MESSENGER Data Management and Archiving Plan. The delivery date for updates to the documentation volume will be determined as needed at the discretion of the EPPS team.

In the week prior to the delivery date the directory structure will be compressed into a single "zip archive" file for transmittal to the PDS node. The zip archive preserves the directory structure internally so that it can be recreated after electronic delivery to the PDS node. The zip archive file is transmitted to the PDS node via FTP to an account set up by the receiving node. Also transmitted will be a checksum file created using the MD5 algorithm. This provides an independent method of verifying the integrity of the zip file after it has been sent. Within days of transmittal the PDS node will acknowledge receipt of the archive and checksum file. If acknowledgement is not received, or if problems are reported, the MESSENGER SOC will immediately take corrective action to effect successful transmittal.

After transmittal the PDS node will uncompress the zip archive file and check for data integrity using the checksum file. The node will then perform any additional verification and validation of the data provided and will report any discrepancies or problems to the MESSENGER SOC. It is expected that the node will perform these checks in about two weeks. After inspection has been completed to the satisfaction of the PDS node, the node will issue to the MESSENGER SOC acknowledgement of successful receipt of the data.

Following receipt of a data delivery the PDS node will organize the data into a PDS volume archive structure within its online data system. Newly delivered data will be made available publicly from PDS once accompanying labels and other documentation have been validated.

5.3.4 Labeling and Identification

The PDS label conforms to PDS version 3.6 standards. For more information about this standard consult the PDS Standards Reference Document. The label is detached and in a separate PDS label file. The purpose of the PDS label is to describe the data product and provide ancillary information about the data product. There is a PDS label file for every EPPS EDR data file. There is one DATA_SET_ID assigned to the EPPS EDR data. The EDRs are further grouped into data products and are identified by the

STANDARD_DATA_PRODUCT_ID keyword and the file naming convention, section 6.5. . Example label file content is shown here for every EDR data product. Note that the data is contained within a binary table or ASCII table and the details of the table structure are described by an external ASCII format file (*.FMT). The fields in each format file are described separately in the Appendix.

<pre>/*** FILE FORMAT ***/ FILE_RECORDS = 287 RECORD_TYPE = FIXED_LENGTH RECORD_BYTES = 1756 /*** GENERAL DATA DESCRIPTION PARAMETERS ***/ PRODUCT_ID = "V1" PRODUCT_CTD = "DATA" PRODUCT_VERSION_ID = "V1" PRODUCT_TYPE = DATA" STANDARD_DATA_PRODUCT_ID = "ESS_HI_SPECTRA" SOFTWARE_VERSION_ID = "1.0" INSTRUMENT_NAME = "PIPE-EPPS2EDR" SOFTWARE_VERSION_ID = "1.0" INSTRUMENT_NAME = "ENERGETIC PARTICLE SPECTROMETER" INSTRUMENT_NAME = "EARTH CRUISE" TARGET_NAME = "CALIBRATION" START_TIME = 2005-05-14T23:56:42 SPACECRAFT_CLOCK_START_COUNT = "24516235" SPACECRAFT_CLOCK_START_COUNT = "24502146" ^TABLE = "EPSH_S2005134EDR_V1.DAT" OBJECT E TABLE COLUMNS = 67 INTERCHANGE_FORMAT = BINARY ROW_SYTES = 1756 ROWS = 287 DESCRIPTION = " This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete columm definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE END </pre>	PDS_VERSION_ID	= "PDS3"
<pre>FILE_RECORDS = 287 RECORD_TYPE = FIXED_LENGTH RECORD_BYTES = 1756 /*** GENERAL DATA DESCRIPTION PARAMETERS ***/ PRODUCT_ID = "EPSH_S2005134EDR_V1_DAT" PRODUCT_VERSION_ID = "V1" PRODUCT_CREATION_TIME = 2007-11-12T16:05:31 PRODUCT_CREATION_TIME = 0DATA" STANDARD_DATA_PRODUCT_ID = "EPS_HI_SPECTRA" SOFTWARE_VERSION_ID = "I.0" INSTRUMENT_HOST_NAME = "IENERGETIC PARTICLE SPECTROMETER" INSTRUMENT_HOST_NAME = "MESSENGER" INSTRUMENT_ID = "EPS" DATA_SET_ID = "EPS" DATA_SET_ID = "MESSENGER" INSTRUMENT_ID = "EPS" TARGET_NAME = "MESSENGER E/V/H/SW EPPS-2-EPS-RAWDATA-V1.0" DATA_SET_ID = "EARTH CRUISE" TARGET_NAME = "CALIBRATION" START_TIME = 2005-05-14T0:00:04:51 STOP_TIME = 2005-05-14T0:01:04:51 STOP_TIME = 2005-05-14T0:01:04:51 STOP_TIME = 2005-05-14T0:01:04:51 SPACECRAFT_CLOCK_START_COUNT = "24516235" SPACECRAFT_CLOCK_START_COUNT = "24516235" SPACECRAFT_CLOCK_START_COUNT = "24516235" SPACECRAFT_CLOCK_START_COUNT = "245005134EDR_V1.DAT" OBJECT = TABLE COLUNNS = 67 INTERCHANGE_FORMAT = BINARY ROW_BYTES = 1756 ROWS = 287 DESCRIPTION = " This table contains spectral data collected by the MESSENGER EPS instrumment in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE</pre>	/*** FILE FORMAT ***/	
RECORD_TYPE = FIXED_LENGTH RECORD_BYTES = 1756 /*** GENERAL DATA DESCRIPTION PARAMETERS ***/ PRODUCT_ID = "PEPSH_S2005134EDR_V1_DAT" PRODUCT_VERSION_ID = "V1" PRODUCT_CREATION_TIME = 2007-11-12T16:05:31 PRODUCT_TYPE = "DATA" STANDARD_DATA_PRODUCT_ID = "EPS_HI_SPECTRA" SOFTWARE_VERSION_ID = "1.0" INSTRUMENT_HOST_NAME = "NESSENGER" INSTRUMENT_HOST_NAME = "NESSENGER" INSTRUMENT_ID = "LES" DATA_SET_ID = "DES' DUCALIBRATED EPS CARDATA-V1.0" DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED EPS EDR V1.0" MISSION_PHASE_NAME = "CALIBRATION" START_TIME = 2005-05-14T00:04:51 STOP_TIME = 2005-05-14T00 STOP_TIME = 2005-05-14T00 ST	,	= 287
<pre>RECORD_BYTES = 1756 /*** GENERAL DATA DESCRIPTION PARAMETERS ***/ PRODUCT_ID = "EPSH_S2005134EDR_V1_DAT" PRODUCT_VERSION_ID = "VI" PRODUCT_CREATION_TIME = 2007-11-12T16:05:31 PRODUCT_TYPE = "DATA" SIANDARD_DATA_PRODUCT_ID = "EPS_HI_SPECTRA" SOFTWARE_NAME = "PIPE-EPPS2EDR" SOFTWARE_VERSION_ID = "1.0" INSTRUMENT_HOST_NAME = "MESSENGER" INSTRUMENT_ID = "IPS" DATA_SET_ID = "MESS_E/V/H/SW EPPS-2-EPS-RAWDATA-V1.0" DATA_SET_ID = "MESS_E/V/H/SW EPPS-2-EPS-RAWDATA-V1.0" DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED EPS EDR V1.0" MISSION_PHASE_NAME = "CALIBRATION" START_TIME = 2005-05-14T00:04:51 STOP_TIME = 2005-05-14T20:356:42 SPACECRAFT_CLOCK_START_COUNT = "24516235" SPACECRAFT_CLOCK_STOP_COUNT = "24602146" ^TABLE = "EPSH_S2005134EDR_V1.DAT" OBJECT = TABLE COLUMNS = 67 INTERCHANCE_FORMAT = BINARY ROW_BYTES = 1756 ROWS = 287 DESCRIPTION = " This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE</pre>	—	
<pre>/*** GENERAL DATA DESCRIPTION PARAMETERS ***/ PRODUCT_ID = "EPSH_S2005134EDR_V1_DAT" PRODUCT_VERSION_ID = "VI" PRODUCT_CREATION_TIME = 2007-11-1216:05:31 PRODUCT_CREATION_TIME = 2007-11-1216:05:31 PRODUCT_TYPE = "DATA" SOFTWARE_NAME = "DIPE-EPPS2EDR" SOFTWARE_VERSION_ID = "1.0" INSTRUMENT_HOST_NAME = "MESSENGER" INSTRUMENT_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED EPS EDR V1.0" DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED EPS EDR V1.0" MISSION_PHASE_NAME = "CALIBRATION" START_TIME = 2005-05-14T00:04:51 STOP_TIME = 2005-05-14T00:04:51 STOP_TIME = 2005-05-14T02:56:42 SPACECRAFT_CLOCK_START_COUNT = "24502146" ^TABLE = "EPSH_S2005134EDR_V1.DAT" OBJECT = TABLE COLUMNS = 67 INTERCHANGE_FORMAT = BINARY ROW_BYTES = 1756 ROWS = 287 DESCRIPTION =" This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " " " " " " " " " " " " " " " " " " "</pre>	—	
<pre>PRODUCT_ID = "EPSH_S2005134EDR_V1_DAT" PRODUCT_VERSION_ID = "V1" PRODUCT_VERSION_ID = "V1" PRODUCT_CREATION_TIME = 2007-11-12T16:05:31 PRODUCT_TYPE = "DATA" STANDARD_DATA_PRODUCT_ID = "EPS_HI_SPECTRA" SOFTWARE_NAME = "IPIPE-EPPS2EDR" SOFTWARE_VERSION_ID = "I.0" INSTRUMENT_HOST_NAME = "MESSENGER" INSTRUMENT_NAME = "ENERGETIC PARTICLE SPECTROMETER" INSTRUMENT_NAME = "EPS" DATA_SET_ID = "EPS" DATA_SET_ID = "EPS" TARGET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED EPS EDR V1.0" MISSION_PHASE_NAME = "CALIBRATION" START_TIME = 2005-05-14T00:04:51 STOP_TIME = 2005-05-14T00:04:51 START_CLOCK_START_COUNT = "24516235" SPACECRAFT_CLOCK_START_COUNT = "2450146" ^TABLE = "EPSH_S2005134EDR_V1.DAT" OBJECT = TABLE COLUMNS = 67 INTERCHANGE_FORMAT = BINARY ROW_BYTES = 1756 ROWS = 287 DESCRIPTION =" This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE </pre>		
PRODUCT_VERSION_ID = "V1"	/*** GENERAL DATA DESCRIPTION	PARAMETERS ***/
<pre>PRODUCT_CREATION_TIME = 2007-11-12T16:05:31 PRODUCT_TYPE = "DATA" STANDARD_DATA_PRODUCT_ID = "EPS_HI_SPECTRA" SOFTWARE_NAME = "PIPE-EPPS2EDR" SOFTWARE_VERSION_ID = "1.0" INSTRUMENT_HOST_NAME = "MESSENGER" INSTRUMENT_NAME = "ENERGETIC PARTICLE SPECTROMETER" INSTRUMENT_ID = "EPS" DATA_SET_ID = "MESSENGER E/V/H/SW EPPS UNCALIBRATED EPS EDR V1.0" MISSION_PHASE_NAME = "EARTH CRUISE" TARGET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED EPS EDR V1.0" MISSION_PHASE_NAME = "CALIBRATION" START_TIME = 2005-05-14T20:04:51 STOP_TIME = 2005-05-14T20:56:42 SPACECRAFT_CLOCK_START_COUNT = "24516235" SPACECRAFT_CLOCK_START_COUNT = "24602146" ^TABLE = "EPSH_S2005134EDR_V1.DAT" OBJECT = TABLE COLUMNS = 67 INTERCHANGE_FORMAT = BINARY ROW_BYTES = 1756 ROWS = 287 DESCRIPTION =" This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE</pre>	PRODUCT_ID	= "EPSH_S2005134EDR_V1_DAT"
<pre>PRODUCT_TYPE = "DATA" STANDARD_DATA_PRODUCT_ID = "EPS_HI_SPECTRA" SOFTWARE_NAME = "PIPE-EPPS2EDR" SOFTWARE_VERSION_ID = "1.0" INSTRUMENT_HOST_NAME = "MESSENGER" INSTRUMENT_NAME = "ENERGETIC PARTICLE SPECTROMETER" INSTRUMENT_ID = "EPS" DATA_SET_ID = "MESSENGER E/V/H/SW EPPS UNCALIBRATED EPS EDR V1.0" MISSION_PHASE_NAME = "CALIBRATION" START_TIME = 2005-05-14T00:04:51 STOP_TIME = 2005-05-14T00:04:51 STOP_TIME = 2005-05-14T03:56:42 SPACECRAFT_CLOCK_START_COUNT = "24516235" SPACECRAFT_CLOCK_START_COUNT = "24602146" ^TABLE = "EPSH_S2005134EDR_V1.DAT" OBJECT = TABLE COLUMNS = 67 INTERCHANGE_FORMAT = BINARY ROW_BYTES = 1756 ROWS = 287 DESCRIPTION = " This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document." " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE</pre>	PRODUCT_VERSION_ID	= "V1"
STANDAR_DATA_PRODUCT_ID = "EPS_HI_SPECTRA" SOFTWARE_NAME = "PIPE-EPPS2EDR" SOFTWARE_VERSION_ID = "1.0" INSTRUMENT_HOST_NAME = "MESSENCER" INSTRUMENT_NAME = "ENERGETIC PARTICLE SPECTROMETER" INSTRUMENT_ID = "EPS" DATA_SET_ID = "MESSENGER E/V/H/SW-EPPS-2-EPS-RAWDATA-V1.0" DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED EPS EDR V1.0" MISSION_PHASE_NAME = "EARTH CRUISE" TARGET_NAME = "CALIBRATION" START_TIME = 2005-05-14T00:04:51 STOP_TIME = 2005-05-14T23:56:42 SPACECRAFT_CLOCK_START_COUNT = "24516235" SPACECRAFT_CLOCK_STOP_COUNT = "24602146" ^TABLE = "EPSH_S2005134EDR_V1.DAT" OBJECT = TABLE COLUMNS = 67 INTERCHANGE_FORMAT = BINARY ROW_BYTES = 1756 ROWS = 287 DESCRIPTION = " This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE	PRODUCT_CREATION_TIME	= 2007-11-12T16:05:31
SOFTWARE_NAME = "PIPE-EPPS2EDR" SOFTWARE_VERSION_ID = "1.0" INSTRUMENT_HOST_NAME = "MESSENGER" INSTRUMENT_NAME = "ENERGETIC PARTICLE SPECTROMETER" INSTRUMENT_ID = "EPS" DATA_SET_ID = "MESSENGER E/V/H/SW-EPPS-2-EPS-RAWDATA-V1.0" DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED EPS EDR V1.0" MISSION_PHASE_NAME = "EARTH CRUISE" TARCET_NAME = "CALIBRATION" START_TIME = 2005-05-14T00:04:51 STOP_TIME = 2005-05-14T00:04:51 STOP_TIME = 2005-05-14T23:56:42 SPACECRAFT_CLOCK_START_COUNT = "24516235" SPACECRAFT_CLOCK_STOP_COUNT = "24602146" ^TABLE = "EPSH_S2005134EDR_V1.DAT" OBJECT = TABLE COLUMNS = 67 INTERCHANGE_FORMAT = BINARY ROW_BYTES = 1756 ROWS = 287 DESCRIPTION = " This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE	PRODUCT_TYPE	= "DATA"
SOFTWARE_VERSION_ID = "1.0" INSTRUMENT_HOST_NAME = "MESSENGER" INSTRUMENT_NAME = "ENERGETIC PARTICLE SPECTROMETER" INSTRUMENT_ID = "MESS DATA_SET_ID = "MESSENGER F/V/H/SW EPPS UNCALIBRATED EPS EDR V1.0" DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED EPS EDR V1.0" MISSION_PHASE_NAME = "EARTH CRUISE" TARGET_NAME = "CALIBRATION" START_TIME = 2005-05-14T00:04:51 STOP_TIME = 2005-05-14T00:04:51 STOP_TIME = 2005-05-14T03:56:42 SPACECRAFT_CLOCK_START_COUNT = "24516235" SPACECRAFT_CLOCK_STOP_COUNT = "24602146" ^TABLE = "EFSH_S2005134EDR_V1.DAT" OBJECT = TABLE COLUMNS = 67 INTERCHANGE_FORMAT = BINARY ROW_BYTES = 1756 ROWS = 287 DESCRIPTION = " This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE	STANDARD_DATA_PRODUCT_ID	= "EPS_HI_SPECTRA"
<pre>INSTRUMENT_HOST_NAME = "MESSENGER" INSTRUMENT_NAME = "ENERGETIC PARTICLE SPECTROMETER" INSTRUMENT_NAME = "ENERGETIC PARTICLE SPECTROMETER" INSTRUMENT_ID = "EPS" DATA_SET_ID = "MESSENGER E/V/H/SW EPPS UNCALIBRATED EPS EDR V1.0" MISSION_PHASE_NAME = "EARTH CRUISE" TARGET_NAME = "CALIBRATION" START_TIME = 2005-05-14T00:04:51 STOP_TIME = 2005-05-14T02:356:42 SPACECRAFT_CLOCK_START_COUNT = "24516235" SPACECRAFT_CLOCK_STOP_COUNT = "24602146" ^TABLE = "EPSH_S2005134EDR_V1.DAT" OBJECT = TABLE COLUMNS = 67 INTERCHANGE_FORMAT = BINARY ROW_BYTES = 1756 ROWS = 287 DESCRIPTION = " This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE</pre>	SOFTWARE_NAME	= "PIPE-EPPS2EDR"
<pre>INSTRUMENT_NAME = "ENERGETIC PARTICLE SPECTROMETER" INSTRUMENT_ID = "EPS" DATA_SET_ID = "MESS-E/V/H/SW-EPPS-2-EPS-RAWDATA-V1.0" DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED EPS EDR V1.0" MISSION_PHASE_NAME = "EARTH CRUISE" TARGET_NAME = "CALIBRATION" START_TIME = 2005-05-14T00:04:51 STOP_TIME = 2005-05-14T02:56:42 SPACECRAFT_CLOCK_START_COUNT = "24516235" SPACECRAFT_CLOCK_STOP_COUNT = "24502146" ^TABLE = "EPSH_S2005134EDR_V1.DAT" OBJECT = TABLE COLUMNS = 67 INTERCHANGE_FORMAT = BINARY ROW_BYTES = 1756 ROWS = 287 DESCRIPTION = " This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE</pre>	SOFTWARE_VERSION_ID	= "1.0"
<pre>INSTRUMENT_ID = "EPS" DATA_SET_ID = "MESS-E/V/H/SW-EPPS-2-EPS-RAWDATA-V1.0" DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED EPS EDR V1.0" MISSION_PHASE_NAME = "EARTH CRUISE" TARGET_NAME = "CALIBRATION" START_TIME = 2005-05-14T00:04:51 STOP_TIME = 2005-05-14T23:56:42 SPACECRAFT_CLOCK_START_COUNT = "24516235" SPACECRAFT_CLOCK_STOP_COUNT = "24602146" ^TABLE = "EPSH_S2005134EDR_V1.DAT" OBJECT E TABLE COLUMNS = 67 INTERCHANGE_FORMAT = BINARY ROW_BYTES = 1756 ROWS = 287 DESCRIPTION = " This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE</pre>	INSTRUMENT_HOST_NAME	= "MESSENGER"
DATA_SET_ID = "MESS-E/V/H/SW-EPPS-2-EPS-RAWDATA-V1.0" DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED EPS EDR V1.0" MISSION_PHASE_NAME = "EARTH CRUISE" TARGET_NAME = "CALIBRATION" START_TIME = 2005-05-14T00:04:51 STOP_TIME = 2005-05-14T23:56:42 SPACECRAFT_CLOCK_START_COUNT = "24516235" SPACECRAFT_CLOCK_STOP_COUNT = "24602146" ^TABLE = "EPSH_S2005134EDR_V1.DAT" OBJECT = TABLE COLUMNS = 67 INTERCHANGE_FORMAT = BINARY ROW_BYTES = 1756 ROWS = 287 DESCRIPTION =" This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE	INSTRUMENT_NAME	= "ENERGETIC PARTICLE SPECTROMETER"
DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED EPS EDR V1.0" MISSION_PHASE_NAME = "EARTH CRUISE" TARGET_NAME = "CALIBRATION" START_TIME = 2005-05-14T00:04:51 STOP_TIME = 2005-05-14T23:56:42 SPACECRAFT_CLOCK_START_COUNT = "24516235" SPACECRAFT_CLOCK_STOP_COUNT = "24502146" ^TABLE = "EPSH_S2005134EDR_V1.DAT" OBJECT = TABLE COLUMNS = 67 INTERCHANGE_FORMAT = BINARY ROW_BYTES = 1756 ROWS = 287 DESCRIPTION = " This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE	INSTRUMENT_ID	= "EPS"
<pre>MISSION_PHASE_NAME = "EARTH CRUISE" TARGET_NAME = "CALIBRATION" START_TIME = 2005-05-14T00:04:51 STOP_TIME = 2005-05-14T23:56:42 SPACECRAFT_CLOCK_START_COUNT = "24516235" SPACECRAFT_CLOCK_STOP_COUNT = "24602146" ^TABLE = "EPSH_S2005134EDR_V1.DAT" OBJECT = TABLE COLUMNS = 67 INTERCHANGE_FORMAT = BINARY ROW_BYTES = 1756 ROWS = 287 DESCRIPTION = " This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document." " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE</pre>		
TARGET_NAME = "CALIBRATION" START_TIME = 2005-05-14T00:04:51 STOP_TIME = 2005-05-14T23:56:42 SPACECRAFT_CLOCK_START_COUNT = "24516235" SPACECRAFT_CLOCK_STOP_COUNT = "24602146" ^TABLE = "EPSH_S2005134EDR_V1.DAT" OBJECT = TABLE COLUMNS = 67 INTERCHANGE_FORMAT = BINARY ROW_BYTES = 1756 ROWS = 287 DESCRIPTION = " This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE	DATA_SET_NAME = "MESSENGER E/V	V/H/SW EPPS UNCALIBRATED EPS EDR V1.0"
<pre>START_TIME = 2005-05-14T00:04:51 STOP_TIME = 2005-05-14T23:56:42 SPACECRAFT_CLOCK_START_COUNT = "24516235" SPACECRAFT_CLOCK_STOP_COUNT = "24602146" ^TABLE = "EPSH_S2005134EDR_V1.DAT" OBJECT = TABLE COLUMNS = 67 INTERCHANGE_FORMAT = BINARY ROW_BYTES = 1756 ROWS = 287 DESCRIPTION = " This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE</pre>	MISSION_PHASE_NAME	= "EARTH CRUISE"
<pre>STOP_TIME = 2005-05-14T23:56:42 SPACECRAFT_CLOCK_START_COUNT = "24516235" SPACECRAFT_CLOCK_STOP_COUNT = "24602146" ^TABLE = "EPSH_S2005134EDR_V1.DAT" OBJECT = TABLE COLUMNS = 67 INTERCHANGE_FORMAT = BINARY ROW_BYTES = 1756 ROWS = 287 DESCRIPTION = " This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE</pre>	TARGET_NAME	= "CALIBRATION"
<pre>SPACECRAFT_CLOCK_START_COUNT = "24516235" SPACECRAFT_CLOCK_STOP_COUNT = "24602146" ^TABLE = "EPSH_S2005134EDR_V1.DAT" OBJECT = TABLE COLUMNS = 67 INTERCHANGE_FORMAT = BINARY ROW_BYTES = 1756 ROWS = 287 DESCRIPTION = " This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE</pre>	START_TIME	= 2005 - 05 - 14T00:04:51
<pre>SPACECRAFT_CLOCK_STOP_COUNT = "24602146"</pre>		
<pre>SPACECRAFT_CLOCK_STOP_COUNT = "24602146"</pre>	SPACECRAFT_CLOCK_START_COUNT	= "24516235"
OBJECT = TABLE COLUMNS = 67 INTERCHANGE_FORMAT = BINARY ROW_BYTES = 1756 ROWS = 287 DESCRIPTION = " This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE	SPACECRAFT_CLOCK_STOP_COUNT	= "24602146"
COLUMNS = 67 INTERCHANGE_FORMAT = BINARY ROW_BYTES = 1756 ROWS = 287 DESCRIPTION = " This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE	^TABLE	= "EPSH_S2005134EDR_V1.DAT"
COLUMNS = 67 INTERCHANGE_FORMAT = BINARY ROW_BYTES = 1756 ROWS = 287 DESCRIPTION = " This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE		- TADI E
<pre>INTERCHANGE_FORMAT = BINARY ROW_BYTES = 1756 ROWS = 287 DESCRIPTION = " This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE</pre>		
<pre>ROW_BYTES = 1756 ROWS = 287 DESCRIPTION = " This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " " "STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE</pre>		
<pre>ROWS = 287 DESCRIPTION = " This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE</pre>		
DESCRIPTION = " This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE	—	
This table contains spectral data collected by the MESSENGER EPS instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE		
<pre>instrument in High Priority Mode. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE</pre>		ral data collected by the MESSENGER EPS
The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE	-	-
<pre>found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE</pre>	2	-
details are contained in the EDR SIS document. " ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE		
" ^STRUCTURE = "EPSHIGH.FMT" END_OBJECT = TABLE		-
END_OBJECT = TABLE		
END_OBJECT = TABLE	^STRUCTURE = "EPSHIGH.FMT"	
—	END_OBJECT	= TABLE
	END	

5.3.4.1 EPS High Priority Spectra PDS Label

5.3.4.2 EPS High Priority Housekeeping PDS Label

PDS_VERSION_ID = "PDS3" /*** FILE FORMAT ***/ FILE_RECORDS = 287 RECORD_TYPE = FIXED_LENGTH RECORD_BYTES = 221 /*** GENERAL DATA DESCRIPTION PARAMETERS ***/ PRODUCT_VERSION_ID = "V1" PRODUCT_VERSION_ID = vi PRODUCT_CREATION_TIME = 2007-11-12T16:05:40 = "ANCILLARY" = "ANCILLARY" STANDARD_DATA_PRODUCT_ID= "EPS_HI_HOUSEKEEPING"SOFTWARE_NAME= "PIPE-EPPS2EDR"SOFTWARE_VERSION_ID= "1.0" INSTRUMENT_HOST_NAME INSTRUMENT_NAME INSTRUMENT_ID DATA SET ID = "MESSENGER" = "ENERGETIC PARTICLE SPECTROMETER" = "EPS" = "MESS-E/V/H/SW-EPPS-2-EPS-RAWDATA-V1.0" DATA SET ID DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED EPS EDR V1.0" MISSION_PHASE_NAME = "EARTH CRUISE" TARGET_NAME = "CALIBRATION" START_TIME = 2005-05-14T00:04:51 = 2005-05-14T23:56:42 STOP TIME SPACECRAFT_CLOCK_START_COUNT = "24516235" SPACECRAFT_CLOCK_STOP_COUNT = "24602146" = "EPSH_H2005134EDR_V1.TAB" ^TABLE = TABLE OBJECT COLUMNS = 34 INTERCHANGE_FORMAT = ASCII = 221 ROW_BYTES ROWS = 287 - " DESCRIPTION This table contains the housekeeping data created by the EPS instrument in High Priority Mode. This table is in ASCI format to facilitate the easy browsing of instrument parameters. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. ^STRUCTURE = "EPSHI_HK.FMT" END_OBJECT = TABLE END

5.3.4.3 EPS Medium Priority Spectra PDS Label

PDS_VERSION_ID	=	"PDS3"
/*** FILE FORMAT ***/		
FILE_RECORDS	=	2873
RECORD_TYPE	=	FIXED_LENGTH
RECORD_BYTES	=	1252
/*** GENERAL DATA DESCRIPTION	PAF	RAMETERS ***/
PRODUCT_ID	=	"EPSM_S2005134EDR_V1_DAT"
PRODUCT_VERSION_ID	=	"V1"
PRODUCT_CREATION_TIME	=	2007-11-12T16:05:49
PRODUCT_TYPE	=	"DATA"
STANDARD_DATA_PRODUCT_ID	=	"EPS_MED_SPECTRA"
SOFTWARE_NAME	=	"PIPE-EPPS2EDR"
SOFTWARE_VERSION_ID	=	"2.1"
INSTRUMENT_HOST_NAME	=	"MESSENGER"
INSTRUMENT_NAME	=	"ENERGETIC PARTICLE SPECTROMETER"
INSTRUMENT_ID	=	"EPS"

7/9/2015

```
= "MESS-E/V/H/SW-EPPS-2-EPS-RAWDATA-V1.0"
DATA_SET_ID
DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED EPS EDR V1.0"
MISSION_PHASE_NAME = "EARTH CRUISE"
TARGET_NAME = "CALIBRATION"
                               = 2005-05-14T00:00:09
START_TIME
STOP_TIME
                               = 2005-05-14T23:59:31
SPACECRAFT_CLOCK_START_COUNT = "24515953"
SPACECRAFT_CLOCK_STOP_COUNT = "24602315"
                              = "EPSM_S2005134EDR_V1.DAT"
^TABLE
                               = TABLE
OBJECT
COLUMNS
                               = 49
COLUMNS
INTERCHANGE_FORMAT
ROW BYTES
                               = BINARY
INTERCHANGE____
ROW_BYTES
                               = 1252
                               = 2873
ROWS
                               - "
DESCRIPTION
    This table contains spectral data collected by the MESSENGER EPS
    instrument in Medium Priority Mode.
    The complete column definitions are contained in an external file
    found in the LABEL directory of the archive volume. Additional
    details are contained in the EDR SIS document.
^STRUCTURE = "EPSMED.FMT"
END_OBJECT
                                = TABLE
END
```

5.3.4.4 EPS PHA PDS Label

The format for the EPS High, Medium, Low PHA PDS Labels are identical in terms of the PDS keywords used. In addition, the format of the PHA_TABLE object is the same for all EPS PHA EDRs. Therefore, only one FORMAT file is used to describe all PHA_TABLE objects. The file naming convention will distinguish whether the EPS PHA EDR contains high, medium, or low priority PHA data.

After the FSW6 upload, the only packet which may contain EPS PHA events is the EPS PHA packet. There is no longer any association with high, medium or low priority as of FSW6 for EPS PHA EDRs. Section 6.5 File Naming Conventions will explain the designation for N/A priority in the filename.

A sample High Priority PDS label is shown below:

```
PDS VERSION ID
                                                      = "PDS3"
/*** FILE FORMAT ***/
FILE_RECORDS
                                                  = 2870
RECORD_TYPE
                                                     = FIXED_LENGTH
 RECORD_BYTES
                                                     = 36
 /*** GENERAL DATA DESCRIPTION PARAMETERS ***/
PRODUCT_ID= "EPSH_P2005134EDR_V2_DAT"PRODUCT_VERSION_ID= "V1"PRODUCT_CREATION_TIME= 2008-09-16T17:23:43PRODUCT_TYPE= "DATA"STANDARD_DATA_PRODUCT_ID= "EPS_PULSE_HEIGHT"SOFTWARE_NAME= "PIPE-EPPS2EDR"
STANDARD_DATA_PRODUCI_IPSOFTWARE_NAME= "PIPE-EPPS2EDR"SOFTWARE_VERSION_ID= "2.1"INSTRUMENT_HOST_NAME= "MESSENGER"INSTRUMENT_NAME= "ENERGETIC PARTICLE SPECTROMETER"INSTRUMENT_ID= "EPS"DATA SET ID= "MESS-E/V/H/SW-EPPS-2-EPS-RAWDATA-V1.0"
 MISSION_PHASE_NAME = "EARTH CRUISE"
 TARGET_NAME
                                                     = "CALIBRATION"
 START_TIME
                                                      = 2005 - 05 - 14T00:04:51
```

```
STOP_TIME
                              = 2005-05-14T00:04:51
SPACECRAFT_CLOCK_START_COUNT = "24516235"
SPACECRAFT_CLOCK_STOP_COUNT = "24602146"
^TABLE = "EPSH_P2005134EDR_V2.DAT"
OBJECT
                               = TABLE
COLUMNS
                              = 14
INTERCHANGE_FORMAT
                              = BINARY
                               = 36
ROW_BYTES
ROWS
                               = 2870
                               - "
DESCRIPTION
    This table contains the Pulse Height Analysis (PHA) data collected by
    the MESSENGER EPS instrument.
    The complete column definitions are contained in an external file found
    in the LABEL directory of the archive volume. Additional details are
    contained in the EDR SIS document.
...
^STRUCTURE = "EPS_PHA.FMT"
END_OBJECT
                               = TABLE
END
```

5.3.4.5 EPS High Resolution Spectra PDS Label

The High Resolution EPS Spectra EDR was created as the result of the FSW6 upload. It stores the high resolution ion and electron spectral data collected by the EPS instrument.

```
PDS_VERSION_ID
                                             = "PDS3"
/*** FILE FORMAT ***/
                                            = 96
FILE RECORDS
RECORD_TYPE
                                            = FIXED_LENGTH
RECORD_BYTES
                                            = 1736
/*** GENERAL DATA DESCRIPTION PARAMETERS ***/
PRODUCT_ID= "EPSH_R2008233EDR_V1_DAT"PRODUCT_VERSION_ID= "V1"PRODUCT_CREATION_TIME= 2008-09-24T15:57:14PRODUCT_TYPE= "DATA"

      PRODUCT_TYPE
      = "DATA"

      STANDARD_DATA_PRODUCT_ID
      = "EPS_HIRES_SPECTRA"

      SOFTWARE_NAME
      = "PIPE-EPPS2EDR"

      SOFTWARE_VERSION_ID
      = "2.1"

      INSTRUMENT_HOST_NAME
      = "MESSENGER"

      INSTRUMENT_NAME
      = "ENERGETIC PARTICLE SPECTROMETER"

      INSTRUMENT_ID
      = "EPS"

      DATA_SET_ID
      = "MESS-E/V/H/SW-EPPS-2-EPS-RAWDATA-V1.0"

DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED EPS EDR V1.0"
MISSION_PHASE_NAME = "MERCURY 2 CRUISE"
                                           = "CALIBRATION"
TARGET NAME
                                           = 2008-08-20T16:00:21
START_TIME
STOP_TIME
                                            = 2008-08-20T23:55:22
SPACECRAFT CLOCK START COUNT = "127735465"
SPACECRAFT_CLOCK_STOP_COUNT = "127763966"
^TABLE
                                            = "EPSH_R2008233EDR_V1.DAT"
OBJECT
                                            = TABLE
COLUMNS
                                            = 15
INTERCHANGE_FORMAT
                                            = BINARY
                                            = 1736
ROW BYTES
ROWS
                                            = 96
                                            - "
DESCRIPTION
      This table contains high-resolution spectra data collected by
      the MESSENGER EPS instrument.
      The complete column definitions are contained in an external file found
      in the LABEL directory of the archive volume. Additional details are
      contained in the EDR SIS document.
^STRUCTURE = "EPS_HIRES.FMT"
END_OBJECT
                                            = TABLE
END
```

5.3.4.6 EPS Low Resolution Spectra PDS Label

The Low Resolution EPS Spectra EDR was created as the result of the FSW6 upload. It stores the low resolution ion and electron spectral data as well as 33 rate counters collected by the EPS instrument.

```
PDS_VERSION_ID
                                                  = "PDS3"
 /*** FILE FORMAT ***/
FILE_RECORDS
                                                  = 29
RECORD_TYPE
                                                 = FIXED_LENGTH
RECORD_BYTES
                                                 = 1422
 /*** GENERAL DATA DESCRIPTION PARAMETERS ***/
/*** GENERAL DATA DESCRIPTION PARAMETERS ***/
PRODUCT_ID = "EPSL_R2008231EDR_V1_DAT"
PRODUCT_VERSION_ID = "V1"
PRODUCT_CREATION_TIME = 2008-09-22T12:00:40
PRODUCT_TYPE = "DATA"
STANDARD_DATA_PRODUCT_ID = "EPS_LORES_SPECTRA"
SOFTWARE_NAME = "PIPE-EPPS2EDR"
SOFTWARE_VERSION_ID = "2.1"
INSTRUMENT_HOST_NAME = "MESSENGER"
INSTRUMENT_NAME = "ENERGETIC PARTICLE SPECTROMETER"
INSTRUMENT_ID = "EPS"
DATA_SET_ID = "MESSENGER E/V/H/SW EPPS_2-EPS_RAWDATA-V1.0"
DATA SET NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED EPS EDR V1.0"
DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED EPS EDR V1.0"
MISSION_PHASE_NAME= "MERCURY 2 CRUISE"TARGET_NAME= "CALIBRATION"START_TIME= 2008-08-18T23:28:2STOP TIME= 2008-08-18T23:56:2
                                               = "CALIBRATION"
= 2008-08-18T23:28:23
                                                = 2008-08-18T23:56:23
STOP_TIME
SPACECRAFT_CLOCK_START_COUNT = "127589546"
SPACECRAFT_CLOCK_STOP_COUNT = "127591226"
 ^TABLE
                                                 = "EPSL_R2008231EDR V1.DAT"
OBJECT
COLUMNS
INTERCHANGE_FORMAT
ROW_BYTES
ROWS
                                                 = TABLE
                                                 = 92
                                                = BINARY
                                                 = 1422
ROWS
                                                 = 29
DESCRIPTION
                                                 - "
       This table contains low-resolution spectra data collected by
       the MESSENGER EPS instrument.
       The complete column definitions are contained in an external file found
       in the LABEL directory of the archive volume. Additional details are
       contained in the EDR SIS document.
 ^STRUCTURE = "EPS_LORES.FMT"
END_OBJECT
                                                 = TABLE
END
```

5.3.4.7 EPS Summary Spectra PDS Label

The EPS Summary Spectra EDR was created as the result of the FSW6 upload. It contains integrated rates and low resolution spectra collected by the EPS instrument.

```
PDS_VERSION_ID = "PDS3"
/*** FILE FORMAT ***/
FILE_RECORDS = 95
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 716
/*** GENERAL DATA DESCRIPTION PARAMETERS ***/
PRODUCT_ID = "EPSS_S2008233EDR_V1_DAT"
```

```
PRODUCT_VERSION_ID = "V1"

PRODUCT_CREATION_TIME = 2008-09-24115:57:25

PRODUCT_TYPE = "DATA"

STANDARD_DATA_PRODUCT_ID = "EPS_SUMMARY_SPECTRA"

SOFTWARE_NAME = "PIPE-EPPS2EDR"

SOFTWARE_VERSION_ID = "2.1"

INSTRUMENT_HOST_NAME = "MESSENGER"

INSTRUMENT_NAME = "ENERGETIC PARTICLE SPECTROMETER"

INSTRUMENT_ID = "EPS"

DATA_SET_ID = "MESSENGER E/V/H/SW = EPS EDS V1.0"
DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED EPS EDR V1.0"
DIALSON_BASE_NAME= "MERCURY 2 CRUISE"TARGET_NAME= "CALIBRATION"START_TIME= 2008-08-20T16:05:22STOP_TIME= 2008-08-20T23:55:22
SPACECRAFT_CLOCK_START_COUNT= "127735766"SPACECRAFT_CLOCK_STOP_COUNT= "127763966"^TABLE= "EPSS_S2008233EDR V1.DAT"
 OBJECT
                                                    = TABLE
                                                   = 48
 COLUMNS
COLUMNS
INTERCHANGE_FORMAT = BINARY
ROW_BYTES = 716
= 95
 ROWS
                                                    = 95
                                                    - "
 DESCRIPTION
       This table contains summary spectra data collected by
       the MESSENGER EPS instrument.
       The complete column definitions are contained in an external file found
       in the LABEL directory of the archive volume. Additional details are
       contained in the EDR SIS document.
 ...
 ^STRUCTURE = "EPS_SUM.FMT"
 END_OBJECT
                                                    = TABLE
 END
```

5.3.4.8 EPS S	can PDS Labe
---------------	--------------

The EPS Scan EDR was created as the result of the FSW6 upload. It contains integrated hardware rate for four energy threshold settings. Each threshold setting and integration lasts ¹/₄ second.

PDS_VERSION_ID	= "PDS3"
/*** FILE FORMAT ***/	
FILE RECORDS	= 1
	= I = FIXED LENGTH
RECORD BYTES	= 388
	- 500
/*** GENERAL DATA DESCRIPTION	PARAMETERS ***/
PRODUCT_ID	= "EPSS_R2008233EDR_V1_DAT"
PRODUCT_VERSION_ID	= "V1"
PRODUCT_CREATION_TIME	= 2008-09-22T13:00:36
PRODUCT_TYPE	= "DATA"
STANDARD_DATA_PRODUCT_ID	= "EPS_SCAN_RATES"
SOFTWARE_NAME	= "PIPE-EPPS2EDR"
SOFTWARE_VERSION_ID	= "2.1"
INSTRUMENT_HOST_NAME	= "MESSENGER"
INSTRUMENT_NAME	= "ENERGETIC PARTICLE SPECTROMETER"
INSTRUMENT_ID	= "EPS"
DATA_SET_ID	= "MESS-E/V/H/SW-EPPS-2-EPS-RAWDATA-V1.0"
DATA_SET_NAME = "MESSENGER E/V	V/H/SW EPPS UNCALIBRATED EPS EDR V1.0"
MISSION_PHASE_NAME	= "MERCURY 2 CRUISE"
TARGET_NAME	= "CALIBRATION"
START_TIME	= 2008-08-20T16:05:21
STOP_TIME	= 2008-08-20T16:05:21
SPACECRAFT_CLOCK_START_COUNT	= "127735765"
SPACECRAFT_CLOCK_STOP_COUNT	= "127735765"
^TABLE	= "EPSS_R2008233EDR V1.DAT"
OBJECT	= TABLE

```
COLUMNS
INTERCHANGE_FORMAT
                              = 97
                              = BINARY
ROW_BYTES
                             = 388
                             = 1
ROWS
DESCRIPTION
                             - "
    This table contains scan rates collected by the MESSENGER EPS instrument.
    The complete column definitions are contained in an external file found
   in the LABEL directory of the archive volume. Additional details are
   contained in the EDR SIS document.
...
^STRUCTURE = "EPS_SCAN.FMT"
END_OBJECT
                            = TABLE
END
```

The following are example label headers for the FIPS EDR products. As with the EPS EDRs all table structures are defined by external format files. The fields in each format file are defined separately in the Appendix.

5.3.4.9 FIPS High Priority Spectra PDS Label

A FSW7 upload was implemented on 8/18/2009 which retired the FIPS High Priority Spectra packet. As a result, the FIPS High Priority Spectra EDR is no longer generated on or after 8/18/2009.

PDS_VERSION_ID	= "PDS3"	
/*** FILE FORMAT ***/		
FILE RECORDS	= 149	
RECORD TYPE	= FIXED LENGTH	
RECORD BYTES	= 4614	
/*** GENERAL DATA DESCRIPTION	PARAMETERS ***/	
PRODUCT_ID	<pre>= "FIPH_S2005214EDR_V2_DAT"</pre>	
PRODUCT_VERSION_ID	= "V2"	
PRODUCT_CREATION_TIME	= 2008-02-22T17:35:53	
PRODUCT_TYPE	= "DATA"	
STANDARD_DATA_PRODUCT_ID	= "FIPS_HI_SPECTRA"	
SOFTWARE_NAME	= "PIPE-EPPS2EDR"	
SOFTWARE_VERSION_ID	= "2.1"	
INSTRUMENT_HOST_NAME	= "MESSENGER"	
INSTRUMENT_NAME	= "FAST IMAGING PLASMA SPECTROMETER"	
INSTRUMENT_ID	= "FIPS"	
DATA_SET_ID	<pre>= "MESS-E/V/H/SW-EPPS-2-FIPS-RAWDATA-V1.0"</pre>	
DATA_SET_NAME = "MESSENGER E/V	//H/SW EPPS UNCALIBRATED FIPS EDR V1.0"	
MISSION_PHASE_NAME	= "EARTH FLYBY"	
TARGET_NAME	= "EARTH"	
START_TIME	= 2005-08-02T00:00:55	
STOP_TIME	= 2005-08-02T23:53:36	
SPACECRAFT_CLOCK_START_COUNT	= "31427999"	
SPACECRAFT_CLOCK_STOP_COUNT	= "31513960"	
^TABLE	= "FIPH_S2005214EDR_V2.DAT"	
OBJECT	= TABLE	
COLUMNS	= 19	
	= BINARY	
ROW_BYTES	= 4614	
ROWS	= 149	
DESCRIPTION	= "	
	ollowing data gathered by the Fast Imaging	
Plasma Spectrometer (FIPS)		
	oton velocity distribution	
	ardware and software rate counts accumulated	
over each separate observation. The complete column definitions are contained in an external file		
-	ry of the archive volume. Additional	
TOUND IN THE PAPER ALLECTO	bry of the afchive volume. Additional	

```
details are contained in the EDR SIS document.
"
^STRUCTURE = "FIPS_HI.FMT"
END_OBJECT = TABLE
```

END

5.3.4.10 FIPS High Priority Housekeeping PDS Label

A FSW5 upload was implemented on 9/6/2007. The upload moved the housekeeping data from the FIPS High Priority packet to the EPPS Long Status packet. As a result, the FIPS Housekeeping EDR is no longer generated on or after 9/6/2007.

```
PDS_VERSION_ID
                                          = "PDS3"
 /*** FILE FORMAT ***/
FILE_RECORDS
                                         = 149
RECORD TYPE
                                         = FIXED LENGTH
RECORD_BYTES
                                         = 216
/*** GENERAL DATA DESCRIPTION PARAMETERS ***/
PRODUCT_VERSION_ID = "FIPH_H2005214EDR_V2_TAB"
PRODUCT_ID = "FIPH_H2005214EDR_V2_TAB"

PRODUCT_VERSION_ID = "V2"

PRODUCT_CREATION_TIME = 2008-02-22T17:35:53

PRODUCT_TYPE = "ANCILLARY"

STANDARD_DATA_PRODUCT_ID = "FIPS_HI_HOUSEKEEPING"

SOFTWARE_NAME = "PIPE-EPPS2EDR"

SOFTWARE_VERSION_ID = "2.0"

INSTRUMENT_HOST_NAME = "MESSENGER"

INSTRUMENT_NAME = "FAST IMAGING PLASMA SPECTROMETER"

INSTRUMENT_ID = "FIPS"

DATA_SET_ID = "MESSENGER E ///H/SW_EPPS_1PS_PAWDATA_V1.0"

DATA_SET_NAME = "MESSENGER E ///H/SW_EPPS INCALIBRATED FIPS EDR V1.0"
DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED FIPS EDR V1.0"
MISSION_PHASE_NAME = "EARTH FLYBY"
                                        = "EARTH"
TARGET_NAME
                                       = 2005-08-02T00:00:55
START_TIME
= "FIPH_H2005214EDR_V2.TAB"
^TABLE
OBJECT
COLUMNS
INTERCHANGE_FORMAT
                                         = TABLE
                                        = 32
                                       = ASCII
                                         = 216
ROW_BYTES
                                        = 149
ROWS
DESCRIPTION
                                         = "
    This table contains the housekeeping data created by the FIPS instrument in
    HIGH Priority Mode. The complete column definitions are contained in an
    external file found in the LABEL directory of the archive volume.
    Additional details are contained in the EDR SIS document.
^STRUCTURE = "FIPS_HK.FMT"
END_OBJECT
                                          = TABLE
```

END

5.3.4.11 FIPS Medium Priority PDS Label

A FSW6 upload was implemented on 8/19/2008. The upload retired the Medium Priority packet and split the contents into two new packets. As a result, the Medium Priority EDR is no longer created after 8/19/2008. Data from the two new packets are contained in the FIPS Scan and FIPS Hi-Res Proton Velocity Distribution EDRs.

```
PDS_VERSION_ID = "PDS3"
```

```
/*** FILE FORMAT ***/
FILE_RECORDS
                                           = 1337
= FIXED_LENGTH
= 1542
RECORD_TYPE
RECORD BYTES
 /*** GENERAL DATA DESCRIPTION PARAMETERS ***/
/*** GENERAL DATA DESCRIPTION PARAMETERS ***/
PRODUCT_ID = "FIPM_S2005214EDR_V2_DAT"
PRODUCT_VERSION_ID = "V2"
PRODUCT_CREATION_TIME = 2008-02-23T00:35:23
PRODUCT_TYPE = "DATA"
STANDARD_DATA_PRODUCT_ID = "FIPS_MED_SPECTRA"
SOFTWARE_NAME = "PIPE-EPPS2EDR"
SOFTWARE_VERSION_ID = "2.0"
INSTRUMENT_HOST_NAME = "MESSENGER"
INSTRUMENT_NAME = "FAST IMAGING PLASMA SPECTROMETER"
INSTRUMENT_ID = "FIPS"
DATA_SET_ID = "MESSENGER E/V/H/SW EPPS INCALIBRATED FIPS EDR V1 0"
DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED FIPS EDR V1.0"
MISSION_PHASE_NAME = "EARTH FLYBY"
TARGET_NAME = "EARTH"
START_TIME = 2005-08-02T00:01:53
                                             = 2005-08-02T23:59:24
STOP_TIME
SPACECRAFT_CLOCK_START_COUNT= "31428057"SPACECRAFT_CLOCK_STOP_COUNT= "31514308"^TABLE= "FIPM_S2005214EDR_V2.DAT"
                                              = TABLE
OBJECT
COLUMNS = 0
INTERCHANGE_FORMAT = BINARY
DOM BYTES = 1542
- 1337
                                              = 1337
ROWS
                                               = "
DESCRIPTION
      This table contains the following data gathered by the Fast Imaging
       Plasma Spectrometer (FIPS) in MEDIUM priority mode:
        -Proton velocity distribution
      The table also contains hardware and software rate counts accumulated
       over each separate observation.
       The complete column definitions are contained in an external file
       found in the LABEL directory of the archive volume. Additional
       details are contained in the EDR SIS document.
^STRUCTURE = "FIPS_MED.FMT"
END_OBJECT
                                               = TABLE
END
```

5.3.4.12 FIPS PHA PDS Label

The format for the FIPS High, Medium, Low PHA PDS Labels are identical in terms of the PDS keywords used. In addition, the format of the PHA_TABLE object is the same for all FIPS PHA EDRs. Therefore, only one FORMAT file is used to describe all PHA_TABLE objects. The file naming convention will distinguish whether the FIPS PHA EDR contains high, medium, or low priority PHA data.

After the FSW6 upload, the only packets which may contain PHA events are the high priority, low priority, and scan packets (medium priority packets being retired). The file naming convention will distinguish whether the FIPS PHA EDR contains PHA events extracted from high or low priority, or scan packets. This is detailed in Section 6.5.

After the FSW7 upload, the only packets which may contain PHA events are the Heavy Ion packet and Proton packet (Scan and Low Priority packets being retired). Because of

this the PHA file naming convention is simplified to show the year, day of year, and the fact that the file contains PHA events. This is detailed in Section 6.5.

A sample FSW7 PDS label is shown below:

```
PDS_VERSION_ID
                                                 = "PDS3"
 /*** FILE FORMAT ***/
FILE_RECORDS
                                                = 171488
RECORD_TYPE
                                                = FIXED_LENGTH
RECORD_BYTES
                                                 = 38
 /*** GENERAL DATA DESCRIPTION PARAMETERS ***/
/*** GENERAL DATA DESCRIPTION PARAMETERS ***/
PRODUCT_ID = "FIPP_P2009274EDR_V1_DAT"
PRODUCT_VERSION_ID = "V1"
PRODUCT_CREATION_TIME = 2009-10-02T11:57:24
PRODUCT_TYPE = "DATA"
STANDARD_DATA_PRODUCT_ID = "FIPS_PULSE_HEIGHT"
SOFTWARE_NAME = "PIPE-EPPS2EDR"
SOFTWARE_VERSION_ID = "2.1"
INSTRUMENT_HOST_NAME = "MESSENGER"
INSTRUMENT_ID = "ENERGETIC PARTICLE AND PLASMA SPECTROMETER"
INSTRUMENT_ID = "ENERGETIC PARTICLE AND PLASMA SPECTROMETER"
DATA_SET_ID = "MESSENGER E/V/H/SW EPPS INCALIBRATED FIPS EDR V2 0"
DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED FIPS EDR V2.0"
MISSION_PHASE_NAME = MESSENGER E/V/H/SW EFFS ONCALIBRA

MISSION_PHASE_NAME = "MERCURY 3 FLYBY"

TARGET_NAME = "MERCURY"

START_TIME = 2009-10-01T19:10:

STOP TIME = 2009-10-01T23:59:
                                                = 2009-10-01T19:10:49
STOP_TIME
                                                = 2009-10-01T23:59:28
SPACECRAFT_CLOCK_START_COUNT = "162911715"
SPACECRAFT_CLOCK_STOP_COUNT = "162929034"
 ^TABLE
                                                 = "FIPP_P2009274EDR_V1.DAT"
OBJECT
                                                 = TABLE
COLUMNS
INTERCHANGE_FORMAT
                                                 = 10
                                                = BINARY
ROW_BYTES
                                                = 38
                                                = 171488
ROWS
DESCRIPTION
                                                 _ "
       This table contains the Pulse Height Analysis (PHA) data collected by
       the MESSENGER Fast Imaging Plasma Spectrometer (FIPS).
       The complete column definitions are contained in an external file found
       in the LABEL directory of the archive volume. Additional details are
       contained in the EDR SIS document.
 ^STRUCTURE = "FIPS_PHA.FMT"
END OBJECT
                                                 = TABLE
END
```

5.3.4.13 FIPS Scan PDS Label

The FIPS Scan EDR was created as the result of the FSW6 upload. It contains FIPS rate counters sampled at each DSHV step in a scan. This EDR has been retired as a result of the FSW7 upload on 8/18/2009 and is no longer generated on or after that date.

```
PDS_VERSION_ID = "PDS3"
/*** FILE FORMAT ***/
FILE_RECORDS = 387
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 1286
/*** GENERAL DATA DESCRIPTION PARAMETERS ***/
PRODUCT_ID = "FIPS_R2008233EDR_V1_DAT"
```

```
PRODUCT_VERSION_ID = "V1"

PRODUCT_CREATION_TIME = 2008-09-22T13:00:23

PRODUCT_TYPE = "DATA"

STANDARD_DATA_PRODUCT_ID = "FIPS_SCAN"

SOFTWARE_NAME = "PIPE-EPPS2EDR"

SOFTWARE_VERSION_ID = "2.1"

INSTRUMENT_HOST_NAME = "MESSENGER"

INSTRUMENT_HOST_NAME = "FAST IMAGING PLASMA SPECTROMETER"

INSTRUMENT_ID = "FIPS"

DATA_SET_ID = "MESS-E/V/H/SW-EPPS-2-FIPS-RAWDATA-V1.0"
 DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED FIPS EDR V1.0"
MISSION_PHASE_NAME= "MERCURY 2 CRUISE"TARGET_NAME= "CALIBRATION"START_TIME= 2008-08-20T16:02:28
 STOP_TIME
                                                 = 2008-08-20T23:59:13
SIOF_IIME- 2000 00 2010000000SPACECRAFT_CLOCK_START_COUNT= "127735592"SPACECRAFT_CLOCK_STOP_COUNT= "127764197"^TABLE= "FIPS_R2008233EDR V1.DAT"
 OBJECT
                                                  = TABLE
COLUMNS – ,
INTERCHANGE_FORMAT = BINARY
ROW_BYTES = 1286
= 387
                                                 = 7
 COLUMNS
                                                  = "
 DESCRIPTION
      This table contains the FIPS rate counts gathered by the Fast Imaging Plasma
 Spectrometer (FIPS) accumulated over each separate observation.
       The complete column definitions are contained in an external file found
       in the LABEL directory of the archive volume. Additional details are
       contained in the EDR SIS document.
 ...
 ^STRUCTURE = "FIPS_SCAN.FMT"
 END_OBJECT
                                                   = TABLE
 END
```

5.3.4.14 FIPS High Resolution Proton Velocity Distribution (HRPVD) PDS Label

The FIPS HRPVD EDR was created as the result of the FSW6 upload. It contains a 32 x 32 high resolution proton velocity distribution, integrated over a 10 scan sequence. This EDR has been retired as a result of the FSW7 upload on 8/18/2009 and is no longer generated on or after that date.

<pre>/*** FILE FORMAT ***/ FILE_RECORDS = 42 RECORD_TYPE = FIXED_LENGTH RECORD_BYTES = 4118 /*** GENERAL DATA DESCRIPTION PARAMETERS ***/ PRODUCT_ID = "FIPS_V2008233EDR_V1_DAT" PRODUCT_VERSION_ID = "V1" PRODUCT_CREATION_TIME = 2008-09-22T13:00:26 PRODUCT_TYPE = "DATA" STANDARD_DATA_PRODUCT_ID = "FIPS_HIRES_PROTON_V" SOFTWARE_VERSION_ID = "2.1" INSTRUMENT_HOST_NAME = "MESSENGER" INSTRUMENT_ID = "FIPS" DATA_SET_ID = "FIPS" DATA_SET_ID = "MESSENGER E/V/H/SW EPPS UNCALIBRATED FIPS EDR V1.0" DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED FIPS EDR V1.0" MISSION_PHASE_NAME = "CALIBRATION" START_TIME = 2008-08-20T16:12:30 STOP_TIME = 2008-08-20T16:12:30 STOP_TIME = 2008-08-20T16:12:30 STOP_TIME = 12776194" SPACECRAFT_CLOCK_START_COUNT = "12776194" SPACECRAFT_CLOCK_STOP_COUNT = "12776194" SPACECRAFT_CLOCK_STOP_COUNT = "12776194" SPACECRAFT_CLOCK_STOP_COUNT = "12776194" SPACECRAFT_CLOCK_STOP_COUNT = "FIPS_V2008233EDR V1.DAT"</pre>	PDS_VERSION_ID	= "PDS3"
RECORD_IYPE = FIXED_LENGTH RECORD_BYTES = 4118 /*** GENERAL DATA DESCRIPTION PARAMETERS ***/ PRODUCT_ID = "FIPS_V2008233EDR_V1_DAT" PRODUCT_VERSION_ID = "V1" PRODUCT_CREATION_TIME = 2008-09-22T13:00:26 PRODUCT_TYPE = "DATA" STANDARD_DATA_PRODUCT_ID = "FIPS_HIRES_PROTON_V" SOFTWARE_NAME = "PIPE-EPPS2EDR" SOFTWARE_VERSION_ID = "2.1" INSTRUMENT_HOST_NAME = "MESSENGER" INSTRUMENT_HOST_NAME = "FAST IMAGING PLASMA SPECTROMETER" INSTRUMENT_ID = "FIPS" DATA_SET_ID = "FIPS" DATA_SET_ID = "FIPS" DATA_SET_ID = "MESSENGER E/V/H/SW-EPPS-2-FIPS-RAWDATA-V1.0" MISSION_PHASE_NAME = "MESSENGER E/V/H/SW EPPS URCALIBRATED FIPS EDR V1.0" MISSION_PHASE_NAME = "CALIBRATION" START_TIME = 2008-08-20T16:12:30 STOP_TIME = 2008-08-20T23:49:12 SPACECRAFT_CLOCK_START_COUNT = "127736194" SPACECRAFT_CLOCK_STOP_COUNT = "127763596"		- 42
RECORD_BYTES= 4118/*** GENERAL DATA DESCRIPTION PARAMETERS ***/ PRODUCT_ID= "FIPS_V2008233EDR_V1_DAT"PRODUCT_ID= "V1"PRODUCT_CREATION_TIME= 2008-09-22T13:00:26PRODUCT_TYPE= "DATA"STANDARD_DATA_PRODUCT_ID= "FIPS_HIRES_PROTON_V"SOFTWARE_NAME= "PIPE-EPPS2EDR"SOFTWARE_VERSION_ID= "2.1"INSTRUMENT_HOST_NAME= "MESSENGER"INSTRUMENT_ID= "FIPS"DATA_SET_ID= "FIPS"DATA_SET_ID= "MESSENGER E/V/H/SW-EPPS-2-FIPS-RAWDATA-V1.0"DATA_SET_NAME= "MESSENGER E/V/H/SW EPPS UNCALIBRATED FIPS EDR V1.0"MISSION_PHASE_NAME= "CALIBRATION"START_TIME= 2008-08-20T16:12:30STOP_TIME= 2008-08-20T23:49:12SPACECRAFT_CLOCK_START_COUNT= "127763596"	—	
<pre>/*** GENERAL DATA DESCRIPTION PARAMETERS ***/ PRODUCT_ID = "FIPS_V2008233EDR_V1_DAT" PRODUCT_VERSION_ID = "V1" PRODUCT_CREATION_TIME = 2008-09-22T13:00:26 PRODUCT_TYPE = "DATA" STANDARD_DATA_PRODUCT_ID = "FIPS_HIRES_PROTON_V" SOFTWARE_NAME = "PIPE-EPPS2EDR" SOFTWARE_VERSION_ID = "2.1" INSTRUMENT_HOST_NAME = "MESSENGER" INSTRUMENT_NAME = "FAST IMAGING PLASMA SPECTROMETER" INSTRUMENT_ID = "FIPS" DATA_SET_ID = "MESSENGER E/V/H/SW EPPS UNCALIBRATED FIPS EDR V1.0" MISSION_PHASE_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED FIPS EDR V1.0" MISSION_PHASE_NAME = "CALIBRATION" START_TIME = 2008-08-20T16:12:30 STOP_TIME = 2008-08-20T23:49:12 SPACECRAFT_CLOCK_START_COUNT = "12776194" SPACECRAFT_CLOCK_STOP_COUNT = "127763596"</pre>	—	—
PRODUCT_ID= "FIPS_V2008233EDR_V1_DAT"PRODUCT_VERSION_ID= "V1"PRODUCT_CREATION_TIME= 2008-09-22T13:00:26PRODUCT_TYPE= "DATA"STANDARD_DATA_PRODUCT_ID= "FIPS_HIRES_PROTON_V"SOFTWARE_NAME= "PIPE-EPPS2EDR"SOFTWARE_VERSION_ID= "2.1"INSTRUMENT_HOST_NAME= "FAST IMAGING PLASMA SPECTROMETER"INSTRUMENT_ID= "FIPS"DATA_SET_ID= "MESSENGER"INSISION_PHASE_NAME= "MESSENGEN VI/ISW EPPS-2-FIPS-RAWDATA-V1.0"DATA_SET_NAME= "MESSENGER VI/H/SW EPPS UNCALIBERATED FIPS EDR V1.0"MISSION_PHASE_NAME= "CALIBRATION"START_TIME= 2008-08-20T16:12:30STOP_TIME= 2008-08-20T16:12:30SPACECRAFT_CLOCK_START_COUNT= "12776194"SPACECRAFT_CLOCK_STOP_COUNT= "127763596"	RECORD_BITES	= 4118
PRODUCT_VERSION_ID= "V1"PRODUCT_CREATION_TIME= 2008-09-22T13:00:26PRODUCT_TYPE= "DATA"STANDARD_DATA_PRODUCT_ID= "FIPS_HIRES_PROTON_V"SOFTWARE_NAME= "PIPE-EPPS2EDR"SOFTWARE_VERSION_ID= "2.1"INSTRUMENT_HOST_NAME= "FAST IMAGING PLASMA SPECTROMETER"INSTRUMENT_ID= "FIPS"DATA_SET_ID= "MESSENGER E/V/H/SW-EPPS-2-FIPS-RAWDATA-V1.0"DATA_SET_NAME= "MERCURY 2 CRUISE"TARGET_NAME= "CALIBRATION"START_TIME= 2008-08-20T16:12:30STOP_TIME= 2008-08-20T23:49:12SPACECRAFT_CLOCK_START_COUNT= "127763596"	/*** GENERAL DATA DESCRIPTION	PARAMETERS ***/
PRODUCT_CREATION_TIME= 2008-09-22T13:00:26PRODUCT_TYPE"DATA"STANDARD_DATA_PRODUCT_ID"FIPS_HIRES_PROTON_V"SOFTWARE_NAME"PIPE-EPPS2EDR"SOFTWARE_VERSION_ID= "2.1"INSTRUMENT_HOST_NAME"MESSENGER"INSTRUMENT_NAME= "FAST IMAGING PLASMA SPECTROMETER"INSTRUMENT_ID= "FIPS"DATA_SET_ID= "MESSENGER E/V/H/SW-EPPS-2-FIPS-RAWDATA-V1.0"DATA_SET_NAME= "MESSENGER E/V/H/SW EPPS UNCALIBRATED FIPS EDR V1.0"MISSION_PHASE_NAME= "CALIBRATION"START_TIME= 2008-08-20T16:12:30STOP_TIME= 2008-08-20T23:49:12SPACECRAFT_CLOCK_START_COUNT= "127763596"	PRODUCT_ID	= "FIPS_V2008233EDR_V1_DAT"
PRODUCT_TYPE= "DATA"STANDARD_DATA_PRODUCT_ID= "FIPS_HIRES_PROTON_V"SOFTWARE_NAME= "PIPE-EPPS2EDR"SOFTWARE_VERSION_ID= "2.1"INSTRUMENT_HOST_NAME= "MESSENGER"INSTRUMENT_NAME= "FAST IMAGING PLASMA SPECTROMETER"INSTRUMENT_ID= "FIPS"DATA_SET_ID= "MESSENGER E/V/H/SW-EPPS-2-FIPS-RAWDATA-V1.0"DATA_SET_NAME= "MESSENGER E/V/H/SW EPPS UNCALIBRATED FIPS EDR V1.0"MISSION_PHASE_NAME= "CALIBRATION"START_TIME= 2008-08-20T16:12:30STOP_TIME= 2008-08-20T23:49:12SPACECRAFT_CLOCK_START_COUNT= "127736194"SPACECRAFT_CLOCK_STOP_COUNT= "127763596"	PRODUCT_VERSION_ID	= "V1"
STANDARD_DATA_PRODUCT_ID"FIPS_HIRES_PROTON_V"SOFTWARE_NAME= "PIPE-EPPS2EDR"SOFTWARE_VERSION_ID= "2.1"INSTRUMENT_HOST_NAME= "MESSENGER"INSTRUMENT_ID= "FAST IMAGING PLASMA SPECTROMETER"INSTRUMENT_ID= "FIPS"DATA_SET_ID= "MESSENGER E/V/H/SW-EPPS-2-FIPS-RAWDATA-V1.0"DATA_SET_NAME= "MESSENGER E/V/H/SW EPPS UNCALIBRATED FIPS EDR V1.0"MISSION_PHASE_NAME= "CALIBRATION"START_TIME= 2008-08-20T16:12:30STOP_TIME= 2008-08-20T23:49:12SPACECRAFT_CLOCK_START_COUNT= "127763596"	PRODUCT_CREATION_TIME	= 2008-09-22T13:00:26
SOFTWARE_NAME= "PIPE-EPPS2EDR"SOFTWARE_VERSION_ID= "2.1"INSTRUMENT_HOST_NAME= "MESSENGER"INSTRUMENT_NAME= "FAST IMAGING PLASMA SPECTROMETER"INSTRUMENT_ID= "FIPS"DATA_SET_ID= "MESS-E/V/H/SW-EPPS-2-FIPS-RAWDATA-V1.0"DATA_SET_NAME= "MESSENGER E/V/H/SW EPPS UNCALIBRATED FIPS EDR V1.0"MISSION_PHASE_NAME= "MERCURY 2 CRUISE"TARGET_NAME= "CALIBRATION"START_TIME= 2008-08-20T16:12:30STOP_TIME= 2008-08-20T23:49:12SPACECRAFT_CLOCK_START_COUNT= "127736194"SPACECRAFT_CLOCK_STOP_COUNT= "127763596"	PRODUCT_TYPE	= "DATA"
SOFTWARE_VERSION_ID= "2.1"INSTRUMENT_HOST_NAME= "MESSENGER"INSTRUMENT_NAME= "FAST IMAGING PLASMA SPECTROMETER"INSTRUMENT_ID= "FIPS"DATA_SET_ID= "MESS-E/V/H/SW-EPPS-2-FIPS-RAWDATA-V1.0"DATA_SET_NAME= "MESSENGER E/V/H/SW EPPS UNCALIBRATED FIPS EDR V1.0"MISSION_PHASE_NAME= "MERCURY 2 CRUISE"TARGET_NAME= "CALIBRATION"START_TIME= 2008-08-20T16:12:30STOP_TIME= 2008-08-20T23:49:12SPACECRAFT_CLOCK_START_COUNT= "127736194"SPACECRAFT_CLOCK_STOP_COUNT= "127763596"	STANDARD_DATA_PRODUCT_ID	= "FIPS_HIRES_PROTON_V"
<pre>INSTRUMENT_HOST_NAME = "MESSENGER" INSTRUMENT_NAME = "FAST IMAGING PLASMA SPECTROMETER" INSTRUMENT_ID = "FIPS" DATA_SET_ID = "MESS-E/V/H/SW-EPPS-2-FIPS-RAWDATA-V1.0" DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED FIPS EDR V1.0" MISSION_PHASE_NAME = "MERCURY 2 CRUISE" TARGET_NAME = "CALIBRATION" START_TIME = 2008-08-20T16:12:30 STOP_TIME = 2008-08-20T23:49:12 SPACECRAFT_CLOCK_START_COUNT = "127736194" SPACECRAFT_CLOCK_STOP_COUNT = "127763596"</pre>	SOFTWARE_NAME	= "PIPE-EPPS2EDR"
<pre>INSTRUMENT_NAME = "FAST IMAGING PLASMA SPECTROMETER" INSTRUMENT_ID = "FIPS" DATA_SET_ID = "MESS-E/V/H/SW-EPPS-2-FIPS-RAWDATA-V1.0" DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED FIPS EDR V1.0" MISSION_PHASE_NAME = "MERCURY 2 CRUISE" TARGET_NAME = "CALIBRATION" START_TIME = 2008-08-20T16:12:30 STOP_TIME = 2008-08-20T23:49:12 SPACECRAFT_CLOCK_START_COUNT = "127736194" SPACECRAFT_CLOCK_STOP_COUNT = "127763596"</pre>	SOFTWARE_VERSION_ID	= "2.1"
<pre>INSTRUMENT_ID = "FIPS" DATA_SET_ID = "MESS-E/V/H/SW-EPPS-2-FIPS-RAWDATA-V1.0" DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED FIPS EDR V1.0" MISSION_PHASE_NAME = "MERCURY 2 CRUISE" TARGET_NAME = "CALIBRATION" START_TIME = 2008-08-20T16:12:30 STOP_TIME = 2008-08-20T23:49:12 SPACECRAFT_CLOCK_START_COUNT = "127736194" SPACECRAFT_CLOCK_STOP_COUNT = "127763596"</pre>		
DATA_SET_ID = "MESS-E/V/H/SW-EPPS-2-FIPS-RAWDATA-V1.0" DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED FIPS EDR V1.0" MISSION_PHASE_NAME = "MERCURY 2 CRUISE" TARGET_NAME = "CALIBRATION" START_TIME = 2008-08-20T16:12:30 STOP_TIME = 2008-08-20T23:49:12 SPACECRAFT_CLOCK_START_COUNT = "127736194" SPACECRAFT_CLOCK_STOP_COUNT = "127763596"	INSTRUMENT_NAME	= "FAST IMAGING PLASMA SPECTROMETER"
DATA_SET_NAME = "MESSENGER E/V/H/SW EPPS UNCALIBRATED FIPS EDR V1.0" MISSION_PHASE_NAME = "MERCURY 2 CRUISE" TARGET_NAME = "CALIBRATION" START_TIME = 2008-08-20T16:12:30 STOP_TIME = 2008-08-20T23:49:12 SPACECRAFT_CLOCK_START_COUNT = "127736194" SPACECRAFT_CLOCK_STOP_COUNT = "127763596"	INSTRUMENT_ID	= "FIPS"
MISSION_PHASE_NAME= "MERCURY 2 CRUISE"TARGET_NAME= "CALIBRATION"START_TIME= 2008-08-20T16:12:30STOP_TIME= 2008-08-20T23:49:12SPACECRAFT_CLOCK_START_COUNT= "127736194"SPACECRAFT_CLOCK_STOP_COUNT= "127763596"	DATA_SET_ID	= "MESS-E/V/H/SW-EPPS-2-FIPS-RAWDATA-V1.0"
TARGET_NAME = "CALIBRATION" START_TIME = 2008-08-20T16:12:30 STOP_TIME = 2008-08-20T23:49:12 SPACECRAFT_CLOCK_START_COUNT = "127736194" SPACECRAFT_CLOCK_STOP_COUNT = "127763596"	DATA_SET_NAME = "MESSENGER E/N	//H/SW EPPS UNCALIBRATED FIPS EDR V1.0"
START_TIME = 2008-08-20T16:12:30 STOP_TIME = 2008-08-20T23:49:12 SPACECRAFT_CLOCK_START_COUNT = "127736194" SPACECRAFT_CLOCK_STOP_COUNT = "127763596"	MISSION_PHASE_NAME	= "MERCURY 2 CRUISE"
STOP_TIME = 2008-08-20123:49:12 SPACECRAFT_CLOCK_START_COUNT = "127736194" SPACECRAFT_CLOCK_STOP_COUNT = "127763596"	TARGET_NAME	= "CALIBRATION"
SPACECRAFT_CLOCK_START_COUNT = "127736194" SPACECRAFT_CLOCK_STOP_COUNT = "127763596"	START_TIME	= 2008-08-20T16:12:30
SPACECRAFT_CLOCK_STOP_COUNT = "127763596"	STOP_TIME	= 2008-08-20T23:49:12
	SPACECRAFT_CLOCK_START_COUNT	= "127736194"
^TABLE = "FIPS_V2008233EDR V1.DAT"	SPACECRAFT_CLOCK_STOP_COUNT	= "127763596"
	^TABLE	= "FIPS_V2008233EDR V1.DAT"

= TABLE OBJECT COLUMNS = 38 INTERCHANGE_FORMAT = BINARY ROW_BYTES = 4118 ROWS = 42 DESCRIPTION - " This table contains the high-resolution proton velocity distributions gathered by the Fast Imaging Plasma Spectrometer (FIPS)collected over a 10-scan sequence. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document. ^STRUCTURE = "FIPS_HRPVD.FMT" END_OBJECT = TABLE END

5.3.4.15 EPPS Status PDS Label

The EPPS Status EDR contains the engineering and status data for the EPPS instrument. This EDR is no longer generated on or after 9/6/2007 due to the FSW5 upload; instead use the EPPS_LONG_STATUS EDR for data on or after 9/6/2007. The content of the EPPS Status label is shown below:

PDS_VERSION_ID = "PDS3" /*** FILE FORMAT ***/ FILE_RECORDS = 8640 RECORD TYPE = "FIXED_LENGTH" = 356 RECORD_BYTES /*** GENERAL DATA DESCRIPTION PARAMETERS ***/ PRODUCT_ID = "EPPS2005121EDR_TAB" PRODUCT_VERSION_ID = "V1" PRODUCT_CREATION_TIME = 2006-01-11T14:31:46 PRODUCT_TYPE "TTTT PRODUCT_TYPE = "EDR" PRODUCT_TYPE = "EDR" STANDARD_DATA_PRODUCT_ID = "EPPS_STATUS" SOFTWARE_NAME SOFTWARE_VERSION_ID = "PIPE-EPPS2EDR" = "1.0" MD5_CHECKSUM = "abc123abc123abc123abc123" INSTRUMENT_HOST_NAME INSTRUMENT_NAME INSTRUMENT_ID = "MESSENGER" = "ENERGETIC PARTICLE AND PLASMA SPECTROMETER" = "EPPS" = "MESS-EDR-EPPS-STATUS-2-CRUISE-V1.0" DATA_SET_ID DATA_SET_ID {"MESS-E/V/H/SW-EPPS-2-EPS-RAWDATA-V1.0", "MESS-E/V/H/SW-EPPS-2-FIPS-RAWDATA-V1.0"} MISSION_PHASE_NAME = "EARTH CRUISE" TARGET_NAME = "CALIBRATION" START_TIME = 2005-05-01T00: = 2005-05-01T00:00:02 START_TIME STOP_TIME = 2005-05-01T23:59:52 SPACECRAFT_CLOCK_START_COUNT = "23392746" SPACECRAFT_CLOCK_STOP_COUNT = "23479136" = "EPPS2005121EDR_V1.TAB" ^TABLE OBJECT = TABLE = 55 COLUMNS INTERCHANGE_FORMAT = BINARY ROW_BYTES = 356 ROWS = 8640 - " DESCRIPTION This table contains housekeeping and status data collected by the MESSENGER EPPS instrument. The complete column definitions are contained in an external file found in the LABEL directory of the archive volume. Additional details are contained in the EDR SIS document.

```
^STRUCTURE = "EPPS_STATUS.FMT"
END_OBJECT = TABLE
END
```

5.3.4.16 EPPS Long Status PDS Label

The EPPS_LONG_STATUS EDR contains the engineering and status data for the EPPS instrument as generated by the flight software on and after 9/6/2007 due to the FSW5 upload. The additional columns store housekeeping data that was previously recorded in the EPS/FIPS High Priority Housekeeping EDRs.

```
PDS_VERSION_ID
                                       = "PDS3"
/*** FILE FORMAT ***/
FILE_RECORDS
                                       = 21
RECORD_TYPE
                                       = FIXED_LENGTH
RECORD_BYTES
                                       = 550
/*** GENERAL DATA DESCRIPTION PARAMETERS ***/
PRODUCT_ID= "ELONG2007348EDR_V1_TAB"PRODUCT_VERSION_ID= "V1"PRODUCT_CREATION_TIME= 2007-12-20T10:00:38PRODUCT_TYPE= "ANCILLARY"STANDARD_DATA_PRODUCT_ID= "EPPS_LONG_STATUS"SOFTWARE_NAME= "PIPE-EPPS2EDR"CONTRACTION_TIME= "0.1"
PRODUCI_III_

STANDARD_DATA_PRODUCT_ID

SOFTWARE_NAME = "PIPE-EFFORM

SOFTWARE_VERSION_ID = "2.1"

INSTRUMENT_HOST_NAME = "MESSENGER"

= "ENERGETIC PARTICLE AND PLASMA SPECTROMETER"

- "EPPS"
 {"MESS-E/V/H/SW-EPPS-2-EPS-RAWDATA-V1.0",
   "MESS-E/V/H/SW-EPPS-2-FIPS-RAWDATA-V1.0"}
MISSION_PHASE_NAME = "MERCURY 1 CRUISE"
TARGET_NAME = "CALIBRATION"
START TIME = 2007-12-14T17:43:3
START_TIME
                                      = 2007-12-14T17:43:38
STOP_TIME
                                      = 2007-12-14T23:43:02
SPACECRAFT_CLOCK_START_COUNT = "106141597"
SPACECRAFT_CLOCK_STOP_COUNT = "106163161"
                                     = "ELONG2007348EDR_V1.TAB"
^TABLE
OBJECT
                                      = TABLE
COLUMNS
                                      = 103
INTERCHANGE_FORMAT
                                      = ASCII
ROW_BYTES
                                       = 550
ROWS
                                       = 21
                                       - "
DESCRIPTION
     This table contains housekeeping and status data collected by the
     MESSENGER EPPS instrument. This EDR is the result of the EPPS
     Flight Software v5 upload in which the updated status packet
     contains additional housekeeping values.
     The complete column definitions are contained in an external file
     found in the LABEL directory of the archive volume. Additional
     details are contained in the EDR SIS document.
...
^STRUCTURE = "EPPS_LONG.FMT"
END OBJECT
                                       = TABLE
END
```

5.4 Standards Used in Generating Data Products

5.4.1 PDS Standards

The EPPS EDR data products are constructed according to the data object concepts developed by the PDS. By adopting the PDS format, the data products are consistent in content and organization with other planetary data collections. In the PDS standard, the EDR data file is grouped into objects with PDS labels describing the objects. Each EDR data product consists of two files:

- A data file containing an ASCII or binary table object (the primary data), in fixed field format.
- A label file which serves as a high-level description of the parameters of which correspond to the data file. The label file contains a pointer to an external format file which details the structure of the table object in the data file.

5.4.2 Time Standards

The time fields in the EPPS table objects reference the Mission Elapsed Time (MET). This MET is the spacecraft time in integer seconds that is transmitted to MESSENGER subsystems by the Integrated Electronics Module (IEM). This is referred to by the MESSENGER project as Mission Elapsed Time (MET). MET = 0 is August 3, 2004, at 05:59:16 UTC, which is 1000 seconds prior to the MESSENGER launch. Relativistic effects and circumstances occurring during the mission would result in MET not being a true account of seconds since launch. Following a planned spacecraft clock reset¹ on January 8, 2013, partition numbers (1/, or 2/) were added to product labels to disambiguate MET seconds after the spacecraft clock reset (if partition number is not present, SPICE defaults to partition 1/). For this reason the MESSENGER spacecraft clock coefficients file is archived at the PDS Navigation and Ancillary Information Facility (NAIF) Node. This file is used in conjunction with the leapseconds kernel file in order to calculate the conversion between MET and UTC.

The conversion is easily done through the use of SPICE kernels and the CHRONOS Utility. CHRONOS is a utility included with the SPICE package that is distributed by the PDS NAIF node. The SPICE kernels are files that contain the information needed to perform the conversion. Two SPICE kernels are required. One is the Leapseconds Kernel (LSK) and the other is the MESSENGER Spacecraft Clock Kernel (SCLK). The SCLK file is used by CHRONOS to convert between spacecraft clock time and ephemeris time, while the LSK file is used to convert from ephemeris time to UTC time. The CHRONOS utility is self-documenting and the SPICE package itself contains full documentation on each of the utilities (including CHRONOS) and how they are used.

5.4.3 Coordinate Systems

Table 10 lists the computational assumptions for the geometric and viewing data provided in the PDS label. <u>There are two coordinate systems in use:</u> 1) the celestial reference system used for target and spacecraft position and velocity vectors; and 2) the planetary coordinate system for geometry vectors and target location. The celestial

¹ See instrument host catalog file in EPPS document volume for more information on MESSENGER spacecraft clock reset.

coordinate system is J2000 (Mean of Earth equator and equinox of J2000). The planetary coordinate system is **planetocentric**.

Different time series data products will be provided corresponding to different coordinate systems. These include: inertial celestial (e.g. J2000), Mercury centered body fixed, Mercury centered magnetospheric, Mercury centered solar wind, and solar orbital (appropriate for cruise). The detailed definition of magnetospheric coordinates depend on the orientation of the Hermetian magnetic dipole and will therefore be updated during the mission."

Table 11 Computational Assumptions

- <> The mid-point time of observation is used for the geometric element computations.
 <> Label parameters reflect observed, not true, geometry. Therefore, light-time and stellar aberration corrections are used as appropriate.
 <> The inertial reference frame is J2000 (also called EME2000).
 <> Latitudes and longitudes are planetocentric.
 <> The "sub-point" of a body on a target is defined by the surface intercept of the body-to-target-center vector. This is not the closest point on the body to the observer.
- <> Distances are in km, speeds in km/sec, angles, in degrees, angular rates in degrees/sec, unless otherwise noted.
- <> Angle ranges are 0 to 360 degrees for azimuths and local hour angle. Longitudes range from 0 to 360 degrees (positive to the East). Latitudes range from -90 to 90 degrees.

5.4.4 Data Storage Conventions

The data are organized following PDS standards and stored on hard disk and an SQL (Structured Query Language) relational database for rapid access during mission operations. The MESSENGER SOC will transfer data to PDS via electronic transfer and delivery methods as detailed in section 5.3.3. After verification of the data transfer PDS will provide public access to MESSENGER science data products through its online data distribution system.

5.5 Data Validation

The EPPS EDR data archive volume set will include all data acquired during the MESSENGER mission. The archive validation procedure described in this section applies to data products generated during all post launch phases of the mission. To be clear, there is one and only one documentation volume and one and only one EPPS EDR data archive volume created over the whole mission. Initial releases of both volumes will occur during the first EDR delivery date as stated in the schedule in the MESSENGER

Data Management and Archiving Plan. Updates to the data volume will occur according to the same schedule. Updates to the documentation volume will occur at the discretion of the EPPS team.

PDS standards recommend that all data included in the formal archive be validated through a peer-review process. This process is designed to ensure that both the data and documentation are of sufficient quality to be useful to future generations of scientists. The schedule of PDS data deliveries, however, necessitate some modification of the normal PDS review process since it is impractical to convene a review panel to examine the archive volume for every PDS data delivery. The following describes the modified validation process. The process is presented as several steps, most of which occur in the PDS peer review. This peer review is conducted before any volumes are produced and released to PDS.

The peer review panel consists of members of the EPPS team, members of ACT, the PPI node of PDS, and at least one outside scientist actively working in the field of energetic particles research. The PDS personnel are responsible for validating that the volumes are fully compliant with PDS standards. The instrument team, ACT, and outside reviewer(s) are responsible for verifying the content of the data set, the completeness of the documentation, and the usability of the data in its archive format.

The peer review will validate the documentation and data archive volumes via a two step process. First the panel reviews this document and verifies that the volumes and EDRs produced to this specification will be useful. Next the panel reviews the initial release of the data and documentation volumes to verify that the volumes meet this specification and are acceptable. Once automated production begins, software provided by ACT produce a summary of each data product and software provided by the PPI node verifies that all the files required by PDS are present and the files themselves conform to PDS standards. If an error is detected by either of the above programs, the error is corrected, if possible, before the update to the volume is delivered. Otherwise the correction will occur at the next scheduled delivery date. If an error in a data file is uncorrectable, (i.e. an error in the downlink data file) the error is described in the cumulative errata file that is included in the data archive volume.

The peer review will also validate the EPPS EDR data in a two step process. The first step consists of reviewing a sample data set for compliance with the PDS standards. The sample data set is delivered and reviewed in conjunction with delivery and review of this SIS document. The second step is examination of the data to ensure usability and completeness. The PDS personnel will be responsible for validating that the EDR data set is fully compliant with PDS standards. The instrument team, ACT, and the outside science reviewer(s) will be responsible for verifying the content of the data set, the completeness of the documentation, and the usability of the data in its archive format.

Any deficiencies in the archive data or documentation volumes will be recorded as liens against the product by the review panel. The sample data set is created using software provided by ACT. Once the sample data is validated, and all liens placed against the product or product generation software are resolved, the same software will be used to generate subsequent data products in an automated fashion.

Once automated production begins, the data file content will be spot checked by members of the EPPS team. "Quick look" products generated by software provided by ACT and the EPPS team will be produced routinely and examined by members of the team. In addition, the data will be actively used by team members to perform their analysis. Any discrepancies in the data noted during these activities will be investigated. If the discrepancy is a data error, the response will depend on the source of the error. If the error is in the software producing the data product, the error will be corrected and the data affected will be reproduced, replacing the data file. If there is a correctable error in a data file, the file will be replaced. If an error in a data file is uncorrectable, the error will be described in the cumulative errata file included in the archive volume. The structure of data files and labels will be spot checked by the PPI node for compliance with PDS standards and this SIS.

6 Detailed Data Product Specification

6.1 Data Product Structure and Organization

The MESSENGER EPPS EDR data products will be archived at the PDS PPI Node. The EDR data set in the data archive volume is intended to store the data in a form closest to the raw telemetry data received from the spacecraft. The automated production and release of EDRs lends itself to the regular release schedule outlined in the MESSENGER Data Management and Archiving Plan. If errors are discovered the data will be replaced with corrected EDRs on the next scheduled delivery date.

Calibration tables and calibration procedures will be required to properly analyze EDRs. These ancillary data will be archived at the PDS PPI Node as part of the EPPS documentation volume. The documentation volume will also be referenced by the EPPS RDR data archive volume. The documentation volume will therefore include both the EPPS EDR SIS and the EPPS RDR SIS in addition to the calibration tables, calibration procedures, and other documents applicable to either data archive volume. A first release of the EPPS documentation volume will accompany the initial release of the EPPS EDR data archive. The initial release of the documentation volume will only contain EDR level documentation and the parameters derived from the ground calibration tests. After the initial release there will be updates whenever the EPPS team determines that they have a sufficiently improved calibration to warrant a new release.

6.2 Handling Errors

The possibility exists that errors may be introduced into the archive even with validation procedures applied to the archive volumes. An ERRATA report file is maintained to track and document all discovered uncorrectable errors that may occur during the mission. Correctable errors, such as revised EDRs or EDRs that were missing from a previous PDS delivery will be provided at the next scheduled PDS delivery or at the final delivery date (schedule in the MESSENGER Data Management and Archiving Plan). PDS will then replace the outdated files with the revised EDR files in the data directories of the

archive volume. The ERRATA report file is archived in the ROOT directory of the EPPS EDR data volume.

6.3 Data Format Description

Data is stored in ASCII table format or in binary table format. A detached PDS label file will provide a detailed description of the structure of each table. See section 5.2 for details on which data product contains a binary table or an ASCII table.

6.4 Label and Header Descriptions

The following are the keyword definitions for the detached PDS label file, which accompanies the instrument data file. The detached PDS label file has the same name as the data file it describes, except for the extension .LBL to distinguish it as a label file.

PDS_VERSION_ID

Represents the version number of the PDS standards documents that is valid when a data product label is created. PDS3 is used for the MESSENGER data products.

FILE_RECORDS

Indicates the number of physical file records, including both label records and data records.

RECORD_TYPE

Indicates the record format of a file. <u>Note</u>: In the PDS, when record_type is used in a detached label file it always describes its corresponding detached data file, not the label file itself. The use of record_type along with other file-related data elements is fully described in the PDS Standards Reference.

RECORD_BYTES

Indicates the number of bytes in a physical file record, including record terminators and separators. Note: In the PDS, the use of record_bytes, along with other file-related data elements is fully described in the Standards Reference.

PRODUCT_ID

Represents a permanent, unique identifier assigned to a data product by its producer.

PRODUCT_CREATION_TIME

Defines the UTC system format time when a product was created.

PRODUCT_VERSION_ID

Identifies the version of an individual product within a data set. Example: 1.0, 2.0, 3.0. Product_version_id will be incremented if a given EDR has to be regenerated and sent to PDS to replace a previously submitted EDR.

PRODUCT_TYPE

Identifies the type or category of a product within a data set.

PRODUCT_TYPE

Identifies the type or category of a product within a data set.

STANDARD_DATA_PRODUCT_ID

Used to link an EPPS EDR file to one of the 9 types of EPPS data products defined within the EPPS EDR SIS.

SOFTWARE_NAME

Identifies the data processing software used to convert from spacecraft telemetry into EDR products.

SOFTWARE_VERSION_ID

Indicates the version of the data processing software used to generate the EDR products from the spacecraft telemetry.

MD5_CHECKSUM

Used to verify the successful electronic transfer of the EDR from the SOC to the PDS-PPI Node.

INSTRUMENT_HOST_NAME

The full name of the host on which an instrument is based. In this case it is the MESSENGER spacecraft.

INSTRUMENT_NAME

Provides the full name of the instrument.

INSTRUMENT_ID

Provides an abbreviated name or acronym which identifies an instrument.

DATA_SET_ID

The data_set_id element is a unique alphanumeric identifier for a data set or a data product. The data_set_id value for a given data set or product is constructed according to flight project naming conventions. There is only one data_set_id for the EPPS EDRs.

MISSION_PHASE_NAME

Provides the commonly used identifier of a mission phase.

TARGET_NAME

The target_name element identifies a target. The target may be a planet, satellite,ring,region, feature, asteroid or comet.

START_TIME

Provides the date and time of the beginning of an event or observation (whether it be a spacecraft, ground-based, or system event) in UTC system format.

STOP_TIME

Provides the date and time of the end of an observation or event (whether it be a spacecraft, groundbased, or system event) in UTC system format.

SPACECRAFT_CLOCK_START_COUNT

Provides the value of the spacecraft clock at the beginning of a time period of interest.

SPACECRAFT_CLOCK_STOP_COUNT

Provides the value of the spacecraft clock at the end of a time period of interest.

^TABLE

Pointer to the EDR file which contains the data in BINARY table format. The structure of the data file is defined in a referenced format file.

OBJECT

Specifies that the EDR is a PDS TABLE object. This object contains its own elements, which are defined below. NOTE: the end of the object definition is always marked with an END_OBJECT line.

COLUMNS

Identifies the number of columns (fields) in the table.

INTERCHANGE_FORMAT

This element specifies that the table is in binary format.

ROW_BYTES

Specifies the number of bytes for each row in the table.

ROWS

Identifies the number of rows (records) in the table.

^STRUCTURE

This is a pointer to the external file which provides the structure definition for the table object.

The following describes the keywords used to describe the PDS Table Object. These keywords are contained in the FORMAT (.FMT) files for each EDR data product.

COLUMN_NUMBER

Identifies the location of the column within the larger data object (such as a table). For tables consisting of rows (I= 1, N) and columns (j = 1, M) the column_number is the j-th index of any row.

NAME

Indicates a literal value representing the common term used to identify an element or object. NOTE: in the PDS data dictionary, name is restricted to 30 characters and must conform to PDS nomenclature standards.

BYTES

Specifies the number of bytes allocated for this particular column element.

DATA_TYPE

Specifies the internal representation and/or mathematical properties of the value being stored in this column.

START_BYTE

Identifies the location of the first byte of the particular column, counting from 1.

ITEMS

Defines the number of multiple, identical occurrences of a single object. Used mainly in columns containing spectral or histogram data.

ITEM_BYTES

The size in bytes of individual items in a column. ITEMS * ITEM_BYTES should equal the value in the BYTES column.

The format file will contain the full text for describing each column of the table. See Appendices for a listing of each field in the individual format files.

6.5 File Naming Conventions

The file names developed for PDS data volumes are restricted to a maximum 36 character file name and a 3 character extension name with a period separating the file and extension names. The general form of the EPPS file name for all EDRs except the Status EDR will be "EEEZ_XYYYYDDDAAA_V#.DAT" where:

7/9/2015

Ζ	EPS, EPPS/EPS FIP, EPPS/FIPS specifies whether the packet contains data taken from the high, medium, or low priority science packet H, High Priority M, Medium Priority L, Low Priority
	The FSW6 upload removed the EPS PHA association with priority N, indicates N/A association for EPS PHA EDRs
	FIPS PHA EDR data can also be extracted from the FIPS Scan packet: S, data from Scan packet
	FSW7 FIPS PHA EDR data is only extracted from FIPS PHA packets: P, data from PHA packet (heavy ion or proton)
Х	specifies whether data contains PHA events, spectra/counts, or Housekeeping data. P, PHA events binary data file S, Spectra binary data file H, Housekeeping ASCII file
new on	The FSW6 upload had the effect of retiring several EDRs and adding nes. In order to keep the EEEZ_XYYYYDDDAAA_V#.DAT file naming tion the Z and X characters are used in conjunction to identify the DRs:
EPS LC EPS Su EPS Sc FIPS S	.gh Resolution EDR: Z_X= "H_R" Ex. "EPSH_R2008233EDR_V1.DAT" .ww Resolution EDR: Z_X= "L_R" Ex. "EPSL_R2008231EDR V1.DAT" .mmary Spectra EDR: Z_X= "S_S" Ex. "EPSS_S2008233EDR V1.DAT" .an Rates EDR: Z_X= "S_R" Ex. "EPSS_R2008233EDR V1.DAT" .can Rates EDR: Z_X= "S_R" Ex. "FIPS_R2008233EDR V1.DAT" .can Rates EDR: Z_X= "S_R" Ex. "FIPS_R2008233EDR V1.DAT" .can Rates EDR: Z_X= "P_V" Ex. "FIPS_V2008233EDR V1.DAT"
YYYY DDD AAA V# .DAT	<pre>four digit year three digit day of year specifies whether the data product is an EDR or CDR Version number. The initial version is "V1". The version number increments to "V2", "V3", etc for each successive version of the EDR product that is produced. A new version of the EDR product may be produced as a result of an error in the product or as a result of errors discovered in the product generation process. the file extension is dependent on the file type .DAT, Instrument Data in binary table .TAB, Spacecraft data in ASCII table .LBL, Detached PDS label file</pre>

Thus, EPSL_P2006001EDR.dat will contain the all the Low Priority PHA events collected by the EPS sensor on Jan 01, 2006, and is an EDR data product.

The EPPS Status EDR has the naming convention "EPPSYYYYDDDAAA_V#.TAB" where:

EPPS	designates the file as the Status EDR file
YYYY	four digit year
DDD	three digit day of year
AAA	specifies whether the product is an EDR or CDR.
V#	Version number. The initial version is "V1". The version number
	increments to "V2", "V3", etc for each successive version of the
	EDR product that is produced. A new version of the EDR product may

be produced as a result of an error in the product or as a result of errors discovered in the product generation process.

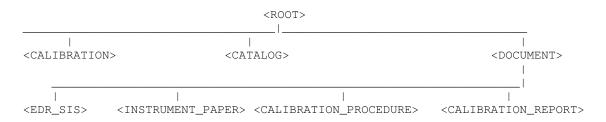
and .TAB is the ASCII table containing the status information.

The EPPS Status EDR is no longer generated on or after 9/6/2007 due to the FSW5 upload; instead use the EPPS_LONG_STATUS EDR for data on or after 9/6/2007. The EPPS Long Status EDR has the naming convention ELONGYYYYDDDAAA_V#.TAB where:

ELONG designates the file as the Long Status EDR file YYYY four digit year DDD three digit day of year AAA specifies whether the product is an EDR or CDR V# Version number. The initial version is "V1".

.TAB indicates that the data is stored in an ASCII table.

6.6 Archive Volume and File Size


Two archive volumes are created to archive both the EPPS EDR data and the documentation which will be needed to analyze the EDRs. The first volume is the EPPS Documentation Volume. This documentation volume will contain products related to both the EPPS EDR and RDR data archives. The initial release of the documentation volume will contain only EDR level documentation. RDR documents (such as the RDR SIS and dataset catalog) will be added to the volume at the time of initial release of those datasets. Once all of the EPPS data products are designed and released, the documentation volume will contain the following products:

- 1. All required PDS catalog files for the EDR and RDR archives.
- 2. The EDR and RDR SIS documents.
- 3. The SSR instrument paper once copyright permission is obtained. This may not be included in the initial release for copyright reasons.
- 4. The EPPS calibration report.
- 5. The EPPS calibration procedures document.
- 6. Calibration tables.
- 7. Other information relevant to the RDR archives that would be helpful to users of the EDR archives.
- 8. Other documents considered useful by the MESSENGER project or the EPPS team.

The second archive volume, designated as the EPPS Data Archive Volume, will contain the EDR data and required files for conforming to PDS volume archive standards. This includes the index files, AAREADME.TXT file, etc. The final EPPS EDR archive volume has a size of approximately 111 GB.

6.7 Directory Structure and Contents for EPPS Documentation Volume

The following illustration shows the directory structure overview for the EPPS documentation volume. This volume will be periodically updated as knowledge of the instrument, its calibration, and its operation improve over time. A first release of this volume that includes parameters derived from ground calibration tests will accompany the initial release of the EDR data archive. After initial release there will be updates whenever the EPPS team determines that they have a sufficiently improved calibration to warrant the update. Note that in some deliveries, the products that belong in a particular directory may not yet be available. If a directory has no products in a particular delivery, it will not appear in the archive directory tree. Empty directories will not be delivered.

Figure 3 Documentation Volume Structure

6.7.1 Directory Contents

<ROOT> Directory

This is the top-level volume directory. The following are files contained in the root directory.

AAREADME.TXT: General information file. Provides users with an overview of the contents and organization of the associated volume, general instructions for its use, and contact information.

VOLDESC.CAT: PDS file containing the VOLUME object. This gives a high-level description of the contents of the volume. Information includes: production date, producer name and institution, volume ID, etc.

ERRATA.TXT: Text file for identifying and describing errors and/or anomalies found in the current volume, and possibly previous volumes of a set. Any known errors for the associated volume will be documented in this file.

<CALIBRATION> Directory

This will contain the calibration tables needed to analyze the EPPS EDR data. The calibration tables are in ASCII table format and are accompanied by detached PDS labels.

CALINFO.TXT: Brief description of the directory contents and naming conventions.

FIP*.TAB: The FIPS energy per charge tables.

EPPS_EPS_EDR2CDR.HTM/PDF: Describes the conversion of EPPS EDRs to CDRs for the EPS instrument. Document is in HTML and PDF format.

EPPS_FIPS_EDR2CDR.HTM/PDF: Describes the conversion of EPPS EDRs to CDRs for the FIPS instrument. Document is in HTML and PDF format.

<CATALOG> Directory

This subdirectory contains the catalog object files for the entire volume. The following files are included in the catalog subdirectory.

CATINFO.TXT: Identifies and describes the function of each file in the catalog directory.

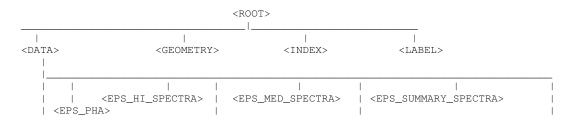
EPPS*DATASET.CAT: Describes the general content of the data set for each instrument, as (indicated by the * text) and includes information about the duration of the mission and the person or group responsible for producing the data.

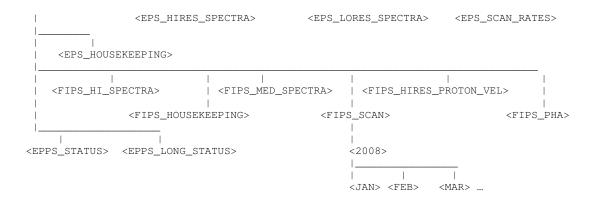
INSTRUMENT.CAT: Describes physical attributes of the EPPS instrument and provides relevant references to published literature.

INSTHOST.CAT: Describes the MESSENGER spacecraft.

MISSION.CAT: Describes the scientific goals and objectives of the MESSENGER program. It also identifies key people and institutions.

PERSON.CAT: Lists and provides contact information for the people involved in the MESSENGER mission, including those involved with EPPS.


REF.CAT: Provides references to scientific papers and other publications of interest to those using the data, both for EPPS and the mission as a whole.


< DOCUMENT > Directory

This subdirectory contains the documentation that will be needed in order to understand and analyze the EDR and RDR data volumes. The documents will be separated into individual subdirectories according to the document type. The document types are not restricted to the four shown in the graphical depiction of the directory structure. There will be as many document types as needed to categorize each document. The following file is included in the subdirectory.

DOCINFO.TXT: Identifies and describes the function of each file in the DOCUMENT directory.

6.8 Directory Structure and Contents for EPPS Data Volume

Figure 4 Data Volume Directory Structure

6.8.1 Directory Contents

<ROOT> Directory

This is the top-level directory of a volume. The following are files contained in the root directory.

AAREADME.TXT - General information file. Provides users with an overview of the contents and organization of the associated volume, general instructions for its use, and contact information.

VOLDESC.CAT - PDS file containing the VOLUME object. This gives a high-level description of the contents of the volume. Information includes: production date, producer name and institution, volume ID, etc.

ERRATA.TXT - Text file for identifying and describing errors and/or anomalies found in the current volume, and possibly previous volumes of a set. Any known errors for the associated volume will be documented in this file. This includes revised EDRs meant to replace EDRs in a previous PDS delivery.

<DATA> Directory

This top level directory contains the EDR data products. Directly underneath the <DATA> directory are subdirectories corresponding to the standard data products (section 5.2). The directories are further subdivided into YEAR and MONTH directories.

<GEOMETRY> Directory

This subdirectory contains information about the files (e.g. SPICE kernels, etc) needed to describe the observation geometry for the data.

GEOMINFO.TXT : Identifies and describes the SPICE kernels that a user must have in order to determine observation geometry for the data. The SPICE kernel files are archived with the PDS NAIF node.

<INDEX> Directory

This subdirectory contains the indices for all data products on the volume. The following files are contained in the index subdirectory.

INDXINFO.TXT – Identifies and describes the function of each file in the index subdirectory. This includes a description of the structure and contents of each index table in the subdirectory AND usage notes.

INDEX.TAB - The EDR index file is organized as a table: there is one entry for each of the data files included in the EPPS data set; the columns contain parameters that describe the observation and instrument and spacecraft parameters. These parameters include state information, such as integration time, spacecraft clock count, time of observation, and instrument modes.

INDEX.LBL - Detached PDS label for INDEX.TAB. It contains the INDEX_TABLE object which identifies and describes the columns of the EPPS index table.

MD5.TAB - The MD5 checksum file that contains MD5 hash values for every file in the volume.

MD5.LBL - Detached PDS label for MD5.TAB.

<LABEL> Directory

This subdirectory contains the "label fragments" (i.e., the *.FMT files) for all data products on the volume. These format files describe the table and data objects which store the data.

7 Archive Release Schedule to PDS

The MESSENGER EPPS data and volume archives will be transferred from the SOC to the PDS PPI Node using the electronic transfer process detailed in section 5.3.3. The SPICE kernels will be electronically transferred to the NAIF node. The transfer will take place according to the schedule in the MESSENGER Data Management and Archiving Plan.

Table 12 PDS Delivery Schedule – REMOVED (refer to MESSENGER DataManagement and Archiving Plan)

8 Appendices

8.1 EPSHIGH.FMT Table Fields

The following are the fields as defined by the EPSHIGH.FMT structure file. This file defines the binary table containing the EPS High Priority spectra data. Archive volume is optimized by defining the table structure once and providing a reference to it in the PDS label file. The fields are numbered according to their column order in the table. Data_Type refers to the PDS standards data type for a particular column in the table.

The FSW6 upload was done on 8/18/2008 and implemented on 8/19/2008. The software update retired the EPS High Priority Spectra packet. Thus there are no EPS Hi Spectra EDRs on or after 8/19/2008.

Start Byte	Length (bytes)	Data Type	Column Name	Summary (see full text for column description)
·				• '

1	4	MSB Unsigned	MET	Time tag in seconds.
1	4	Integer		Time tag in seconds.
5	4 X 22	MSB Unsigned Integer	HI_ION_HISTOGRAM_0	22 bin high energy ion histogram for ion direction 0.
93	4 X 22	MSB Unsigned Integer	HI_ION_HISTOGRAM_1	22 bin high energy ion histogram for ion direction 1.
181	4 X 22	MSB Unsigned Integer	HI_ION_HISTOGRAM_2	22 bin high energy ion histogram for ion direction 2.
269	4 X 22	MSB Unsigned Integer	HI_ION_HISTOGRAM_3	22 bin high energy ion histogram for ion direction 3.
357	4 X 22	MSB Unsigned Integer	HI_ION_HISTOGRAM_4	22 bin high energy ion histogram for ion direction 4.
445	4 X 22	MSB Unsigned Integer	HI_ION_HISTOGRAM_5	22 bin high energy ion histogram for ion direction 5.
533	4 X 8	MSB Unsigned Integer	COARSE_E_HISTOGRAM_0	8 bin coarse electron histogram for electron direction 0.
565	4 X 8	MSB Unsigned Integer	COARSE_E_HISTOGRAM_1	8 bin coarse electron histogram for electron direction 1.
597	4 X 8	MSB Unsigned Integer	COARSE_E_HISTOGRAM_2	8 bin coarse electron histogram for electron direction 2.
629	4 X 8	MSB Unsigned Integer	COARSE_E_HISTOGRAM_3	8 bin coarse electron histogram for electron direction 3.
661	4 X 8	MSB Unsigned Integer	COARSE_E_HISTOGRAM_4	8 bin coarse electron histogram for electron direction 4.
693	4 X 8	MSB Unsigned Integer	COARSE_E_HISTOGRAM_5	8 bin coarse electron histogram for electron direction 5.
725	4 X 20	MSB Unsigned Integer	FINE_E_0	20 element array of super bin counts for electron direction 0.
805	4 X 20	MSB Unsigned Integer	FINE_E_1	20 element array of super bin counts for electron direction 1.
885	4 X 20	MSB Unsigned Integer	FINE_E_2	20 element array of super bin counts for electron direction 2.
965	4 X 20	MSB Unsigned Integer	FINE_E_3	20 element array of super bin counts for electron direction 3.
1045	4 X 20	MSB Unsigned Integer	FINE_E_4	20 element array of super bin counts for electron direction 4.
1125	4 X 20	MSB Unsigned Integer	FINE_E_5	20 element array of super bin counts for electron direction 5.
1205	4 X 16	MSB Unsigned Integer	LOW_ION_HISTOGRAM_0	16 bin low energy ion histogram for ion microchannel plate anode 0.
1269	4 X 16	MSB Unsigned Integer	LOW_ION_HISTOGRAM_1	16 bin low energy ion histogram for ion microchannel plate anode 1.
1333	4 X 16	MSB Unsigned Integer	LOW_ION_HISTOGRAM_2	16 bin low energy ion histogram for ion microchannel plate anode 2.
1397	4 X 16	MSB Unsigned Integer	LOW_ION_HISTOGRAM_3	16 bin low energy ion histogram for ion microchannel plate anode 3.
1461	4 X 16	MSB Unsigned Integer	LOW_ION_HISTOGRAM_4	16 bin low energy ion histogram for ion microchannel plate anode 4.
1525	4 X 16	MSB Unsigned Integer	LOW_ION_HISTOGRAM_5	16 bin low energy ion histogram for ion microchannel plate anode 5.
1589	4	MSB Unsigned Integer	FAST_ENERGY_COUNT_0	One of 12 fast energy hardware counters.
1593	4	MSB Unsigned Integer	FAST_ENERGY_COUNT_1	One of 12 fast energy hardware counters.
1597	4	MSB Unsigned Integer	FAST_ENERGY_COUNT_2	One of 12 fast energy hardware counters.

1601	4	MSB Unsigned Integer	FAST_ENERGY_COUNT_3	One of 12 fast energy hardware counters.
1605	4	MSB Unsigned Integer	FAST_ENERGY_COUNT_4	One of 12 fast energy hardware counters.
1609	4	MSB Unsigned Integer	FAST_ENERGY_COUNT_5	One of 12 fast energy hardware counters.
1613	4	MSB Unsigned Integer	FAST_ENERGY_COUNT_6	One of 12 fast energy hardware counters.
1617	4	MSB Unsigned Integer	FAST_ENERGY_COUNT_7	One of 12 fast energy hardware counters.
1621	4	MSB Unsigned Integer	FAST_ENERGY_COUNT_8	One of 12 fast energy hardware counters.
1625	4	MSB Unsigned Integer	FAST_ENERGY_COUNT_9	One of 12 fast energy hardware counters.
1629	4	MSB Unsigned Integer	FAST_ENERGY_COUNT_10	One of 12 fast energy hardware counters.
1633	4	MSB Unsigned Integer	FAST_ENERGY_COUNT_11	One of 12 fast energy hardware counters.
1637	4	MSB Unsigned Integer	SHAPED_ENERGY_COUNT_0	One of 12 shaped energy hardware counters.
1641	4	MSB Unsigned Integer	SHAPED_ENERGY_COUNT_1	One of 12 shaped energy hardware counters.
1645	4	MSB Unsigned Integer	SHAPED_ENERGY_COUNT_2	One of 12 shaped energy hardware counters.
1649	4	MSB Unsigned Integer	SHAPED_ENERGY_COUNT_3	One of 12 shaped energy hardware counters.
1653	4	MSB Unsigned Integer	SHAPED_ENERGY_COUNT_4	One of 12 shaped energy hardware counters.
1657	4	MSB Unsigned Integer	SHAPED_ENERGY_COUNT_5	One of 12 shaped energy hardware counters.
1661	4	MSB Unsigned Integer	SHAPED_ENERGY_COUNT_6	One of 12 shaped energy hardware counters.
1665	4	MSB Unsigned Integer	SHAPED_ENERGY_COUNT_7	One of 12 shaped energy hardware counters.
1669	4	MSB Unsigned Integer	SHAPED_ENERGY_COUNT_8	One of 12 shaped energy hardware counters.
1673	4	MSB Unsigned Integer	SHAPED_ENERGY_COUNT_9	One of 12 shaped energy hardware counters.
1677	4	MSB Unsigned Integer	SHAPED_ENERGY_COUNT_10	One of 12 shaped energy hardware counters.
1681	4	MSB Unsigned Integer	SHAPED_ENERGY_COUNT_11	One of 12 shaped energy hardware counters.
1685	4	MSB Unsigned Integer	ANODE_COUNT_0	Hardware counter for microchannel plate anode 0.
1689	4	MSB Unsigned Integer	ANODE_COUNT_1	Hardware counter for microchannel plate anode 1.
1693	4	MSB Unsigned Integer	ANODE_COUNT_2	Hardware counter for microchannel plate anode 2.
1697	4	MSB Unsigned Integer	ANODE_COUNT_3	Hardware counter for microchannel plate anode 3.
1701	4	MSB Unsigned Integer	ANODE_COUNT_4	Hardware counter for microchannel plate anode 4.
1705	4	MSB Unsigned Integer	ANODE_COUNT_5	Hardware counter for microchannel plate anode 5.
1709	4	MSB Unsigned Integer	E_EVENT_COUNT	Hardware rate counter for electron events.

1713	4	MSB Unsigned	ION_EVENT_COUNT	Hardware rate counter for ion events.
1717	4	Integer MSB Unsigned	START_COUNT	Hardware rate counter for microchannel
		Integer		plate start counts.
1721	4	MSB Unsigned	STOP_COUNT	Hardware rate counter for microchannel
		Integer		plate stop counts.
1725	4	MSB Unsigned	VALID_TOF_COUNT	Hardware rate counter for valid time-of-
		Integer		flight events.
1729	4	MSB Unsigned	E_PROCESSED_COUNT	Number of electron events processed.
		Integer		-
1733	4	MSB Unsigned	HI_ION_PROCESSED_COUNT	Number of high energy ion events
		Integer		processed.
1737	4	MSB Unsigned	LO_ION_PROCESSED_COUNT	Number of low energy ion events
		Integer		processed.
1741	4	MSB Unsigned	PILEUP_E_DISCARD	Number of electron events discarded due
		Integer		to pileup condition.
1745	4	MSB Unsigned	MULTIPLE_E_HITS_DISCARD	Number of electron events discarded due
		Integer		to multiple hits.
1749	4	MSB Unsigned	PILEUP_ION_DISCARD	Number of ion events discarded due to
		Integer		pileup condition.
1753	4	MSB Unsigned	MULTIPLE_HI_E_DISCARD	Number of ion events discarded due to
		Integer		multiple hits.

1. MET

Mission Elapsed Time in seconds at the end of accumulation.

2. HI_ION_HISTOGRAM_0

High energy ion histogram for ion direction 0 (SSD detector 1), which is 1 of the 6 ion directions (0 through 5) that define the entire 160 degree field of view of the sensor for high energy ions, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval equal to N1 seconds, where N1 is a multiple of 10 seconds (commonly 300 sec) and set via command. Histogram contains the 22 bins shown in Table 4. In diagnostic mode the first 8 item are ion energy spectral bins, as shown in Table 5, and the rest are zeros.

3. HI_ION_HISTOGRAM_1

High energy ion histogram for ion direction 1 (SSD detector 3), which is 1 of the 6 ion directions (0 through 5) that define the entire 160 degree field of view of the sensor for high energy ions, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval equal to N1 seconds, where N1 is a multiple of 10 seconds (commonly 300 sec) and set via command. Histogram contains the 22 bins shown in Table 4. In diagnostic mode the first 8 item are ion energy spectral bins, as shown in Table 5, and the rest are zeros.

4. HI_ION_HISTOGRAM_2

High energy ion histogram for ion direction 2 (SSD detector 5), which is 1 of the 6 ion directions (0 through 5) that define the entire 160 degree field of view of the sensor for high energy ions, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval equal to N1 seconds, where N1 is a multiple of 10 seconds (commonly 300 sec) and set via command. Histogram contains the 22 bins shown in Table 4. In diagnostic mode the first 8 item are ion energy spectral bins, as shown in Table 5, and the rest are zeros.

5. HI_ION_HISTOGRAM_3

High energy ion histogram for ion direction 3 (SSD detector 7), which is 1 of the 6 ion directions (0 through 5) that define the entire 160 degree field of view of the sensor for high energy ions, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval equal to N1 seconds, where N1 is a multiple of 10 seconds (commonly 300 sec) and set

via command. Histogram contains the 22 bins shown in Table 4.2.4. In diagnostic mode the first 8 item are ion energy spectral bins, as shown in Table 4.2.5, and the rest are zeros.

6. HI_ION_HISTOGRAM_4

High energy ion histogram for ion direction 4 (SSD detector 9), which is 1 of the 6 ion directions (0 through 5) that define the entire 160 degree field of view of the sensor for high energy ions, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval equal to N1 seconds, where N1 is a multiple of 10 seconds (commonly 300 sec) and set via command. Histogram contains the 22 bins shown in Table 4. In diagnostic mode the first 8 item are ion energy spectral bins, as shown in Table 5, and the rest are zeros.

7. HI_ION_HISTOGRAM_5

High energy ion histogram for ion direction 5 (SSD detector 11), which is 1 of the 6 ion directions (0 through 5) that define the entire 160 degree field of view of the sensor for high energy ions, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval equal to N1 seconds, where N1 is a multiple of 10 seconds (commonly 300 sec) and set via command. Histogram contains the 22 bins shown in Table 4. In diagnostic mode the first 8 item are ion energy spectral bins, as shown in Table 5, and the rest are zeros.

8. COARSE_E_HISTOGRAM_0

Electron histogram for electron direction 0 (SSD detector 0), which is 1 of the 6 electron directions (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval of N1 seconds, where N1 is a multiple of 10 seconds (commonly 300 sec) and set via command. Histogram contains the 8 bins shown in Table 2.

9. COARSE_E_HISTOGRAM_1

Electron histogram for electron direction 1 (SSD detector 2), which is 1 of the 6 electron directions (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval of N1 seconds, where N1 is a multiple of 10 seconds (commonly 300 sec) and set via command. Histogram contains the 8 bins shown in Table 2.

10. COARSE_E_HISTOGRAM_2

Electron histogram for electron direction 2 (SSD detector 4), which is 1 of the 6 electron directions (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval of N1 seconds, where N1 is a multiple of 10 seconds (commonly 300 sec) and set via command. Histogram contains the 8 bins shown in Table 2.

11. COARSE_E_HISTOGRAM_3

Electron histogram for electron direction 3 (SSD detector 6), which is 1 of the 6 electron directions (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval of N1 seconds, where N1 is a multiple of 10 seconds (commonly 300 sec) and set via command. Histogram contains the 8 bins shown in Table 2.

12. COARSE_E_HISTOGRAM_4

Electron histogram for electron direction 4 (SSD detector 8), which is 1 of the 6 electron directions (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval of N1 seconds, where N1 is a multiple of 10 seconds (commonly 300 sec) and set via command. Histogram contains the 8 bins shown in Table 2.

13. COARSE_E_HISTOGRAM_5

Electron histogram for electron direction 5 (SSD detector 10), which is 1 of the 6 electron directions (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval of N1 seconds, where N1 is a multiple of 10 seconds (commonly 300 sec) and set via command. Histogram contains the 8 bins shown in Table 2.

14. FINE_E_0

A series of "2 super bin counts" for electron direction 0 (SSD detector 0), which is 1 of the 6 electron directions (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). Each super bin is the accumulation of a subset of bin counts in one N1/10 second subinterval. Super bin 0 is the sum of the energy bins 0-3 shown in Table 4.2.2. Super bin 1 is the sum of bins 4-7 shown in Table 2. Each super bin pair is measured once per subinterval for 10 subintervals, making a total of 20 items.

15. FINE_E_1

A series of "2 super bin counts" for electron direction 1 (SSD detector 2), which is 1 of the 6 electron directions (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). Each super bin is the accumulation of a subset of bin counts in one N1/10 second subinterval. Super bin 0 is the sum of the energy bins 0-3 shown in Table 4.2.2. Super bin 1 is the sum of bins 4-7 shown in Table 2. Each super bin pair is measured once per subinterval for 10 subintervals, making a total of 20 items.

16. FINE_E_2

A series of "2 super bin counts" for electron direction 2 (SSD detector 4), which is 1 of the 6 electron directions (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). Each super bin is the accumulation of a subset of bin counts in one N1/10 second subinterval. Super bin 0 is the sum of the energy bins 0-3 shown in Table 4.2.2. Super bin 1 is the sum of bins 4-7 shown in Table 2. Each super bin pair is measured once per subinterval for 10 subintervals, making a total of 20 items.

17. FINE_E_3

A series of "2 super bin counts" for electron direction 3 (SSD detector 6), which is 1 of the 6 electron directions (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). Each super bin is the accumulation of a subset of bin counts in one N1/10 second subinterval. Super bin 0 is the sum of the energy bins 0-3 shown in Table 4.2.2. Super bin 1 is the sum of bins 4-7 shown in Table 2. Each super bin pair is measured once per subinterval for 10 subintervals, making a total of 20 items.

18. FINE_E_4

A series of "2 super bin counts" for electron direction 4 (SSD detector 8), which is 1 of the 6 electron directions (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). Each super bin is the accumulation of a subset of bin counts in one N1/10 second subinterval. Super bin 0 is the sum of the energy bins 0-3 shown in Table 4.2.2. Super bin 1 is the sum of bins 4-7 shown in Table 2. Each super bin pair is measured once per subinterval for 10 subintervals, making a total of 20 items.

19. FINE_E_5

A series of "2 super bin counts" for electron direction 5 (SSD detector 10), which is 1 of the 6 electron directions (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). Each super bin is the accumulation of a subset of bin counts in one N1/10 second subinterval. Super bin 0 is the sum of the energy bins 0-3 shown in Table 4.2.2. Super bin 1 is the sum of bins 4-7 shown in Table 2. Each super bin pair is measured once per subinterval for 10 subintervals, making a total of 20 items.

20. LOW_ION_HISTOGRAM_0

Low energy ion histogram for ion microchannel plate (MCP) anode 0, which is 1 of the 6 ion anodes (numbered 0 through 5) that read charge coming from the MCP sensor and that define the entire 160 degree

field of view of the sensor for low energy ions, and each representing about 27 degrees out of the entire field of view (Recall that the Low Energy Ion directionality numbering is switched from that used for high energy ions; Section 5.2). This channel is accumulated over a time interval equal to N1 seconds (commonly 300 sec), where N1 is a multiple of 10 seconds and set via command. Histogram contains the 16 bins shown in Table 3. In diagnostic mode these items read zero.

21. LOW_ION_HISTOGRAM_1

Low energy ion histogram for ion microchannel plate (MCP) anode 1, which is 1 of the 6 ion anodes (numbered 0 through 5) that read charge coming from the MCP sensor and that define the entire 160 degree field of view of the sensor for low energy ions, and each representing about 27 degrees out of the entire field of view (Recall that the Low Energy Ion directionality numbering is switched from that used for high energy ions; Section 5.2). This channel is accumulated over a time interval equal to N1 seconds (commonly 300 sec), where N1 is a multiple of 10 seconds and set via command. Histogram contains the 16 bins shown in Table 3. In diagnostic mode these items read zero.

22. LOW_ION_HISTOGRAM_2

Low energy ion histogram for ion microchannel plate (MCP) anode 2, which is 1 of the 6 ion anodes (numbered 0 through 5) that read charge coming from the MCP sensor and that define the entire 160 degree field of view of the sensor for low energy ions, and each representing about 27 degrees out of the entire field of view (Recall that the Low Energy Ion directionality numbering is switched from that used for high energy ions; Section 5.2). This channel is accumulated over a time interval equal to N1 seconds (commonly 300 sec), where N1 is a multiple of 10 seconds and set via command. Histogram contains the 16 bins shown in Table 3. In diagnostic mode these items read zero.

23. LOW_ION_HISTOGRAM_3

Low energy ion histogram for ion microchannel plate (MCP) anode 3, which is 1 of the 6 ion anodes (numbered 0 through 5) that read charge coming from the MCP sensor and that define the entire 160 degree field of view of the sensor for low energy ions, and each representing about 27 degrees out of the entire field of view (Recall that the Low Energy Ion directionality numbering is switched from that used for high energy ions; Section 5.2). This channel is accumulated over a time interval equal to N1 seconds (commonly 300 sec), where N1 is a multiple of 10 seconds and set via command. Histogram contains the 16 bins shown in Table 3. In diagnostic mode these items read zero.

24. LOW_ION_HISTOGRAM_4

Low energy ion histogram for ion microchannel plate (MCP) anode 4, which is 1 of the 6 ion anodes (numbered 0 through 5) that read charge coming from the MCP sensor and that define the entire 160 degree field of view of the sensor for low energy ions, and each representing about 27 degrees out of the entire field of view (Recall that the Low Energy Ion directionality numbering is switched from that used for high energy ions; Section 5.2). This channel is accumulated over a time interval equal to N1 seconds (commonly 300 sec), where N1 is a multiple of 10 seconds and set via command. Histogram contains the 16 bins shown in Table 3. In diagnostic mode these items read zero.

25. LOW_ION_HISTOGRAM_5

Low energy ion histogram for ion microchannel plate (MCP) anode 5, which is 1 of the 6 ion anodes (numbered 0 through 5) that read charge coming from the MCP sensor and that define the entire 160 degree field of view of the sensor for low energy ions, and each representing about 27 degrees out of the entire field of view (Recall that the Low Energy Ion directionality numbering is switched from that used for high energy ions; Section 5.2). This channel is accumulated over a time interval equal to N1 seconds (commonly 300 sec), where N1 is a multiple of 10 seconds and set via command. Histogram contains the 16 bins shown in Table 3. In diagnostic mode these items read zero.

26. FAST_ENERGY_COUNT_0

Fast energy hardware counter from Solid State Detector 0 (electrons), one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are electrons and all odd channels are ions. This channel is a count of pulses used to trigger the baseline measurement of the energy signal. Accumulation period is N1.

27. FAST_ENERGY_COUNT_1

Fast energy hardware counter from Solid State Detector 1 (ions), one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are electrons and all odd channels are ions. This channel is a count of pulses used to trigger the baseline measurement of the energy signal. Accumulation period is N1.

28. FAST_ENERGY_COUNT_2

Fast energy hardware counter from Solid State Detector 2 (electrons), one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are electrons and all odd channels are ions. This channel is a count of pulses used to trigger the baseline measurement of the energy signal. Accumulation period is N1.

29. FAST_ENERGY_COUNT_3

Fast energy hardware counter from Solid State Detector 3 (ions), one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are electrons and all odd channels are ions. This channel is a count of pulses used to trigger the baseline measurement of the energy signal. Accumulation period is N1.

30. FAST_ENERGY_COUNT_4

Fast energy hardware counter from Solid State Detector 4 (electrons), one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are electrons and all odd channels are ions. This channel is a count of pulses used to trigger the baseline measurement of the energy signal. Accumulation period is N1.

31. FAST_ENERGY_COUNT_5

Fast energy hardware counter from Solid State Detector 5 (ions), one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are electrons and all odd channels are ions. This channel is a count of pulses used to trigger the baseline measurement of the energy signal. Accumulation period is N1.

32. FAST_ENERGY_COUNT_6

Fast energy hardware counter from Solid State Detector 6 (electrons), one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are electrons and all odd channels are ions. This channel is a count of pulses used to trigger the baseline measurement of the energy signal. Accumulation period is N1.

33. FAST_ENERGY_COUNT_7

Fast energy hardware counter from Solid State Detector 7 (ions), one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are electrons and all odd channels are ions. This channel is a count of pulses used to trigger the baseline measurement of the energy signal. Accumulation period is N1.

34. FAST_ENERGY_COUNT_8

Fast energy hardware counter from Solid State Detector 8 (electrons), one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are electrons and all odd channels are ions. This channel is a count of pulses used to trigger the baseline measurement of the energy signal. Accumulation period is N1.

35. FAST_ENERGY_COUNT_9

Fast energy hardware counter from Solid State Detector 9 (ions), one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are electrons and all odd channels are ions. This channel is a count of pulses used to trigger the baseline measurement of the energy signal. Accumulation period is N1.

36. FAST_ENERGY_COUNT_10

Fast energy hardware counter from Solid State Detector 10 (electrons), one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are

electrons and all odd channels are ions. This channel is a count of pulses used to trigger the baseline measurement of the energy signal. Accumulation period is N1.

37. FAST_ENERGY_COUNT_11

Fast energy hardware counter from Solid State Detector 11 (ions), one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are electrons and all odd channels are ions. This channel is a count of pulses used to trigger the baseline measurement of the energy signal. Accumulation period is N1.

38. SHAPED_ENERGY_COUNT_0

Shaped energy hardware counter from Solid State Detector 0 (electrons), one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are electrons and all odd channels are ions. This channel is a count of pulses whose amplitude is used to determine the energy of the particle that generated the pulse. Accumulation period is N1.

39. SHAPED_ENERGY_COUNT_1

Shaped energy hardware counter from Solid State Detector 1 (ions), one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are electrons and all odd channels are ions. This channel is a count of pulses whose amplitude is used to determine the energy of the particle that generated the pulse. Accumulation period is N1.

40. SHAPED_ENERGY_COUNT_2

Shaped energy hardware counter from Solid State Detector 2 (electrons), one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are electrons and all odd channels are ions. This channel is a count of pulses whose amplitude is used to determine the energy of the particle that generated the pulse. Accumulation period is N1.

41. SHAPED_ENERGY_COUNT_3

Shaped energy hardware counter from Solid State Detector 3 (ions), one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are electrons and all odd channels are ions. This channel is a count of pulses whose amplitude is used to determine the energy of the particle that generated the pulse. Accumulation period is N1.

42. SHAPED_ENERGY_COUNT_4

Shaped energy hardware counter from Solid State Detector 4 (electrons) one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are electrons and all odd channels are ions. This channel is a count of pulses whose amplitude is used to determine the energy of the particle that generated the pulse. Accumulation period is N1.

43. SHAPED_ENERGY_COUNT_5

Shaped energy hardware counter from Solid State Detector 5 (ions), one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are electrons and all odd channels are ions. This channel is a count of pulses whose amplitude is used to determine the energy of the particle that generated the pulse. Accumulation period is N1.

44. SHAPED_ENERGY_COUNT_6

Shaped energy hardware counter from Solid State Detector 6 (electrons), one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are electrons and all odd channels are ions. This channel is a count of pulses whose amplitude is used to determine the energy of the particle that generated the pulse. Accumulation period is N1.

45. SHAPED_ENERGY_COUNT_7

Shaped energy hardware counter from Solid State Detector 7 (ions), one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are electrons and all odd channels are ions. This channel is a count of pulses whose amplitude is used to determine the energy of the particle that generated the pulse. Accumulation period is N1.

46. SHAPED_ENERGY_COUNT_8

Shaped energy hardware counter from Solid State Detector 8 (electrons), one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are electrons and all odd channels are ions. This channel is a count of pulses whose amplitude is used to determine the energy of the particle that generated the pulse. Accumulation period is N1.

47. SHAPED_ENERGY_COUNT_9

Shaped energy hardware counter from Solid State Detector 9 (ions), one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are electrons and all odd channels are ions. This channel is a count of pulses whose amplitude is used to determine the energy of the particle that generated the pulse. Accumulation period is N1.

48. SHAPED_ENERGY_COUNT_10

Shaped energy hardware counter from Solid State Detector 10 (electrons), one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are electrons and all odd channels are ions. This channel is a count of pulses whose amplitude is used to determine the energy of the particle that generated the pulse. Accumulation period is N1.

49. SHAPED_ENERGY_COUNT_11

Shaped energy hardware counter from Solid State Detector 11 (ions), one of 12 SSD's (numbered 0-11) that define the 160 degree sensor field of view for both electrons and ions. All even-numbered SSDs are electrons and all odd channels are ions. This channel is a count of pulses whose amplitude is used to determine the energy of the particle that generated the pulse. Accumulation period is N1.

50. ANODE_COUNT_0

Hardware counter for microchannel plate anode 0 (anodes measure ions only), one of 6 anodes (numbered 0-5) that define the 160-degree sensor field of view for low energy ions. This channel is a count of pulses with amplitudes greater than a discrimination setting. Accumulation period is N1.

51. ANODE_COUNT_1

Hardware counter for microchannel plate anode 1 (anodes measure ions only), one of 6 anodes (numbered 0-5) that define the 160-degree sensor field of view for low energy ions. This channel is a count of pulses with amplitudes greater than a discrimination setting. Accumulation period is N1.

52. ANODE_COUNT_2

Hardware counter for microchannel plate anode 2 (anodes measure ions only), one of 6 anodes (numbered 0-5) that define the 160-degree sensor field of view for low energy ions. This channel is a count of pulses with amplitudes greater than a discrimination setting. Accumulation period is N1.

53. ANODE_COUNT_3

Hardware counter for microchannel plate anode 3 (anodes measure ions only), one of 6 anodes (numbered 0-5) that define the 160-degree sensor field of view for low energy ions. This channel is a count of pulses with amplitudes greater than a discrimination setting. Accumulation period is N1.

54. ANODE_COUNT_4

Hardware counter for microchannel plate anode 4 (anodes measure ions only), one of 6 anodes (numbered 0-5) that define the 160-degree sensor field of view for low energy ions. This channel is a count of pulses with amplitudes greater than a discrimination setting. Accumulation period is N1.

55. ANODE_COUNT_5

Hardware counter for microchannel plate anode 5 (anodes measure ions only), one of 6 anodes (numbered 0-5) that define the 160-degree sensor field of view for low energy ions. This channel is a count of pulses with amplitudes greater than a discrimination setting. Accumulation period is N1.

56. E_EVENT_COUNT

Hardware rate counter for all classified Electron events registered in the fast processing electronics upstream from the Event Processing Computer. Because the Event Processing Computer can process at most about 5000 events, this counter allows the user to renormalize the processed output rates to retrieve true intensities. Accumulation period is N1.

57. ION_EVENT_COUNT

Hardware rate counter for all classified ion events registered in the fast processing electronics upstream from the Event Processing Computer. Because the Event Processing Computer can process at most about 5000 events, this counter allows the user to renormalize the processed output rates to retrieve true intensities. Accumulation period is N1.

58. START_COUNT

Hardware rate counter for all Microchannel Plate Start counts (a sum of counts coming from all 6 MCP anodes) registered in the fast electronics upstream of the Event Processing Computer. This counter helps diagnose sensor operation. Unlike other hardware counters that are 16 bit deep, the Start on board counter is 24 bit deep. However, the data is telemetered in log-compressed form. Accumulation period is N1.

59. STOP_COUNT

Hardware rate counter for all Microchannel Plate Stop counts (there is only one stop anode) registered in the fast electronics upstream of the Event Processing Computer. This counter helps diagnose sensor operation. Unlike other hardware counters that are 16 bit deep, the Start on board counter is 24 bit deep. However, the data is telemetered in log-compressed form. Accumulation period is N1.

60. VALID_TOF_COUNT

Hardware rate counter for valid time-of-flight (TOF) events (a combined MCP start pulse and stop pulse that meets certain timing restrictions) registered in the fast electronics upstream of the Event Processing Computer. Unlike other hardware counters that are 16 bit deep, the Start on board counter is 24 bit deep. However, the data is telemetered in log-compressed form. Accumulation period is N1.

61. E_PROCESSED_COUNT

Number of electron events processed by the Event Processing Computer during the accumulation interval. Accumulation period is N1.

62. HI_ION_PROCESSED_COUNT

Number of high energy ion events processed by the Event Processing Computer during the accumulation interval. Accumulation period is N1.

63. LO_ION_PROCESSED_COUNT

Number of low energy ion events processed by the Event Processing Computer during the accumulation interval. Accumulation period is N1.

64. PILEUP_E_DISCARD

Number of electron events discarded by the Event Processing Computer due to pileup condition. Accumulation period is N1.

65. MULTIPLE_E_HITS_DISCARD

Number of electron events discarded by the Event Processing Computer due to multiple electron hits. Accumulation period is N1.

66. PILEUP_ION_DISCARD

Number of high energy ion events discarded by the Event Processing Computer due to pileup condition. Accumulation period is N1.

67. MULTIPLE_HI_E_DISCARD

Number of high energy ion events discarded by the Event Processing Computer due to multiple ion hits. Accumulation period is N1.

8.2 EPSHI_HK.FMT Table Fields

The following are the fields as defined by the EPSHI_HK.FMT structure file. This file defines the ASCII table containing the EPS Housekeeping data (taken from EPS High Priority Science Packet). Archive volume is optimized by defining the table structure once and providing a reference to it in the PDS label file. The fields are numbered according to their column order in the table. Data_Type refers to the PDS standards data type for a particular column in the table.

The FSW6 upload was done on 8/18/2008 and implemented on 8/19/2008. The software update retired the EPS High Priority Spectra packet which also contained the high priority housekeeping data. Thus there are no EPS Housekeeping EDRs on or after 8/19/2008.

Start	t Length Data Type Column Name Summary (see full text for column					
Byte	(bytes)	2 1, p.		description)		
1	12	ASCII_INTEGER	MET	Mission Elapsed Time in seconds.		
15	3	ASCII_INTEGER	HVPS_SET	EPS high voltage level setting.		
20	3	ASCII_INTEGER	BIAS SET	EPS detector bias level setting.		
25	3	ASCII_INTEGER	TOF_ANODE_0_SET	Time of flight anode 0 discriminator		
		_		setting.		
30	3	ASCII_INTEGER	TOF_ANODE_1_SET	Time of flight anode 1 discriminator		
				setting.		
35	3	ASCII_INTEGER	TOF_ANODE_2_SET	Time of flight anode 2 discriminator		
				setting.		
40	3	ASCII_INTEGER	TOF_ANODE_3_SET	Time of flight anode 3 discriminator		
				setting.		
45	3	ASCII_INTEGER	TOF_ANODE_4_SET	Time of flight anode 4 discriminator		
				setting.		
50	3	ASCII_INTEGER	TOF_ANODE_5_SET	Time of flight anode 5 discriminator		
				setting.		
55	3	ASCII_INTEGER	TOF_START_CFD	Time of flight start CFD setting.		
60	3	ASCII_INTEGER	TOF_STOP_CDF	Time of flight start CFD setting.		
65	3	ASCII_INTEGER	HEAVY_ION_0_SET	Heavy Ion 0 discriminator setting		
70	3	ASCII_INTEGER	HEAVY_ION_1_SET	Heavy Ion 1 discriminator setting.		
75	5	ASCII_INTEGER	ION_FAST_1_3_5	Ion fast channels 1,3,5 discriminator		
				setting.		
82	5	ASCII_INTEGER	ION_SHAPED_1_3_5	Ion shaped channels 1,3,5 setting.		
89	5	ASCII_INTEGER	ION_FAST_7_9_11	Ion fast channels 7,9,11 setting.		
96	5	ASCII_INTEGER	ION_SHAPED_7_9_11	Ion shaped channels 7,9,11 setting.		
103	5	ASCII_INTEGER	E_FAST_0_2_4	Electron fast channels 0,2,4 setting.		
110	5	ASCII_INTEGER	E_SHAPED_0_2_4	Electron shaped channels 0,2,4 setting.		
117	5	ASCII_INTEGER	E_FAST_6_8_10	Electron fast channels 6,8,10 setting.		
124	5	ASCII_INTEGER	E_SHAPED_6_8_10	Electron shaped channels 6,8,10 setting.		
131	5	ASCII_INTEGER	CMD_WORD_A	Integer value of 15-bit command word A.		
138	5	ASCII_INTEGER	CMD_WORD_B	Integer value of 15-bit command word B.		
145	5	ASCII_INTEGER	EVENT_PARAM_A	Integer value of 15-bit event parameter		
				А.		
152	5	ASCII_INTEGER	EVENT_PARAM_B	Integer value of 15-bit event parameter		
				В.		
159	5	ASCII_INTEGER	EVENT_PARAM_C	Integer value of 15-bit event parameter		
				C.		
166	5	ASCII_INTEGER	HVPS_CLOCK_ADJUST	HVPS clock adjust value.		

Table 14 EPSHI_HK.FMT fields

173	5	ASCII_INTEGER	BIAS_CLOCK_ADJUST	Bias clock adjust value.
180	5	ASCII_INTEGER	LVPS_CONTROL_WORD	Echo of the control bit for LVPS.
187	5	ASCII_INTEGER	INVALID_CH_ID_COUNT	Invalid channel ID count.
194	5	ASCII_INTEGER	EPS_FIFO_RESET_COUNT	EPS-fifo-reset count.
201	5	ASCII_INTEGER	I2C_BUS_ERR_COUNT	I2C Bus error count.
208	5	ASCII_INTEGER	BUS_READ_VALUE	Value of most recent bus command.
215	5	ASCII_INTEGER	SPARE	Spare column, unused.

1. MET

Mission Elapsed Time in seconds at the end of the accumulation.

2. HVPS_SET

HVPS setting. EPS high voltage level (0-255).

3. BIAS_SET

Bias setting. EPS detector bias level (0-255).

4. TOF_ANODE_0_SET

Time of flight start anode 0 discriminator setting (0-255).

5. TOF_ANODE_1_SET

Time of flight start anode 1 discriminator setting (0-255).

6. TOF_ANODE_2_SET

Time of flight start anode 2 discriminator setting (0-255).

7. TOF_ANODE_3_SET

Time of flight start anode 3 discriminator setting (0-255).

8. TOF_ANODE_4_SET

Time of flight start anode 4 discriminator setting (0-255).

9. TOF_ANODE_5_SET

Time of flight start anode 5 discriminator setting (0-255).

10. TOF_START_CFD

Time of flight combined Start Constant Fraction Discriminator setting (0-255).

11. TOF_STOP_CFD

Time of flight combined Stop Constant Fraction Discriminator setting (0-255).

12. HEAVY_ION_0_SET

Heavy ion 0 discriminator setting (0-255).

13. HEAVY_ION_1_SET

Heavy ion 1 discriminator setting (0-255).

14. ION_FAST_1_3_5 Ion Fast channels, 1,3,5 Discriminator Setting

15. ION_SHAPED_1_3_5 Ion shaped channels 1,3,5 Discriminator Setting

16. ION_FAST_7_9_11 Ion fast channels 7,9,11 Discriminator Setting

17. ION_SHAPED_7_9_11

Ion shaped channels 7,9,11 Discriminator Setting

18. E_FAST_0_2_4 Electron fast channels 0,2,4 Discriminator Setting

19. E_SHAPED_0_2_4 Electron shaped channels 0,2,4 Discriminator Setting

20. E_FAST_6_8_10 Electron fast channels 6,8,10 Discriminator Setting

21. E_SHAPED_6_8_10 Electron shaped channels 6,8,10 Discriminator Setting

22. CMD_WORD_A The integer value of the 15-bit Command word A. Description of command word A shown below:

bit	Name	Description	state=1 state=0		requires nTOF Master Reset = 0 while
	Command	Word A	Defau	it state	changing state
0	CMD-0 Ion Power Switch	Controls whether the large or small ion pixel detector preamps are powered	small pixels	large pixels	
1	CMD-1 Electron Power Switch	Controls whether the large or small electron pixel detector preamps are powered	small pixels	large pixels	
2	CMD-2 nReset Ion Latchup	If any of the 6 ion ADC's latchup, they will be powered down automatically. This signal then	inactive	active	
3	CMD-3 nReset Electron Latchup	If any of the 6 electron ADC's latchup, they will be powered down automatically. This	inactive	active	
4	CMD-4 nTOF Master Reset	Master reset for TOP chip	inactive	active	
5	CMD-5 Half Period		active	inactive	YES
6	CMD-6 Tap Select 1		active	inactive	YES
7	CMD-7 Tap Select 2		active	inactive	YES
8	CMD-8 Exclusion Window		active	inactive	YES
9	CMD-9 Disable A0	Design Change 6-13-02	active	inactive	
10	CMD-10 Disable A1	Design Change 6-13-02	active	inactive	
11	CMD-11 FIPS +/-5V Power Swt	enables FIPS +/-5V power	active	inactive	
12	CMD-12 FIPS +/-15V Power Swt	enables FIPS +/-15V power	active	inactive	
13	CMD-13 EPS Event FIFO Reset	clears EPS Event FIFO-A	active	inactive	
14	CMD-14 FIPS Reset	reset entire FIPS sensor electronics. Minimum duration should always be greater than 1 second	active	inactive	
15	CMD-15 FIPS Event FIFO Reset	clears FIPS Event FIFO-B	active	inactive	

23. CMD_WORD_B The integer value of the 15-bit Command word B. Description of Command Word B shown below:

bit	Name	Description	state=1 state=0		requires nTOF Master Reset = 0
	Command	Default state		while changing state	
0	CMD-16 TOF Clock Select	Selects TOF clock	6 Mhz	3 MHz	YES
1	CMD-17 Enable HV Monitor	enables HV monitioring circuits	enabled	disabled	
2	CMD-18 Enable HV telemetry	enables HV telemetry functions	enabled	disabled	
3	CMD-19 Enable HV / BIAS Supplies	enables HV and BIAS power supply clocks	enabled	disabled	
4	CMD-20 Disable A2	Design Change 6-13-02	active	inactive	
5	CMD-21 Disable A3	Design Change 6-13-02	active	inactive	
6	CMD-22 Disable A4	Design Change 6-13-02	active	inactive	
7	CMD-23 Disable A5	Design Change 6-13-02	active	inactive	
8	HV Limit bit-0		'4"	"0"	
9	HV Limit bit-1		'4"	"0"	
10	HV Limit bit-2	8-bit High Voltage Limit	'4"	"0"	
11	HV Limit bit-3		'4"	"0"	
12	HV Limit bit-4		'4"	"0"	
13	HV Limit bit-5		'4''	"0"	
14	HV Limit bit-6		"1"	"0"	
15	HV Limit bit-7		'4"	"0"	

24. EVENT_PARAM_A

The integer value of the 15-bit Event parameter A mirror. This parameter contains individual bits that enable/disable energy and ion channels for event processing. Description shown below:

bit	Name	Description	state=1	state=0
	EPS Event Pa	Default state		
0	Enable Channel-0	enables FAST pulses for channel 0	enabled	disabled
1	Enable Channel-1	enables FAST pulses for channel 1	enabled	disabled
2	Enable Channel-2	enables FAST pulses for channel 2	enabled	disabled
3	Enable Channel-3	enables FAST pulses for channel 3	enabled	disabled
4	Enable Channel-4	enables FAST pulses for channel 4	enabled	disabled
5	Enable Channel-5	enables FAST pulses for channel 5	enabled	disabled
6	Enable Channel-6	enables FAST pulses for channel 6	enabled	disabled
7	Enable Channel-7	enables FAST pulses for channel 7	enabled	disabled
8	Enable Channel-8	enables FAST pulses for channel 8	enabled	disabled
9	Enable Channel-9	enables FAST pulses for channel 9	enabled	disabled
10	Enable Channel-10	enables FAST pulses for channel 10	enabled	disabled
11	Enable Channel-11	enables FAST pulses for channel 11	enabled	disabled
12	unused			
13	FPGA-2 Reset	reset all of FPGA-2 except commend receiver	enabled	disabled
14	Enable Min 1400ns Recycles	forces 1400ns min recycles	enabled	disabled
15	Flight Mode	enables normal Rate Counter port on FPGA-2	Flight	Debug

25. EVENT_PARAM_B

The integer value of the 15-bit Event parameter B mirror. This parameter contains two 3-bit code fields that programmably selects the delay taps for energy Fast signals. Description shown below:

bit	Name	Description	state=1	state=0
	EPS Event Pa	Default state		
0	Delay Tap-1 Code bit-0	Coincidence Window starting delay tap (0-7)	"1"	0
1	Delay Tap-1 Code bit-1		"1"	0
2	Delay Tap-1 Code bit-2		'4''	0
3	Delay Tap-2 Code bit-0	y Tap-2 Code bit-0 Coincidence Window end delay tap offset		0
4	Delay Tap-2 Code bit-1 from starting tap where:		"1"	0
5	Delay Tap-2 Code bit-2 [Tap1 + Tap2] < 10		"1"	0
6	lon Triples Only	only lon Triple Coincidence events are passed	enabled	disabled
7	Lockout Enable	Enables 12us lockout circuits	enabled	disabled
8	Diagnostic Mode	Enables Diagnostic mode	enabled	disabled
9	Enable EPS Events	Allows EPS Events	enabled	disabled
10	Enable FIPS Events Allows FIPS Events		enabled	disabled
11	Enable Test Port Allows Event Stimulus for EPS Events		enabled	disabled
12	Enable Multiple START Detection	Design Change 8-31-02 and 12-26-02	enabled	disabled
13	Reset EPS FIFO Overflow Design Change 9-26-02		ON	OFF
14	Reset FIPS FIFO Overflow Design Change 9-26-02		ON	OFF
15	unused			

26. EVENT_PARAM_C

The integer value of the 15-bit Event parameter C mirror. This parameter contains one 7-bit field that programmably selects the number of EPS electron events to be discarded per electron event that is placed in the Event FIFO buffer.

bit	Name	Description	state=1	state=0
	EPS Event Pa	Default state		
0	Discard Rate bit-0		"1"	0
1	Discard Rate bit-1	7-bit Discard Rate (0-127d)	"1"	"0"
2	Discard Rate bit-2	Discard Rate = 0 means no discard	····· ···	
3	Discard Rate bit-3	Discard Rate 1 to 127 means discard this	"1"	"0"
4	Discard Rate bit-4	numbers of EPS Electron Events per	"1"	"0"
5	Discard Rate bit-5	Electron event that is placed in the FIFO	"1"	"0"
6	Discard Rate bit-6		"1"	0
7	unused			
8	unused			
9	unused			
10	unused			
11	unused			
12	unused			
13	Enable Invalid Packet ID	Electron Packets only		0
14	Enable 3 Invalid Packet ID	Electron Packets only		"0"
15	Enable Wrong Packet Byte Count	High Energy Ion Packets only	"1"	"0"

27. HVPS_CLOCK_ADJUST

HVPS clock adjust value. Drive for HV supply; since supply does not have a separate "enable" control line, setting this signal to LOW is the method used to quickly disable the supply. Differential 100khz square-wave signal programmable +/-10% about 100kHz via 256 steps.

28. BIAS_CLOCK_ADJUST

Bias clock adjust value. Drive for Bias supply; since supply does not have a separate "enable" control line, setting this signal to LOW is the method used to quickly disable the supply. Differential 100khz square-wave signal programmable +/-10% about 100kHz via 256 steps.

29. LVPS_CONTROL_WORD

LVPS control word. Echo of the control bit for the LVPS +15V and -15V.

30. INVALID_CH_ID_COUNT Invalid Channel ID count. Accumulation period is N1.

31. EPS_FIFO_RESET_COUNT

EPS-fifo-reset count.

32. I2C_BUS_ERR_COUNT

I2C Bus error count. Accumulation period is N1.

33. BUS_READ_VALUE

Value provided by most recent bus read command.

34. SPARE

Spare column, unused.

8.3 EPSMED.FMT Table Fields

The following are the fields as defined by the EPSMED.FMT structure file. This file defines the binary table containing the EPS Medium Priority spectra data. Archive volume is optimized by defining the table structure once and providing a reference to it in the PDS label file. The fields are numbered according to their column order in the table. Data_Type refers to the PDS standards data type for a particular column in the table.

The FSW6 upload was done on 8/18/2008 and implemented on 8/19/2008. The software update retired the EPS Medium Priority Spectra packet. Thus there are no EPS Medium Priority EDRs on or after 8/19/2008.

Start	Length	Data Type	Column Name	Summary (see full text for column
Byte	(bytes)			description)
1	4	MSB Unsigned	MET	Mission Elapsed Time in seconds.
		Integer		-
5	4 X 12	MSB Unsigned	HI_ION_HISTOGRAM_0	12 bin high energy ion histogram for
		Integer		ion direction 0.
53	4 X 12	MSB Unsigned	HI_ION_HISTOGRAM_1	12 bin high energy ion histogram for
		Integer		ion direction 1.
101	4 X 12	MSB Unsigned	HI_ION_HISTOGRAM_2	12 bin high energy ion histogram for
		Integer		ion direction 2.
149	4 X 12	MSB Unsigned	HI_ION_HISTOGRAM_3	12 bin high energy ion histogram for
		Integer		ion direction 3.
197	4 X 12	MSB Unsigned	HI_ION_HISTOGRAM_4	12 bin high energy ion histogram for
		Integer		ion direction 4.
245	4 X 12	MSB Unsigned	HI_ION_HISTOGRAM_5	12 bin high energy ion histogram for
		Integer		ion direction 5.
293	4 X 8	MSB Unsigned	COARSE_E_HISTOGRAM_0	8 bin coarse electron histogram for
		Integer		electron direction 0.
325	4 X 8	MSB Unsigned	COARSE_E_HISTOGRAM_1	8 bin coarse electron histogram for
		Integer		electron direction 1.
357	4 X 8	MSB Unsigned	COARSE_E_HISTOGRAM_2	8 bin coarse electron histogram for
		Integer		electron direction 2.
389	4 X 8	MSB Unsigned	COARSE_E_HISTOGRAM_3	8 bin coarse electron histogram for
		Integer		electron direction 3.
421	4 X 8	MSB Unsigned	COARSE_E_HISTOGRAM_4	8 bin coarse electron histogram for
		Integer		electron direction 4.
453	4 X 8	MSB Unsigned	COARSE_E_HISTOGRAM_5	8 bin coarse electron histogram for
10.5		Integer		electron direction 5.
485	4 X 20	MSB Unsigned	FINE_E_0	20 element array of super bin counts
		Integer		for electron direction 0.
565	4 X 20	MSB Unsigned	FINE_E_1	20 element array of super bin counts
		Integer		for electron direction 1.
645	4 X 20	MSB Unsigned	FINE_E_2	20 element array of super bin counts
= 0 -	4 37 50	Integer		for electron direction 2.
725	4 X 20	MSB Unsigned	FINE_E_3	20 element array of super bin counts
		Integer		for electron direction 3.
805	4 X 20	MSB Unsigned	FINE_E_4	20 element array of super bin counts
		Integer		for electron direction 4.

Table 15 EPSMED.FMT fields

885	4 X 20	MSB Unsigned	FINE_E_5	20 element array of super bin counts
005	+ A 20	Integer		for electron direction 5.
965	4 X 8	MSB Unsigned	LOW_ION_HISTOGRAM_0	8 bin low energy ion histogram for
705	1210	Integer		ion microchannel plate anode 0.
997	4 X 8	MSB Unsigned	LOW ION HISTOGRAM 1	8 bin low energy ion histogram for
		Integer		ion microchannel plate anode 1.
1029	4 X 8	MSB Unsigned	LOW_ION_HISTOGRAM_2	8 bin low energy ion histogram for
		Integer		ion microchannel plate anode 2.
1061	4 X 8	MSB Unsigned	LOW_ION_HISTOGRAM_3	8 bin low energy ion histogram for
		Integer		ion microchannel plate anode 3.
1093	4 X 8	MSB Unsigned	LOW_ION_HISTOGRAM_4	8 bin low energy ion histogram for
		Integer		ion microchannel plate anode 4.
1125	4 X 8	MSB Unsigned	LOW_ION_HISTOGRAM_5	8 bin low energy ion histogram for
		Integer		ion microchannel plate anode 5.
1157	4	MSB Unsigned	HW_COUNT_0	One of 17 hardware counters.
		Integer		
1161	4	MSB Unsigned	HW_COUNT_1	One of 17 hardware counters.
		Integer		
1165	4	MSB Unsigned	HW_COUNT_2	One of 17 hardware counters.
		Integer		
1169	4	MSB Unsigned	HW_COUNT_3	One of 17 hardware counters.
		Integer		
1173	4	MSB Unsigned	HW_COUNT_4	One of 17 hardware counters.
		Integer		
1177	4	MSB Unsigned	HW_COUNT_5	One of 17 hardware counters.
		Integer		
1181	4	MSB Unsigned	HW_COUNT_6	One of 17 hardware counters.
		Integer		
1185	4	MSB Unsigned	HW_COUNT_7	One of 17 hardware counters.
		Integer		
1189	4	MSB Unsigned	HW_COUNT_8	One of 17 hardware counters.
		Integer		
1193	4	MSB Unsigned	HW_COUNT_9	One of 17 hardware counters.
		Integer		
1197	4	MSB Unsigned	HW_COUNT_10	One of 17 hardware counters.
		Integer		
1201	4	MSB Unsigned	HW_COUNT_11	One of 17 hardware counters.
		Integer		
1205	4	MSB Unsigned	HW_COUNT_12	One of 17 hardware counters.
		Integer		
1209	4	MSB Unsigned	HW_COUNT_13	One of 17 hardware counters.
		Integer		
1213	4	MSB Unsigned	HW_COUNT_14	One of 17 hardware counters.
		Integer		
1217	4	MSB Unsigned	HW_COUNT_15	One of 17 hardware counters.
		Integer		
1221	4	MSB Unsigned	HW_COUNT_16	One of 17 hardware counters.
		Integer		
1225	4	MSB Unsigned	E_PROCESSED_COUNT	Number of electron events
		Integer		processed.
1229	4	MSB Unsigned	HI_ION_PROCESSED_COUNT	Number of high energy ion events
		Integer		processed
1233	4	MSB Unsigned	LO_ION_PROCESSED_COUNT	Number of low energy ion events
		Integer		processed.
1237	4	MSB Unsigned	PILEUP_E_DISCARD	Number of electron events discarded
		Integer		due to pileup condition.

1241	4	MSB Unsigned	MULTIPLE_E_DISCARD	Number of electron events discarded
		Integer		due to multiple hits.
1245	4	MSB Unsigned	PILEUP_ION_DISCARD	Number of high energy ion events
		Integer		discarded due to pileup condition.
1249	4	MSB Unsigned	MULTIPLE_HI_E_DISCARD	Number of high energy ion events
		Integer		discarded due to multiple hits.

1. MET

Mission elapsed time, in seconds at the end of the accumulation.

2. HI_ION_HISTOGRAM_0

High energy ion histogram for ion direction 0 (SSD detector 1), which is 1 of the 6 ion solid state detectors (0 through 5) that define the entire 160 degree field of view of the sensor for high energy ions, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval equal to N2 seconds, where N2 is nominally 30 seconds, but can be changed via command. Histogram contains 12 of the 22 bins shown in Table 4, where the choice of bins is made via ground command. In diagnostic mode the first 8 items are ion energy spectral bins, as shown in Table 5, and the rest are zeros.

3. HI_ION_HISTOGRAM_1

High energy ion histogram for ion direction 1 (SSD detector 3), which is 1 of the 6 ion solid state detectors (0 through 5) that define the entire 160 degree field of view of the sensor for high energy ions, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval equal to N2 seconds, where N2 is nominally 30 seconds, but can be changed via command. Histogram contains 12 of the 22 bins shown in Table 4, where the choice of bins is made via ground command. In diagnostic mode the first 8 items are ion energy spectral bins, as shown in Table 5, and the rest are zeros.

4. HI_ION_HISTOGRAM_2

High energy ion histogram for ion direction 2 (SSD detector 5), which is 1 of the 6 ion solid state detectors (0 through 5) that define the entire 160 degree field of view of the sensor for high energy ions, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval equal to N2 seconds, where N2 is nominally 30 seconds, but can be changed via command. Histogram contains 12 of the 22 bins shown in Table 4, where the choice of bins is made via ground command. In diagnostic mode the first 8 items are ion energy spectral bins, as shown in Table 5, and the rest are zeros.

5. HI_ION_HISTOGRAM_3

High energy ion histogram for ion direction 3 (SSD detector 7), which is 1 of the 6 ion solid state detectors (0 through 5) that define the entire 160 degree field of view of the sensor for high energy ions, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval equal to N2 seconds, where N2 is nominally 30 seconds, but can be changed via command. Histogram contains 12 of the 22 bins shown in Table 4, where the choice of bins is made via ground command. In diagnostic mode the first 8 items are ion energy spectral bins, as shown in Table 5, and the rest are zeros.

6. HI_ION_HISTOGRAM_4

High energy ion histogram for ion direction 4 (SSD detector 9), which is 1 of the 6 ion solid state detectors (0 through 5) that define the entire 160 degree field of view of the sensor for high energy ions, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval equal to N2 seconds, where N2 is nominally 30 seconds, but can be changed via command. Histogram contains 12 of the 22 bins shown in Table 4, where the choice of bins is made via ground command. In diagnostic mode the first 8 items are ion energy spectral bins, as shown in Table 5, and the rest are zeros.

7. HI_ION_HISTOGRAM_5

High energy ion histogram for ion direction 5 (SSD detector 11), which is 1 of the 6 ion solid state detectors (0 through 5) that define the entire 160 degree field of view of the sensor for high energy ions, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval equal to N2 seconds, where N2 is nominally 30 seconds, but can be changed via command. Histogram contains 12 of the 22 bins shown in Table 4, where the choice of bins is made via ground command. In diagnostic mode the first 8 items are ion energy spectral bins, as shown in Table 5, and the rest are zeros.

8. COARSE_E_HISTOGRAM_0

Electron histogram for electron direction 0 (SSD detector 0), which is 1 of the 6 electron solid-state detectors (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval of N2 seconds, where N2 is nominally 30 s but set by ground command. Histogram contains the 8 bins shown in Table 2.

9. COARSE_E_HISTOGRAM_1

Electron histogram for electron direction 1 (SSD detector 2), which is 1 of the 6 electron solid-state detectors (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval of N2 seconds, where N2 is nominally 30 s but set by ground command. Histogram contains the 8 bins shown in Table 2.

10. COARSE_E_HISTOGRAM_2

Electron histogram for electron direction 2 (SSD detector 4), which is 1 of the 6 electron solid-state detectors (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval of N2 seconds, where N2 is nominally 30 s but set by ground command. Histogram contains the 8 bins shown in Table 2.

11. COARSE_E_HISTOGRAM_3

Electron histogram for electron direction 3 (SSD detector 6), which is 1 of the 6 electron solid-state detectors (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval of N2 seconds, where N2 is nominally 30 s but set by ground command. Histogram contains the 8 bins shown in Table 2.

12. COARSE_E_HISTOGRAM_4

Electron histogram for electron direction 4 (SSD detector 8), which is 1 of the 6 electron solid-state detectors (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval of N2 seconds, where N2 is nominally 30 s but set by ground command. Histogram contains the 8 bins shown in Table 2.

13. COARSE_E_HISTOGRAM_5

Electron histogram for electron direction 5 (SSD detector 10), which is 1 of the 6 electron solid-state detectors (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). This channel is accumulated over a time interval of N2 seconds, where N2 is nominally 30 s but set by ground command. Histogram contains the 8 bins shown in Table 2.

14. FINE_E_0

A series of "2 super bin counts" for electron direction 0 (SSD detector 0), which is 1 of the 6 electron solidstate detectors (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). Each super bin is the accumulation of a subset of bin counts in one N2/10 second subinterval. Super bin 0 is the sum of the energy bins 0-3 shown in Table 2. Super bin 1 is the sum of bins 4-7 shown in Table 2. Each super bin pair is measured once per subinterval for 10 subintervals, making a total of 20 items.

15. FINE_E_1

A series of "2 super bin counts" for electron direction 1 (SSD detector 2), which is 1 of the 6 electron solid-state detectors (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). Each super bin is the accumulation of a subset of bin counts in one N2/10 second subinterval. Super bin 0 is the sum of the energy bins 0-3 shown in Table 2. Super bin 1 is the sum of bins 4-7 shown in Table 2. Each super bin pair is measured once per subinterval for 10 subintervals, making a total of 20 items.

16. FINE_E_2

A series of "2 super bin counts" for electron direction 2 (SSD detector 4), which is 1 of the 6 electron solid-state detectors (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). Each super bin is the accumulation of a subset of bin counts in one N2/10 second subinterval. Super bin 0 is the sum of the energy bins 0-3 shown in Table 2. Super bin 1 is the sum of bins 4-7 shown in Table 2. Each super bin pair is measured once per subinterval for 10 subintervals, making a total of 20 items.

17. FINE_E_3

A series of "2 super bin counts" for electron direction 3 (SSD detector 6), which is 1 of the 6 electron solid-state detectors (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). Each super bin is the accumulation of a subset of bin counts in one N2/10 second subinterval. Super bin 0 is the sum of the energy bins 0-3 shown in Table 2. Super bin 1 is the sum of bins 4-7 shown in Table 2. Each super bin pair is measured once per subinterval for 10 subintervals, making a total of 20 items.

18. FINE_E_4

A series of "2 super bin counts" for electron direction 4 (SSD detector 8), which is 1 of the 6 electron solid-state detectors (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). Each super bin is the accumulation of a subset of bin counts in one N2/10 second subinterval. Super bin 0 is the sum of the energy bins 0-3 shown in Table 2. Super bin 1 is the sum of bins 4-7 shown in Table 2. Each super bin pair is measured once per subinterval for 10 subintervals, making a total of 20 items.

19. FINE_E_5

A series of "2 super bin counts" for electron direction 5 (SSD detector 10), which is 1 of the 6 electron solid-state detectors (numbered 0 through 5) that define the entire 160 degree field of view of the sensor, and each representing about 27 degrees out of the entire field of view (Section 5.2). Each super bin is the accumulation of a subset of bin counts in one N2/10 second subinterval. Super bin 0 is the sum of the energy bins 0-3 shown in Table 2. Super bin 1 is the sum of bins 4-7 shown in Table 2. Each super bin pair is measured once per subinterval for 10 subintervals, making a total of 20 items.

20. LOW_ION_ HISTOGRAM_0

Low energy ion histogram for ion microchannel plate (MCP) anode 0, which is 1 of the 6 ion anodes (numbered 0 through 5) that read charge coming from the MCP sensor and that define the entire 160 degree field of view of the sensor for low energy ions, and each representing about 27 degrees out of the entire field of view (Recall that the Low Energy Ion directionality numbering is switched from that used for high energy ions; Section 5.2). This channel is accumulated over a time interval equal to N2 seconds, where N2 nominally 30 seconds but set via command. Histogram contains the 8 of the 16 bins shown in Table 3, with the choice of bins set by ground command. In diagnostic mode these items read zero.

21. LOW_ION_ HISTOGRAM_1

Low energy ion histogram for ion microchannel plate (MCP) anode 1, which is 1 of the 6 ion anodes (numbered 0 through 5) that read charge coming from the MCP sensor and that define the entire 160 degree field of view of the sensor for low energy ions, and each representing about 27 degrees out of the entire

field of view (Recall that the Low Energy Ion directionality numbering is switched from that used for high energy ions; Section 5.2). This channel is accumulated over a time interval equal to N2 seconds, where N2 nominally 30 seconds but set via command. Histogram contains the 8 of the 16 bins shown in Table 3, with the choice of bins set by ground command. In diagnostic mode these items read zero.

22. LOW_ION_HISTOGRAM_2

Low energy ion histogram for ion microchannel plate (MCP) anode 2, which is 1 of the 6 ion anodes (numbered 0 through 5) that read charge coming from the MCP sensor and that define the entire 160 degree field of view of the sensor for low energy ions, and each representing about 27 degrees out of the entire field of view (Recall that the Low Energy Ion directionality numbering is switched from that used for high energy ions; Section 5.2). This channel is accumulated over a time interval equal to N2 seconds, where N2 nominally 30 seconds but set via command. Histogram contains the 8 of the 16 bins shown in Table 3, with the choice of bins set by ground command. In diagnostic mode these items read zero.

23. LOW_ION_HISTOGRAM_3

Low energy ion histogram for ion microchannel plate (MCP) anode 3, which is 1 of the 6 ion anodes (numbered 0 through 5) that read charge coming from the MCP sensor and that define the entire 160 degree field of view of the sensor for low energy ions, and each representing about 27 degrees out of the entire field of view (Recall that the Low Energy Ion directionality numbering is switched from that used for high energy ions; Section 5.2). This channel is accumulated over a time interval equal to N2 seconds, where N2 nominally 30 seconds but set via command. Histogram contains the 8 of the 16 bins shown in Table 3, with the choice of bins set by ground command. In diagnostic mode these items read zero.

24. LOW_ION_ HISTOGRAM_4

Low energy ion histogram for ion microchannel plate (MCP) anode 4, which is 1 of the 6 ion anodes (numbered 0 through 5) that read charge coming from the MCP sensor and that define the entire 160 degree field of view of the sensor for low energy ions, and each representing about 27 degrees out of the entire field of view (Recall that the Low Energy Ion directionality numbering is switched from that used for high energy ions; Section 5.2). This channel is accumulated over a time interval equal to N2 seconds, where N2 nominally 30 seconds but set via command. Histogram contains the 8 of the 16 bins shown in Table 3, with the choice of bins set by ground command. In diagnostic mode these items read zero.

25. LOW_ION_ HISTOGRAM_5

Low energy ion histogram for ion microchannel plate (MCP) anode 5, which is 1 of the 6 ion anodes (numbered 0 through 5) that read charge coming from the MCP sensor and that define the entire 160 degree field of view of the sensor for low energy ions, and each representing about 27 degrees out of the entire field of view (Recall that the Low Energy Ion directionality numbering is switched from that used for high energy ions; Section 5.2). This channel is accumulated over a time interval equal to N2 seconds, where N2 nominally 30 seconds but set via command. Histogram contains the 8 of the 16 bins shown in Table 3, with the choice of bins set by ground command. In diagnostic mode these items read zero.

26. HW_COUNT_0

One of 17 hardware counters selected by ground command out of a menu of 35 (All 35 are reported with high priority data: See EPSHIGH.FMT items 26 through 60). . Nominally this item will contain values for Shaped_0 counter (EPSHIGH.FMT item 38). Here the counters are accumulated over N2 seconds. An ERRATA file will be provided should the choice for this item be changed.

27. HW_COUNT_1

One of 17 hardware counters selected by ground command out of a menu of 35 (All 35 are reported with high priority data: See EPSHIGH.FMT items 26 through 60). . Nominally this item will contain values for Shaped_1 counter (EPSHIGH.FMT item 39). Here the counters are accumulated over N2 seconds. An ERRATA file will be provided should the choice for this item be changed.

28. HW_COUNT_2

One of 17 hardware counters selected by ground command out of a menu of 35 (All 35 are reported with high priority data: See EPSHIGH.FMT items 26 through 60). . Nominally this item will contain values for

Shaped_2 counter (EPSHIGH.FMT item 40). Here the counters are accumulated over N2 seconds. An ERRATA file will be provided should the choice for this item be changed.

29. HW_COUNT_3

One of 17 hardware counters selected by ground command out of a menu of 35 (All 35 are reported with high priority data: See EPSHIGH.FMT items 26 through 60). . Nominally this item will contain values for Shaped_3 counter (EPSHIGH.FMT item 41). Here the counters are accumulated over N2 seconds. An ERRATA file will be provided should the choice for this item be changed.

30. HW_COUNT_4

One of 17 hardware counters selected by ground command out of a menu of 35 (All 35 are reported with high priority data: See EPSHIGH.FMT items 26 through 60). . Nominally this item will contain values for Shaped_4 counter (EPSHIGH.FMT item 42). Here the counters are accumulated over N2 seconds. An ERRATA file will be provided should the choice for this item be changed.

31. HW_COUNT_5

One of 17 hardware counters selected by ground command out of a menu of 35 (All 35 are reported with high priority data: See EPSHIGH.FMT items 26 through 60). . Nominally this item will contain values for Shaped_5 counter (EPSHIGH.FMT item 44). Here the counters are accumulated over N2 seconds. An ERRATA file will be provided should the choice for this item be changed.

32. HW_COUNT_6

One of 17 hardware counters selected by ground command out of a menu of 35 (All 35 are reported with high priority data: See EPSHIGH.FMT items 26 through 60). Nominally this item will contain values for Shaped_6 counter (EPSHIGH.FMT item 45). Here the counters are accumulated over N2 seconds. An ERRATA file will be provided should the choice for this item be changed.

33. HW_COUNT_7

One of 17 hardware counters selected by ground command out of a menu of 35 (All 35 are reported with high priority data: See EPSHIGH.FMT items 26 through 60). . Nominally this item will contain values for Shaped_7 counter (EPSHIGH.FMT item 46). Here the counters are accumulated over N2 seconds. An ERRATA file will be provided should the choice for this item be changed.

34. HW_COUNT_8

One of 17 hardware counters selected by ground command out of a menu of 35 (All 35 are reported with high priority data: See EPSHIGH.FMT items 26 through 60). . Nominally this item will contain values for Shaped_8 counter (EPSHIGH.FMT item 47). Here the counters are accumulated over N2 seconds. An ERRATA file will be provided should the choice for this item be changed.

35. HW_COUNT_9

One of 17 hardware counters selected by ground command out of a menu of 35 (All 35 are reported with high priority data: See EPSHIGH.FMT items 26 through 60). . Nominally this item will contain values for Shaped_9 counter (EPSHIGH.FMT item 48). Here the counters are accumulated over N2 seconds. An ERRATA file will be provided should the choice for this item be changed.

36. HW_COUNT_10

One of 17 hardware counters selected by ground command out of a menu of 35 (All 35 are reported with high priority data: See EPSHIGH.FMT items 26 through 60). Nominally this item will contain values for Shaped_10 counter (EPSHIGH.FMT item 49). Here the counters are accumulated over N2 seconds. An ERRATA file will be provided should the choice for this item be changed.

37. HW_COUNT_11

One of 17 hardware counters selected by ground command out of a menu of 35 (All 35 are reported with high priority data: See EPSHIGH.FMT items 26 through 60). Nominally this item will contain values for Shaped_11 counter (EPSHIGH.FMT item 50). Here the counters are accumulated over N2 seconds. An ERRATA file will be provided should the choice for this item be changed.

38. HW_COUNT_12

One of 17 hardware counters selected by ground command out of a menu of 35 (All 35 are reported with high priority data: See EPSHIGH.FMT items 26 through 60). Nominally this item will contain values for E_EVT_RT counter (EPSHIGH.FMT item 56). Here the counters are accumulated over N2 seconds. An ERRATA file will be provided should the choice for this item be changed.

39. HW_COUNT_13

One of 17 hardware counters selected by ground command out of a menu of 35 (All 35 are reported with high priority data: See EPSHIGH.FMT items 26 through 60). Nominally this item will contain values for ION_EVT_RT counter (EPSHIGH.FMT item 57). Here the counters are accumulated over N2 seconds. An ERRATA file will be provided should the choice for this item be changed.

40. HW_COUNT_14

One of 17 hardware counters selected by ground command out of a menu of 35 (All 35 are reported with high priority data: See EPSHIGH.FMT items 26 through 60). Nominally this item will contain values for START_RT counter (EPSHIGH.FMT item 58). Here the counters are accumulated over N2 seconds. An ERRATA file will be provided should the choice for this item be changed.

41. HW_COUNT_15

One of 17 hardware counters selected by ground command out of a menu of 35 (All 35 are reported with high priority data: See EPSHIGH.FMT items 26 through 60). . Nominally this item will contain values for STOP_RT counter (EPSHIGH.FMT item 59). Here the counters are accumulated over N2 seconds. An ERRATA file will be provided should the choice for this item be changed.

42. HW_COUNT_16

One of 17 hardware counters selected by ground command out of a menu of 35 (All 35 are reported with high priority data: See EPSHIGH.FMT items 26 through 60). . Nominally this item will contain values for VALID_TOF_RT counter (EPSHIGH.FMT item 60). Here the counters are accumulated over N2 seconds. An ERRATA file will be provided should the choice for this item be changed.

43. E_PROCESSED_COUNT

Number of electron events processed by the Event Processing Computer during the accumulation interval. Accumulation period is N1.

44. HI_ION_PROCESSED_COUNT

Number of high energy ion events processed by the Event Processing Computer during the accumulation interval. Accumulation period is N1.

45. LO_ION_PROCESSED_COUNT

Number of low energy ion events processed by the Event Processing Computer during the accumulation interval. Accumulation period is N1.

46. PILEUP_E_DISCARD

Number of electron events discarded by the Event Processing Computer due to pileup condition. Accumulation period is N1.

47. MULTIPLE_E_DISCARD

Number of electron events discarded by the Event Processing Computer due to multiple hits. Accumulation period is N1.

48. PILEUP_ION_DISCARD

Number of high energy ion events discarded by the Event Processing Computer due to pileup conditions. Accumulation period is N1.

49. MULTIPLE_HI_E_DISCARD

Number of high energy ion events discarded by the Event Processing Computer due to multiple hits. Accumulation period is N1.

8.4 EPS_PHA.FMT Table Fields

The following are the fields as defined by the EPS_PHA.FMT structure file. This file defines the binary table containing the EPS Pulse Height Analysis (PHA) event data. The FSW6 upload resulted in changing the EPS PHA data format. It was decided to merge the new format with the previously existing format rather than create an entirely new EDR.

Prior to FSW6 the EPS PHA data could be one of four types: Electron PHA event, Low Energy Ion PHA event, High Energy Ion PHA event, Diagnostic PHA event. After FSW6 there are no separate event types.

There are some common fields for the PHA formats pre and post FSW6, however other fields may be unique. Fields added as a result of FSW6 are INT_TIME,

INT_TIME_MULTI, and ENERGY_BIN. The EPS PHA binary table will contain all the possible fields that may be populatedes and will include a "Not Applicable" value when appropriate. Archive volume is optimized by defining the table structure once and providing a reference to it in the PDS label file. The fields are numbered according to their column order in the table. Data_Type refers to the PDS standards data type for a particular column in the table.

Start Byte	Length (bytes)	Data Type	Column Name	Summary (see full text for column description)
1	4	MSB Unsigned Integer	MET	Mission Elapsed Time in seconds.
5	2	MSB Unsigned Integer	EVENT_ID	Identifies PHA event as one of 4 types.
7	2	MSB Unsigned Integer	INT_TIME	Integration time in seconds.
9	2	MSB Unsigned Integer	INT_TIME_MULTI	Integration time multiplier.
11	2	MSB Unsigned Integer	ENERGY_BIN	High resolution energy bin number computed by the flight software.
13	2	MSB Unsigned Integer	ION_E_FLAG	Identifies event as either electron or ion.
15	4	MSB Unsigned Integer	ENERGY_PEAK	PHA value corresponding to the particle energy.
19	4	MSB Unsigned Integer	ENERGY_BASELINE	Baseline against which the particle energy is measured.
23	4	MSB Unsigned Integer	TIME_OF_FLIGHT	A measure of the particle's velocity.

Table 16 EPS_PHA.FMT Fields

27	2	MSB Unsigned	MULTIPLE_HITS	Flag indicating if more than one
		Integer		detector received a hit.
29	2	MSB Unsigned	HEAVY_DISC_0	Heavy Ion level 0 discriminator
		Integer		level was triggered.
31	2	MSB Unsigned	HEAVY_DISC_1	Heavy Ion level 1 discriminator
		Integer		level was triggered.
33	2	MSB Unsigned	CHANNEL_NUM	Indicates the high energy ion or
		Integer		electron channel.
35	2	MSB Unsigned	START_SEGMENT	Indicates which start anode fired.
		Integer		

1. MET

Mission elapsed time in seconds at the end of the accumulation. Corresponds to the MET of the original science packet. Can be used for correlation with the spectra from EPS High Medium Priority Spectra EDRs.

2. EVENT_ID

PHA Event Short ID. There are 4 types: Electron, Low Energy Ion, High Energy Ion, and Diagnostic PHAs. ID =1 Low Energy Ion event, =3 Electron event, =5 High Energy Ion event, =11 Diagnostic Event. =99 (N/A) for FSW6 data.

3. INT_TIME

Integration time in seconds. =0 (NA) for data created prior to FSW6.

4. INT_TIME_MULTI

Integration time multiplier. = 0 (NA) for data created prior to FSW6.

5. ENERGY_BIN

High Resolution energy bin number computed by the flight software. =99 (NA) for data created prior to FSW6.

6. ION_E_FLAG

Identifies event as either ion or electron. =0 electron, =1 ion.

7. ENERGY_PEAK

Pulse Height Analysis (PHA) value corresponding to the particle energy. Energy Peak. =0 (NA) for Low Energy Ion PHA.

8. ENERGY_BASELINE

Pulse Height Analysis (PHA) value corresponding to the baseline against which the particle energy is measured. Energy Baseline. = 0 (NA) for Low Energy Ion PHA.

9. TIME_OF_FLIGHT

Pulse Height Analysis (PHA) value corresponding to the time it takes the particle to pass through the sensor (a measure of the particle's velocity). Time of Flight. =0 (NA) for Electron or Diagnostic PHAs or FSW6 data.

10. MULTIPLE_HITS

A flag that indicates that more than one detector received a hit. = 99 (NA) for Low Energy Ion PHA.

11. HEAVY_DISC_0

=1 indicates that the pulse height on the STOP microchannel plate (MCP) anode was large enough to fire the heavy ion level 0 discriminator level, a level that is higher than the minimal level set just above the MCP noise. =99 (NA) for Electron or Diagnostic PHAs or FSW6 data.

12. HEAVY_DISC_1

=11 indicates that the pulse height on the STOP microchannel plate (MCP) anode was large enough to fire the heavy ion level 1 discriminator level, a level that is higher than the minimal level set just above the MCP noise and higher than the "heavy ion level 0" level. =99 (NA) for Electron or Diagnostic PHAs or FSW6 data.

13. CHANNEL_NUM

Indicates the high energy ion or electron channel (0 through 5, indicating directionality within the 160 degree sensor field of view; Section 5.2). = 99 (NA) for Low Energy Ion PHA.

14. START_SEGMENT

Indicates which START anode (0 through 5, indicating directionality within the 160 degree sensor field of view; recall that the Low Energy Ion directionality numbering – anode number --is switched from that used for high energy ions; Section 5.2). Start segment. =99 (NA) for Electron PHAs and for the other types of PHAs if none of the start anodes fired, or for FSW6 data.

8.5 EPS_HIRES.FMT Table Fields

The following are the fields as defined by the EPS_HIRES.FMT structure file. This file defines the binary table containing the EPS High Resolution Spectra data. This is a new EDR created as a result of the FSW6 upload.

Start Byte	Length (bytes)	Data Type	Column Name	Summary (see full text for column description)
1	4	MSB Unsigned Integer	MET	Time tag in seconds.
5	2	MSB Unsigned Integer	INT_TIME	Integration time in seconds.
7	2	MSB Unsigned Integer	INT_TIME_MULTI	Integration time multiplier.
9	4 X 36	MSB Unsigned Integer	ION_SPECTRA_0	Hi-res ion energy spectra, sector 0.
153	4 X 36	MSB Unsigned Integer	ION_SPECTRA_1	Hi-res ion energy spectra, sector 1.
297	4 X 36	MSB Unsigned Integer	ION_SPECTRA_2	Hi-res ion energy spectra, sector 2.
441	4 X 36	MSB Unsigned Integer	ION_SPECTRA_3	Hi-res ion energy spectra, sector 3.
585	4 X 36	MSB Unsigned Integer	ION_SPECTRA_4	Hi-res ion energy spectra, sector 4.
729	4 X 36	MSB Unsigned Integer	ION_SPECTRA_5	Hi-res ion energy spectra, sector 5.
873	4 X 36	MSB Unsigned Integer	E_SPECTRA_0	Hi-res electron energy spectra, sector 0.
1017	4 X 36	MSB Unsigned Integer	E_SPECTRA_1	Hi-res electron energy spectra, sector 1.
1161	4 X 36	MSB Unsigned Integer	E_SPECTRA_2	Hi-res electron energy spectra, sector 2.
1305	4 X 36	MSB Unsigned Integer	E_SPECTRA_3	Hi-res electron energy spectra, sector 3.
1449	4 X 36	MSB Unsigned Integer	E_SPECTRA_4	Hi-res electron energy spectra, sector 4.
1593	4 X 36	MSB Unsigned Integer	E_SPECTRA_5	Hi-res electron energy spectra, sector 5.

Table 17 EPS HIRES.FMT Fields

1. MET

Time tag in seconds.

2. INT_TIME

Integration time in seconds.

3. INT_TIME_MULTI

Integration time multiplier.

4. ION_SPECTRA_0

High resolution ion energy spectra, sector 0.

5. ION_SPECTRA_1

High resolution ion energy spectra, sector 1.

6. ION_SPECTRA_2

High resolution ion energy spectra, sector 2.

7. ION_SPECTRA_3

High resolution ion energy spectra, sector 3.

8. ION_SPECTRA_4

High resolution ion energy spectra, sector 4.

9. ION_SPECTRA_5

High resolution ion energy spectra, sector 5.

10. E_SPECTRA_0

High resolution electron energy spectra, sector 0.

11. E_SPECTRA_1

High resolution electron energy spectra, sector 1.

12. E_SPECTRA_2 High resolution electron energy spectra, sector 2.

13. E_SPECTRA_3 High resolution electron energy spectra, sector 3.

14. E_SPECTRA_4

High resolution electron energy spectra, sector 4.

15. E_SPECTRA_5

High resolution electron energy spectra, sector 5.

8.6 EPS_LORES.FMT Table Fields

The following are the fields as defined by the EPS_LORES.FMT structure file. This file defines the binary table containing the EPS Low Resolution Spectra data. This is a new EDR created as a result of the FSW6 upload.

	Table 18 EI 5_LOKES: FWIT Fields			
Start	Length	Data Type	Column Name	Summary (see full text for column
Byte	(bytes)			description)
1	4	MSB Unsigned Integer	MET	Time tag in seconds.
5	2	MSB Unsigned Integer	INT_TIME	Integration time in seconds.
7	4 X 12	MSB Unsigned Integer	ION_SPECTRA_A_0	Lo-res ion energy spectra, first int,
				sector 0.
55	4 X 12	MSB Unsigned Integer	ION_SPECTRA_A_1	Low-resolution ion energy spectra,
				first integration, sector 1.
103	4 X 12	MSB Unsigned Integer	ION_SPECTRA_A_2	Low-resolution ion energy spectra,
				first integration, sector 2.
151	4 X 12	MSB Unsigned Integer	ION_SPECTRA_A_3	Low-resolution ion energy spectra,
				first integration, sector 3.

Table 18 EPS_LORES.FMT Fields

2474 X 12MSB Unsigned IntegerION_SPECTRA_A_5Low-resolution i first integration,2954 X 12MSB Unsigned IntegerE_SPECTRA_A_0Low-resolution e	
2474 X 12MSB Unsigned IntegerION_SPECTRA_A_5Low-resolution is first integration,2954 X 12MSB Unsigned IntegerE_SPECTRA_A_0Low-resolution estimation	
2954 X 12MSB Unsigned IntegerE_SPECTRA_A_0Low-resolution etails	
spectra first inte	electron energy
	gration, sector 0.
343 4 X 12 MSB Unsigned Integer E_SPECTRA_A_1 Low-resolution e	electron energy
	gration, sector 1.
391 4 X 12 MSB Unsigned Integer E_SPECTRA_A_2 Low-resolution e	
	egration, sector 2.
4394 X 12MSB Unsigned IntegerE_SPECTRA_A_3Low-resolution e	
	egration, sector 3.
487 4 X 12 MSB Unsigned Integer E_SPECTRA_A_4 Low-resolution e	
	egration, sector 4.
5354 X 12MSB Unsigned IntegerE_SPECTRA_A_5Low-resolution e	
	egration, sector 5.
583 4 MSB Unsigned Integer HW_FAST_A_0 Threshold counts	
shaping circuit, t	first int, sector 0.
587 4 MSB Unsigned Integer HW_FAST_A_1 Threshold counts	
shaping circuit, f	
591 4 MSB Unsigned Integer HW_FAST_A_2 Threshold counts	
shaping circuit, f	
595 4 MSB Unsigned Integer HW_FAST_A_3 Threshold counts	
	first int, sector 3.
599 4 MSB Unsigned Integer HW_FAST_A_4 Threshold counts	
	first int, sector 4.
607 4 MSB Unsigned Integer HW_FAST_A_6 Threshold counts	
	first int, sector 6.
611 4 MSB Unsigned Integer HW_FAST_A_7 Threshold counts	
shaping circuit, f	
615 4 MSB Unsigned Integer HW_FAST_A_8 Threshold counts	
	first int, sector 8.
619 4 MSB Unsigned Integer HW_FAST_A_9 Threshold counts	
	first int, sector 9.
623 4 MSB Unsigned Integer HW_FAST_A_10 Threshold counts	
	first int, sector 10.
627 4 MSB Unsigned Integer HW_FAST_A_11 Threshold counts	
	first int, sector 11.
	s of 3 pole Gaussian
shaping circuit, f	first int, sector 0
635 4 MSB Unsigned Integer HW_SHAPED_A_1 Threshold counts	s of 3 pole Gaussian
shaping circuit, f	first int, sector 1
639 4 MSB Unsigned Integer HW_SHAPED_A_2 Threshold counts	s of 3 pole Gaussian
shaping circuit, f	first int, sector 2
	s of 3 pole Gaussian
shaping circuit, f	
	s of 3 pole Gaussian
shaping circuit, f	
	s of 3 pole Gaussian
shaping circuit, f	
	s of 3 pole Gaussian
shaping circuit, f	
	s of 3 pole Gaussian
shaping circuit, f	tirst int, sector 7

663	4	MSB Unsigned Integer	HW_SHAPED_A_8	Threshold counts of 3 pole Gaussian
				shaping circuit, first int, sector 8
667	4	MSB Unsigned Integer	HW_SHAPED_A_9	Threshold counts of 3 pole Gaussian
(71	4			shaping circuit, first int, sector 9
671	4	MSB Unsigned Integer	HW_SHAPED_A_10	Threshold counts of 3 pole Gaussian shaping circuit, first int, sector 10
(75	4			
675	4	MSB Unsigned Integer	HW_SHAPED_A_11	Threshold counts of 3 pole Gaussian
(70	4			shaping circuit, first int, sector 11
679	4	MSB Unsigned Integer	HW_ION_EVT_A	Valid ion events, first int.
683	4	MSB Unsigned Integer	HW_E_EVT_A	Valid electron events, first int.
687	4	MSB Unsigned Integer	SW_ION_PROC_A	Ions processed, first integration.
691	4	MSB Unsigned Integer	SW_E_PROC_A	Electrons processed, first int.
695	4	MSB Unsigned Integer	SW_ION_PILEUP_A	Ions rejected due to pileup, first int.
699	4	MSB Unsigned Integer	SW_E_PILEUP_A	Electrons rejected due to pileup, first
				int.
703	4	MSB Unsigned Integer	SW_ION_REJ_A	Ions rejected due to negative energy,
				first int.
707	4	MSB Unsigned Integer	SW_E_REJ_A	Electrons rejected due to negative
				energy, first int.
711	4	MSB Unsigned Integer	SW_MULTIHIT_A	Ion or electron events rejected due
				to multi-hits, first int.
715	4 X 12	MSB Unsigned Integer	ION_SPECTRA_B_0	Low-resolution ion energy spectra,
				2nd integration, sector 0.
763	4 X 12	MSB Unsigned Integer	ION_SPECTRA_B_1	Low-resolution ion energy spectra,
				2nd integration, sector 1.
811	4 X 12	MSB Unsigned Integer	ION_SPECTRA_B_2	Low-resolution ion energy spectra,
				2nd integration, sector 2.
859	4 X 12	MSB Unsigned Integer	ION_SPECTRA_B_3	Low-resolution ion energy spectra,
				2nd integration, sector 3.
907	4 X 12	MSB Unsigned Integer	ION_SPECTRA_B_4	Low-resolution ion energy spectra,
				2nd integration, sector 4.
955	4 X 12	MSB Unsigned Integer	ION_SPECTRA_B_5	Low-resolution ion energy spectra,
1002	4 37 4 9			2nd integration, sector 5.
1003	4 X 12	MSB Unsigned Integer	E_SPECTRA_B_0	Low-resolution electron energy
1051	4 37 10			spectra, 2nd integration, sector 0.
1051	4 X 12	MSB Unsigned Integer	E_SPECTRA_B_1	Low-resolution electron energy
1000	4 X 10	MCD Harden 1 Later and		spectra, 2nd integration, sector 1.
1099	4 X 12	MSB Unsigned Integer	E_SPECTRA_B_2	Low-resolution electron energy
1147	4 X 10	MCD Harden 1 Later and		spectra, 2nd integration, sector 2.
1147	4 X 12	MSB Unsigned Integer	E_SPECTRA_B_3	Low-resolution electron energy
1195	4 X 12	MSB Unsigned Integer	E SDECTRA R 4	spectra, 2nd integration, sector 3.
1195	4 A 12	MSB Unsigned integer	E_SPECTRA_B_4	Low-resolution electron energy spectra, 2nd integration, sector 4.
1243	4 X 12	MSB Unsigned Integer	E SPECTRA B 5	Low-resolution electron energy
1243	4 A 12	MSB Unsigned integer	E_SPECTRA_D_3	spectra, 2nd integration, sector 5.
1291	4	MSB Unsigned Integer	HW_FAST_B_0	Threshold counts of pole-zero
1291	-	Wish Olisighed Integer	IIW_IASI_D_0	shaping circuit, 2nd int, sector 0.
1295	4	MSB Unsigned Integer	HW_FAST_B_1	Threshold counts of pole-zero
1273	⁻	The charged integer	1111_1101_D_1	shaping circuit, 2nd int, sector 1.
1299	4	MSB Unsigned Integer	HW_FAST_B_2	Threshold counts of pole-zero
12))				shaping circuit, 2nd int, sector 2.
1303	4	MSB Unsigned Integer	HW_FAST_B_3	Threshold counts of pole-zero
1505	'			shaping circuit, 2nd int, sector 3.
	1		LIW EAST D 4	
1307	4	MSB Unsigned Integer		I presnoid counts of pole-zero
1307	4	MSB Unsigned Integer	HW_FAST_B_4	Threshold counts of pole-zero shaping circuit, 2nd int, sector 4.

				shaping circuit, 2nd int, sector 5.
1315	4	MSB Unsigned Integer	HW_FAST_B_6	Threshold counts of pole-zero
1313	4	WSD Unsigned integer	IIW_IASI_D_0	shaping circuit, 2nd int, sector 6.
1319	4	MSB Unsigned Integer	HW_FAST_B_7	Threshold counts of pole-zero
1319	4	WSB Unsigned integer	IIW_PAST_D_/	shaping circuit, 2nd int, sector 7.
1202	4	MSD Unsigned Integer	INVEACT D 9	Threshold counts of pole-zero
1323	4	MSB Unsigned Integer	HW_FAST_B_8	
1207	4			shaping circuit, 2nd int, sector 8.
1327	4	MSB Unsigned Integer	HW_FAST_B_9	Threshold counts of pole-zero
1001	4			shaping circuit, 2nd int, sector 9.
1331	4	MSB Unsigned Integer	HW_FAST_B_10	Threshold counts of pole-zero
1005				shaping circuit, 2nd int, sector 10.
1335	4	MSB Unsigned Integer	HW_FAST_B_11	Threshold counts of pole-zero
				shaping circuit, 2nd int, sector 11.
1339	4	MSB Unsigned Integer	HW_SHAPED_B_0	Threshold counts of 3 pole Gaussian
				shaping circuit, 2nd int, sector 0.
1343	4	MSB Unsigned Integer	HW_SHAPED_B_1	Threshold counts of 3 pole Gaussian
				shaping circuit, 2nd int, sector 1.
1347	4	MSB Unsigned Integer	HW_SHAPED_B_2	Threshold counts of 3 pole Gaussian
				shaping circuit, 2nd int, sector 2.
1351	4	MSB Unsigned Integer	HW_SHAPED_B_3	Threshold counts of 3 pole Gaussian
				shaping circuit, 2nd int, sector 3.
1355	4	MSB Unsigned Integer	HW_SHAPED_B_4	Threshold counts of 3 pole Gaussian
				shaping circuit, 2nd int, sector 4.
1359	4	MSB Unsigned Integer	HW_SHAPED_B_5	Threshold counts of 3 pole Gaussian
				shaping circuit, 2nd int, sector 5.
1363	4	MSB Unsigned Integer	HW_SHAPED_B_6	Threshold counts of 3 pole Gaussian
				shaping circuit, 2nd int, sector 6.
1367	4	MSB Unsigned Integer	HW_SHAPED_B_7	Threshold counts of 3 pole Gaussian
				shaping circuit, 2nd int, sector 7.
1371	4	MSB Unsigned Integer	HW_SHAPED_B_8	Threshold counts of 3 pole Gaussian
				shaping circuit, 2nd int, sector 8.
1375	4	MSB Unsigned Integer	HW_SHAPED_B_9	Threshold counts of 3 pole Gaussian
				shaping circuit, 2nd int, sector 9.
1379	4	MSB Unsigned Integer	HW_SHAPED_B_10	Threshold counts of 3 pole Gaussian
		6 6		shaping circuit, 2nd int, sector 10.
1383	4	MSB Unsigned Integer	HW_SHAPED_B_11	Threshold counts of 3 pole Gaussian
		6 6		shaping circuit, 2nd int, sector 11.
1387	4	MSB Unsigned Integer	HW_ION_EVT_B	Valid ion events, 2nd int.
1391	4	MSB Unsigned Integer	HW_E_EVT_B	Valid electron events, 2nd int.
1395	4	MSB Unsigned Integer	SW_ION_PROC_B	Ions processed, counter, 2nd int.
1399	4	MSB Unsigned Integer	SW_E_PROC_B	Electrons processed, 2nd int.
1403	4	MSB Unsigned Integer	SW_ION_PILEUP_B	Ions rejected due to pileup, 2nd int.
1407	4	MSB Unsigned Integer	SW_E_PILEUP_B	Electrons rejected due to pileup, 2nd
1.07	.			int.
1411	4	MSB Unsigned Integer	SW_ION_REJ_B	Ions rejected due to negative energy,
1 1 1 1	'			2nd int.
1415	4	MSB Unsigned Integer	SW_E_REJ_B	Electrons rejected due to negative
1115	'			energy, 2nd int.
1419	4	MSB Unsigned Integer	SW_MULTIHIT_B	Ion or electron events rejected due
1717	-	The charge and the get		to multi-hits, 2nd int.
L	1			10 mutu-mto, 2nu mt.

1. MET

Mission elapsed time, in seconds.

2. INT_TIME

Integration time in seconds.

3. ION_SPECTRA_A_0

Low-resolution ion energy spectra, first integration, sector 0.

4. ION_SPECTRA_A_1

Low-resolution ion energy spectra, first integration, sector 1.

5. ION_SPECTRA_A_2

Low-resolution ion energy spectra, first integration, sector 2.

6. ION_SPECTRA_A_3

Low-resolution ion energy spectra, first integration, sector 3.

7. ION_SPECTRA_A_4

Low-resolution ion energy spectra, first integration, sector 4.

8. ION_SPECTRA_A_5

Low-resolution ion energy spectra, first integration, sector 5.

9. E_SPECTRA_A_0

Low- resolution electron energy spectra, sector 0.

10. E_SPECTRA_A_1

Low- resolution electron energy spectra, sector 1.

11. E_SPECTRA_A_2

Low- resolution electron energy spectra, sector 2.

12. E_SPECTRA_A_3

Low- resolution electron energy spectra, sector 3.

13. E_SPECTRA_A_4

Low- resolution electron energy spectra, sector 4.

14. E_SPECTRA_A_5

Low- resolution electron energy spectra, sector 5.

15. HW_FAST_A_0

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 0, first integration.

16. HW_FAST_A_1

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 1, first integration.

17. HW_FAST_A_2

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 2, first integration.

18. HW_FAST_A_3

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 3, first integration.

19. HW_FAST_A_4

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 4, first integration.

20. HW_FAST_A_5

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 5, first integration.

21. HW_FAST_A_6

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 6, first integration.

22. HW_FAST_A_7

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 7, first integration.

23. HW_FAST_A_8

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 8, first integration.

24. HW_FAST_A_9

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 9, first integration.

25. HW_FAST_A_10

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 10, first integration.

26. HW_FAST_A_11

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 11, first integration.

27. HW_SHAPED_A_0

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 0, first integration.

28. HW_SHAPED_A_1

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 1, first integration.

29. HW_SHAPED_A_2

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 2, first integration.

30. HW_SHAPED_A_3

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 3, first integration.

31. HW_SHAPED_A_4

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 4, first integration.

32. HW_SHAPED_A_5

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 5, first integration.

33. HW_SHAPED_A_6

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 6, first integration.

34. HW_SHAPED_A_7

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 7, first integration.

35. HW_SHAPED_A_8

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 8, first integration.

36. HW_SHAPED_A_9

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 9, first integration.

37. HW_SHAPED_A_10

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 10, first integration.

38. HW_SHAPED_A_11

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 11, first integration.

39. HW_ION_EVT_A

Counts the occurrence of a valid ion event, as determined by the Field Programmable Gate Array (FPGA)based valid event logic. The event is counted even if the event information packet is unable to be placed in the First-in, First-out component (FIFO). First integration.

40. HW_E_EVT_A

Counts the occurrence of a valid electron event, as determined by the Field Programmable Gate Array (FPGA)-based valid event logic. The event is counted even if the event information packet is unable to be placed in the First-in, First-out component (FIFO). First integration.

41. SW_ION_PROC_A

Ions processed; software counter. First integration.

42. SW_E_PROC_A

Electrons processed; software counter. First integration.

43. SW_ION_PILEUP_A

Ions rejected due to pileup; software counter. First integration.

44. SW_E_PILEUP_A

Electrons rejected due to pileup; software counter. First integration.

45. SW_ION_REJ_A

Ions rejected due to negative energy; software counter. First integration.

46. SW_E_REJ_A

Electrons rejected due to negative energy; software counter. First integration.

47. SW_MULTIHIT_A

Ion or electron events rejected due to multiple hit; software counter. First integration.

48. ION_SPECTRA_B_0

Low-resolution ion energy spectra; second integration; sector 0.

49. ION_SPECTRA_B_1

Low-resolution ion energy spectra; second integration; sector 1.

50. ION_SPECTRA_B_2

Low-resolution ion energy spectra; second integration; sector 2.

51. ION_SPECTRA_B_3

Low-resolution ion energy spectra; second integration; sector 3.

52. ION_SPECTRA_B_4

Low-resolution ion energy spectra; second integration; sector 4.

53. ION_SPECTRA_B_5

Low-resolution ion energy spectra; second integration; sector 5.

54. E_SPECTRA_B_0

Low-resolution electron energy spectra; second integration; sector 0.

55. E_SPECTRA_B_1

Low-resolution electron energy spectra; second integration; sector 1.

56. E_SPECTRA_B_2

Low-resolution electron energy spectra; second integration; sector 2.

57. E_SPECTRA_B_3

Low-resolution electron energy spectra; second integration; sector 3.

58. E_SPECTRA_B_4

Low-resolution electron energy spectra; second integration; sector 4.

59. E_SPECTRA_B_5

Low-resolution electron energy spectra; second integration; sector 5.

60. HW_FAST_B_0

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 0, second integration.

61. HW_FAST_B_1

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 1, second integration.

62. HW_FAST_B_2

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 2, second integration.

63. HW_FAST_B_3

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 3, second integration.

64. HW_FAST_B_4

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 4, second integration.

65. HW_FAST_B_5

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 5, second integration.

66. HW_FAST_B_6

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 6, second integration.

67. HW_FAST_B_7

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 7, second integration.

68. HW_FAST_B_8

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 8, second integration.

69. HW_FAST_B_9

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 9, second integration.

70. HW_FAST_B_10

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 10, second integration.

71. HW_FAST_B_11

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 11, second integration.

72. HW_SHAPED_B_0

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 0, second integration.

73. HW_SHAPED_B_1

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 1, second integration.

74. HW_SHAPED_B_2

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 2, second integration.

75. HW_SHAPED_B_3

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 3, second integration.

76. HW_SHAPED_B_4

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 4, second integration.

77. HW_SHAPED_B_5

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 5, second integration.

78. HW_SHAPED_B_6

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 6, second integration.

79. HW_SHAPED_B_7

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 7, second integration.

80. HW_SHAPED_B_8

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 8, second integration.

81. HW_SHAPED_B_9

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 9, second integration.

82. HW_SHAPED_B_10

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 10, second integration.

83. HW_SHAPED_B_11

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 11, second integration.

84. HW_ION_EVT_B

Counts the occurrence of a valid ion event, as determined by the FPGA-based valid event logic. The event is counted even if the event information packet is unable to be placed in the FIFO. Second integration.

85. HW_E_EVT_B

Counts the occurrence of a valid electron event, as determined by the FPGA-based valid event logic. The event is counted even if the event information packet is unable to be placed in the FIFO. Second integration.

86. SW_ION_PROC_B

Ions processed, software counter. Second integration.

87. SW_E_PROC_B

Electrons processed, software counter. Second integration.

88. SW_ION_PILEUP_B

Ions rejected due to pileup, software counter. Second integration.

89. SW_E_PILEUP_B

Electrons rejected due to pileup, software counter. Second integration.

90. SW_ION_REJ_B

Ions rejected due to negative energy, software counter. Second integration.

91. SW_E_REJ_B

Electrons rejected due to negative energy, software counter. Second integration.

92. SW_MULTIHIT_B

Ion or electron events rejected due to multiple hit, software counter. Second integration.

8.7 EPS_SUM.FMT Table Fields

The following are the fields as defined by the EPS_SUM.FMT structure file. This file defines the binary table containing the EPS Summary Spectra data. This is a new EDR created as a result of the FSW6 upload.

Start	Length	Data Type	Column Name	Summary (see full text for column
Byte	(bytes)	~ 1		description)
1	4	MSB Unsigned Integer	MET	Time tag in seconds.
5	2	MSB Unsigned Integer	INT_TIME	Integration time in seconds.
7	2	MSB Unsigned Integer	INT_TIME_MULTI	Integration time multiplier.
9	4 X 12	MSB Unsigned Integer	ION_SPECTRA_0	Lo-res ion energy spectra, sector 0.
57	4 X 12	MSB Unsigned Integer	ION_SPECTRA_1	Lo-res ion energy spectra, sector 1.
105	4 X 12	MSB Unsigned Integer	ION_SPECTRA_2	Lo-res ion energy spectra, sector 2.
153	4 X 12	MSB Unsigned Integer	ION_SPECTRA_3	Lo-res ion energy spectra, sector 3.
201	4 X 12	MSB Unsigned Integer	ION_SPECTRA_4	Lo-res ion energy spectra, sector 4.
249	4 X 12	MSB Unsigned Integer	ION_SPECTRA_5	Lo-res ion energy spectra, sector 5.
297	4 X 12	MSB Unsigned Integer	E_SPECTRA_0	Lo-res electron energy spectra, sector 0.
345	4 X 12	MSB Unsigned Integer	E_SPECTRA_1	Lo-res electron energy spectra, sector 1.
393	4 X 12	MSB Unsigned Integer	E_SPECTRA_2	Lo-res electron energy spectra, sector 2.
441	4 X 12	MSB Unsigned Integer	E_SPECTRA_3	Lo-res electron energy spectra, sector 3.
489	4 X 12	MSB Unsigned Integer	E_SPECTRA_4	Lo-res electron energy spectra, sector 4.
537	4 X 12	MSB Unsigned Integer	E_SPECTRA_5	Lo-res electron energy spectra, sector 5.
585	4	MSB Unsigned Integer	HW FAST 0	Threshold counts of pole-zero shaping
				circuit, sector 1.
589	4	MSB Unsigned Integer	HW_FAST_1	Threshold counts of pole-zero shaping
				circuit, sector 2.
593	4	MSB Unsigned Integer	HW_FAST_2	Threshold counts of pole-zero shaping
				circuit, sector 3.
597	4	MSB Unsigned Integer	HW_FAST_3	Threshold counts of pole-zero shaping
				circuit, sector 4.
601	4	MSB Unsigned Integer	HW_FAST_4	Threshold counts of pole-zero shaping
				circuit, sector 5.
605	4	MSB Unsigned Integer	HW_FAST_5	Threshold counts of pole-zero shaping
				circuit, sector 6.
609	4	MSB Unsigned Integer	HW_FAST_6	Threshold counts of pole-zero shaping
				circuit, sector 7.
613	4	MSB Unsigned Integer	HW_FAST_7	Threshold counts of pole-zero shaping
				circuit, sector 8.
617	4	MSB Unsigned Integer	HW_FAST_8	Threshold counts of pole-zero shaping
				circuit, sector 9.
621	4	MSB Unsigned Integer	HW_FAST_9	Threshold counts of pole-zero shaping
				circuit, sector 10.
625	4	MSB Unsigned Integer	HW_FAST_10	Threshold counts of pole-zero shaping
				circuit, sector 10.
629	4	MSB Unsigned Integer	HW_FAST_11	Threshold counts of pole-zero shaping
				circuit, sector 11.
633	4	MSB Unsigned Integer	HW_SHAPED_0	Threshold counts of 3 pole Gaussian
	<u> </u>			shaping circuit, sector 0
637	4	MSB Unsigned Integer	HW_SHAPED_1	Threshold counts of 3 pole Gaussian
				shaping circuit, sector 1

Table 19 EPS_SUM.FMT Fields

641	4	MSB Unsigned Integer	HW_SHAPED_2	Threshold counts of 3 pole Gaussian
<i>с 1 .</i>				shaping circuit, sector 2
645	4	MSB Unsigned Integer	HW_SHAPED_3	Threshold counts of 3 pole Gaussian
				shaping circuit, sector 3
649	4	MSB Unsigned Integer	HW_SHAPED_4	Threshold counts of 3 pole Gaussian
				shaping circuit, sector 4
653	4	MSB Unsigned Integer	HW_SHAPED_5	Threshold counts of 3 pole Gaussian
				shaping circuit, sector 5
657	4	MSB Unsigned Integer	HW_SHAPED_6	Threshold counts of 3 pole Gaussian
				shaping circuit, sector 6
661	4	MSB Unsigned Integer	HW_SHAPED_7	Threshold counts of 3 pole Gaussian
				shaping circuit, sector 7
665	4	MSB Unsigned Integer	HW_SHAPED_8	Threshold counts of 3 pole Gaussian
				shaping circuit, sector 8
669	4	MSB Unsigned Integer	HW_SHAPED_9	Threshold counts of 3 pole Gaussian
				shaping circuit, sector 9
673	4	MSB Unsigned Integer	HW_SHAPED_10	Threshold counts of 3 pole Gaussian
				shaping circuit, sector 10
677	4	MSB Unsigned Integer	HW_SHAPED_11	Threshold counts of 3 pole Gaussian
				shaping circuit, sector 11
681	4	MSB Unsigned Integer	HW_ION_EVT	Valid ion events.
685	4	MSB Unsigned Integer	HW_E_EVT	Valid electron events.
689	4	MSB Unsigned Integer	SW_ION_PROC	Ions processed.
693	4	MSB Unsigned Integer	SW_E_PROC	Electrons processed.
697	4	MSB Unsigned Integer	SW_ION_PILEUP	Ions rejected due to pileup.
701	4	MSB Unsigned Integer	SW_E_PILEUP	Electrons rejected due to pileup.
705	4	MSB Unsigned Integer	SW_ION_REJ	Ions rejected due to negative energy.
709	4	MSB Unsigned Integer	SW_E_REJ	Electrons rejected due to negative
				energy.
713	4	MSB Unsigned Integer	SW MULTIHIT	Ion or electron events rejected due to
				multi-hits.

1. MET

Time tag in seconds.

2. INT_TIME

Integration time in seconds.

3. INT_TIME_MULTI

Integration time multiplier.

4. ION_SPECTRA_0

Low-resolution ion energy spectra, sector 0.

5. ION_SPECTRA_1

Low-resolution ion energy spectra, sector 1.

6. ION_SPECTRA_2

Low-resolution ion energy spectra, sector 2.

7. ION_SPECTRA_3

Low-resolution ion energy spectra, sector 3.

8. ION_SPECTRA_4

Low-resolution ion energy spectra, sector 4.

9. ION_SPECTRA_5

Low-resolution ion energy spectra, sector 5.

10. E_SPECTRA_0

Low-resolution electron energy spectra, sector 0.

11. E_SPECTRA_1

Low-resolution electron energy spectra, sector 1.

12. E_SPECTRA_2

Low-resolution electron energy spectra, sector 2.

13. E_SPECTRA_3

Low-resolution electron energy spectra, sector 3.

14. E_SPECTRA_4

Low-resolution electron energy spectra, sector 4.

15. E_SPECTRA_5

Low-resolution electron energy spectra, sector 5.

16. HW_FAST_0

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 0.

17. HW_FAST_1

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 1.

18. HW_FAST_2

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 2.

19. HW_FAST_3

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 3.

20. HW_FAST_4

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 4.

21. HW_FAST_5

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 5.

22. HW_FAST_6

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 6.

23. HW_FAST_7

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 7.

24. HW_FAST_8

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 8.

25. HW_FAST_9

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 9.

26. HW_FAST_10

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 10.

27. HW_FAST_11

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 11.

28. HW_SHAPED_0

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 0.

29. HW_SHAPED_1

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 1.

30. HW_SHAPED_2

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 2.

31. HW_SHAPED_3

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 3.

32. HW_SHAPED_4

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 4.

33. HW_SHAPED_5

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 5.

34. HW_SHAPED_6

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 6.

35. HW_SHAPED_7

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 7.

36. HW_SHAPED_8

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 8.

37. HW_SHAPED_9

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 9.

38. HW_SHAPED_10

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 10.

39. HW_SHAPED_11

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 11.

40. HW_ION_EVT

Counts the occurrence of a valid ion event, as determined by the Field Programmable Gate Array (FPGA)based valid event logic. The event is counted even if the event information packet is unable to be placed in the First-in, First-out component (FIFO).

41. HW_E_EVT

Counts the occurrence of a valid electron event, as determined by the Field Programmable Gate Array (FPGA)-based valid event logic. The event is counted even if the event information packet is unable to be placed in the FIFO.

42. SW_ION_PROC

Ions processed; software counter.

43. SW_E_PROC

Electrons processed; software counter.

44. SW_ION_PILEUP

Ions rejected due to pileup; software counter.

45. SW_E_PILEUP_A

Electrons rejected due to pileup; software counter.

46. SW_ION_REJ_A

Ions rejected due to negative energy; software counter.

47. SW_E_REJ_A

Electrons rejected due to negative energy; software counter.

48. SW_MULTIHIT_A

Ion or electron events rejected due to multiple hit; software counter.

8.8 EPS_SCAN.FMT Table Fields

The following are the fields as defined by the EPS_SCAN.FMT structure file. This file defines the binary table containing the EPS Scan data. This is a new EDR created as a result of the FSW6 upload.

Start	Length	Data Type	Column Name	Summary (see full text for column	
Byte	(bytes)			description)	
1	4	MSB Unsigned Integer	MET	Time tag in seconds.	
5	4	MSB Unsigned Integer	FAST_A_0	Threshold counts of pole-zero shaping	
				circuit, first threshold, sector 0.	
9	4	MSB Unsigned Integer	FAST_A_1	Threshold counts of pole-zero shaping	

Table 20 EPS_SCAN.FMT Fields

				circuit, first threshold, sector 1.
13	4	MSB Unsigned Integer	FAST_A_2	Threshold counts of pole-zero shaping
15	-	wish ensighed integer		circuit, first threshold, sector 2.
17	4	MSB Unsigned Integer	FAST_A_3	Threshold counts of pole-zero shaping
17	-	wish ensigned integer	17101_71_0	circuit, first threshold, sector 3.
21	4	MSB Unsigned Integer	FAST_A_4	Threshold counts of pole-zero shaping
21		wibb chargined integer	11101_11_1	circuit, first threshold, sector 4.
25	4	MSB Unsigned Integer	FAST_A_5	Threshold counts of pole-zero shaping
			11.01_11_0	circuit, first threshold, sector 5.
29	4	MSB Unsigned Integer	FAST_A_6	Threshold counts of pole-zero shaping
				circuit, first threshold, sector 6.
33	4	MSB Unsigned Integer	FAST_A_7	Threshold counts of pole-zero shaping
				circuit, first threshold, sector 7.
37	4	MSB Unsigned Integer	FAST_A_8	Threshold counts of pole-zero shaping
		2 2		circuit, first threshold, sector 8.
41	4	MSB Unsigned Integer	FAST_A_9	Threshold counts of pole-zero shaping
				circuit, first threshold, sector 9.
45	4	MSB Unsigned Integer	FAST_A_10	Threshold counts of pole-zero shaping
				circuit, first threshold, sector 10.
49	4	MSB Unsigned Integer	FAST_A_11	Threshold counts of pole-zero shaping
				circuit, first threshold, sector 11.
53	4	MSB Unsigned Integer	SHAPED_A_0	Threshold counts of 3 pole Gaussian
				shaping circuit, first threshold, sector 0.
57	4	MSB Unsigned Integer	SHAPED_A_1	Threshold counts of 3 pole Gaussian
				shaping circuit, first threshold, sector 1.
61	4	MSB Unsigned Integer	SHAPED_A_2	Threshold counts of 3 pole Gaussian
				shaping circuit, first threshold, sector 2.
65	4	MSB Unsigned Integer	SHAPED_A_3	Threshold counts of 3 pole Gaussian
				shaping circuit, first threshold, sector 3.
69	4	MSB Unsigned Integer	SHAPED_A_4	Threshold counts of 3 pole Gaussian
				shaping circuit, first threshold, sector 4.
73	4	MSB Unsigned Integer	SHAPED_A_5	Threshold counts of 3 pole Gaussian
				shaping circuit, first threshold, sector 5.
77	4	MSB Unsigned Integer	SHAPED_A_6	Threshold counts of 3 pole Gaussian
				shaping circuit, first threshold, sector 6.
81	4	MSB Unsigned Integer	SHAPED_A_7	Threshold counts of 3 pole Gaussian
				shaping circuit, first threshold, sector 7.
85	4	MSB Unsigned Integer	SHAPED_A_8	Threshold counts of 3 pole Gaussian
				shaping circuit, first threshold, sector 8.
89	4	MSB Unsigned Integer	SHAPED_A_9	Threshold counts of 3 pole Gaussian
				shaping circuit, first threshold, sector 9.
93	4	MSB Unsigned Integer	SHAPED_A_10	Threshold counts of 3 pole Gaussian
0.7				shaping circuit, first threshold, sector 10.
97	4	MSB Unsigned Integer	SHAPED_A_11	Threshold counts of 3 pole Gaussian
101				shaping circuit, first threshold, sector 11.
101	4	MSB Unsigned Integer	FAST_B_0	Threshold counts of pole-zero shaping
107	4			circuit, second threshold, sector 0.
105	4	MSB Unsigned Integer	FAST_B_1	Threshold counts of pole-zero shaping
100	A	MCD Line and Later	EAST D 2	circuit, second threshold, sector 1.
109	4	MSB Unsigned Integer	FAST_B_2	Threshold counts of pole-zero shaping
112	4	MCD Line 1 Late	EACT D 2	circuit, second threshold, sector 2.
113	4	MSB Unsigned Integer	FAST_B_3	Threshold counts of pole-zero shaping
117	4	MCD Undersed Internet	EAST D 4	circuit, second threshold, sector 3.
117	4	MSB Unsigned Integer	FAST_B_4	Threshold counts of pole-zero shaping
121	4	MSD Unstand Integer	EAST D 5	circuit, second threshold, sector 4.
121	4	MSB Unsigned Integer	FAST_B_5	Threshold counts of pole-zero shaping

				circuit, second threshold, sector 5.
125	4	MSB Unsigned Integer	FAST_B_6	Threshold counts of pole-zero shaping
125	+	Wish Onsigned integer	TAST_D_0	circuit, second threshold, sector 6.
129	4	MSB Unsigned Integer	FAST_B_7	Threshold counts of pole-zero shaping
127	-	wight chargined integer	17101_D_/	circuit, second threshold, sector 7.
133	4	MSB Unsigned Integer	FAST_B_8	Threshold counts of pole-zero shaping
155	•	hist chargined integer		circuit, second threshold, sector 8.
137	4	MSB Unsigned Integer	FAST_B_9	Threshold counts of pole-zero shaping
				circuit, second threshold, sector 9.
141	4	MSB Unsigned Integer	FAST_B_10	Threshold counts of pole-zero shaping
				circuit, second threshold, sector 10.
145	4	MSB Unsigned Integer	FAST_B_11	Threshold counts of pole-zero shaping
		0 0		circuit, second threshold, sector 11.
149	4	MSB Unsigned Integer	SHAPED_B_0	Threshold counts of 3 pole Gaussian
				shaping circuit, second threshold, sector 0.
153	4	MSB Unsigned Integer	SHAPED_B_1	Threshold counts of 3 pole Gaussian
				shaping circuit, second threshold, sector 1.
157	4	MSB Unsigned Integer	SHAPED_B_2	Threshold counts of 3 pole Gaussian
				shaping circuit, second threshold, sector 2.
161	4	MSB Unsigned Integer	SHAPED_B_3	Threshold counts of 3 pole Gaussian
				shaping circuit, second threshold, sector 3.
165	4	MSB Unsigned Integer	SHAPED_B_4	Threshold counts of 3 pole Gaussian
				shaping circuit, second threshold, sector 4.
169	4	MSB Unsigned Integer	SHAPED_B_5	Threshold counts of 3 pole Gaussian
				shaping circuit, second threshold, sector 5.
173	4	MSB Unsigned Integer	SHAPED_B_6	Threshold counts of 3 pole Gaussian
				shaping circuit, second threshold, sector 6.
177	4	MSB Unsigned Integer	SHAPED_B_7	Threshold counts of 3 pole Gaussian
101				shaping circuit, second threshold, sector 7.
181	4	MSB Unsigned Integer	SHAPED_B_8	Threshold counts of 3 pole Gaussian
185	4	MSB Unsigned Integer	SHAPED_B_9	shaping circuit, second threshold, sector 8.
165	4	WISB Unsigned integer	SHAPED_D_9	Threshold counts of 3 pole Gaussian shaping circuit, second threshold, sector 9.
189	4	MSB Unsigned Integer	SHAPED_B_10	Threshold counts of 3 pole Gaussian
109	+	Wish Onsigned integer	SIIAI ED_D_10	shaping circuit, second threshold, sector 10.
193	4	MSB Unsigned Integer	SHAPED_B_11	Threshold counts of 3 pole Gaussian
175	-	Wi5D Olisighed Integer	SIIAI LD_D_II	shaping circuit, second threshold, sector 11.
197	4	MSB Unsigned Integer	FAST_C_0	Threshold counts of pole-zero shaping
177	•	initial charged integer	11101_0_0	circuit, third threshold, sector 0.
201	4	MSB Unsigned Integer	FAST_C_1	Threshold counts of pole-zero shaping
				circuit, third threshold, sector 1.
205	4	MSB Unsigned Integer	FAST_C_2	Threshold counts of pole-zero shaping
		0 0		circuit, third threshold, sector 2.
209	4	MSB Unsigned Integer	FAST_C_3	Threshold counts of pole-zero shaping
				circuit, third threshold, sector 3.
213	4	MSB Unsigned Integer	FAST_C_4	Threshold counts of pole-zero shaping
				circuit, third threshold, sector 4.
217	4	MSB Unsigned Integer	FAST_C_5	Threshold counts of pole-zero shaping
				circuit, third threshold, sector 5.
221	4	MSB Unsigned Integer	FAST_C_6	Threshold counts of pole-zero shaping
L	<u> </u>			circuit, third threshold, sector 6.
225	4	MSB Unsigned Integer	FAST_C_7	Threshold counts of pole-zero shaping
000	4			circuit, third threshold, sector 7.
229	4	MSB Unsigned Integer	FAST_C_8	Threshold counts of pole-zero shaping
000	4	MOD II		circuit, third threshold, sector 8.
233	4	MSB Unsigned Integer	FAST_C_9	Threshold counts of pole-zero shaping

				circuit, third threshold, sector 9.
237	4	MSB Unsigned Integer	FAST_C_10	Threshold counts of pole-zero shaping
237	-	wish chisighed integer	1101_0_10	circuit, third threshold, sector 10.
241	4	MSB Unsigned Integer	FAST_C_11	Threshold counts of pole-zero shaping
211	•	Wibb Charghea Integer	11101_0_11	circuit, third threshold, sector 11.
245	4	MSB Unsigned Integer	SHAPED_C_0	Threshold counts of 3 pole Gaussian
215	•	wied ensigned integer		shaping circuit, third threshold, sector 0.
249	4	MSB Unsigned Integer	SHAPED_C_1	Threshold counts of 3 pole Gaussian
,		instanting in the second	51111 22_0_1	shaping circuit, third threshold, sector 1.
253	4	MSB Unsigned Integer	SHAPED_C_2	Threshold counts of 3 pole Gaussian
				shaping circuit, third threshold, sector 2.
257	4	MSB Unsigned Integer	SHAPED_C_3	Threshold counts of 3 pole Gaussian
		6 6		shaping circuit, third threshold, sector 3.
261	4	MSB Unsigned Integer	SHAPED_C_4	Threshold counts of 3 pole Gaussian
				shaping circuit, third threshold, sector 4.
265	4	MSB Unsigned Integer	SHAPED_C_5	Threshold counts of 3 pole Gaussian
				shaping circuit, third threshold, sector 5.
269	4	MSB Unsigned Integer	SHAPED_C_6	Threshold counts of 3 pole Gaussian
				shaping circuit, third threshold, sector 6.
273	4	MSB Unsigned Integer	SHAPED_C_7	Threshold counts of 3 pole Gaussian
				shaping circuit, third threshold, sector 7.
277	4	MSB Unsigned Integer	SHAPED_C_8	Threshold counts of 3 pole Gaussian
				shaping circuit, third threshold, sector 8.
281	4	MSB Unsigned Integer	SHAPED_C_9	Threshold counts of 3 pole Gaussian
				shaping circuit, third threshold, sector 9.
285	4	MSB Unsigned Integer	SHAPED_C_10	Threshold counts of 3 pole Gaussian
				shaping circuit, third threshold, sector 10.
289	4	MSB Unsigned Integer	SHAPED_C_11	Threshold counts of 3 pole Gaussian
				shaping circuit, third threshold, sector 11.
293	4	MSB Unsigned Integer	FAST_D_0	Threshold counts of pole-zero shaping
				circuit, fourth threshold, sector 0.
297	4	MSB Unsigned Integer	FAST_D_1	Threshold counts of pole-zero shaping
201				circuit, fourth threshold, sector 1.
301	4	MSB Unsigned Integer	FAST_D_2	Threshold counts of pole-zero shaping
205	4			circuit, fourth threshold, sector 2.
305	4	MSB Unsigned Integer	FAST_D_3	Threshold counts of pole-zero shaping
200	4	MOD II 1 Later		circuit, fourth threshold, sector 3.
309	4	MSB Unsigned Integer	FAST_D_4	Threshold counts of pole-zero shaping
212	4	MCD Line and Late and	EACT D 5	circuit, fourth threshold, sector 4.
313	4	MSB Unsigned Integer	FAST_D_5	Threshold counts of pole-zero shaping
317	4	MSB Unsigned Integer	FAST_D_6	circuit, fourth threshold, sector 5. Threshold counts of pole-zero shaping
517	4	WSB Unsigned integer	TAST_D_0	circuit, fourth threshold, sector 6.
321	4	MSB Unsigned Integer	FAST_D_7	Threshold counts of pole-zero shaping
521	-	more ensigned integer		circuit, fourth threshold, sector 7.
325	4	MSB Unsigned Integer	FAST_D_8	Threshold counts of pole-zero shaping
525	r	more ensigned integer		circuit, fourth threshold, sector 8.
329	4	MSB Unsigned Integer	FAST_D_9	Threshold counts of pole-zero shaping
527	1.	mod ensigned integer		circuit, fourth threshold, sector 9.
333	4	MSB Unsigned Integer	FAST_D_10	Threshold counts of pole-zero shaping
				circuit, fourth threshold, sector 10.
337	4	MSB Unsigned Integer	FAST_D_11	Threshold counts of pole-zero shaping
				circuit,fourth threshold, sector 11.
341	4	MSB Unsigned Integer	SHAPED_D_0	Threshold counts of 3 pole Gaussian
				shaping circuit, fourth threshold, sector 0.
345	4	MSB Unsigned Integer	SHAPED_D_1	Threshold counts of 3 pole Gaussian

				shaping circuit, fourth threshold, sector 1.
349	4	MSB Unsigned Integer	SHAPED_D_2	Threshold counts of 3 pole Gaussian
				shaping circuit, fourth threshold, sector 2.
353	4	MSB Unsigned Integer	SHAPED_D_3	Threshold counts of 3 pole Gaussian
				shaping circuit, fourth threshold, sector 3.
357	4	MSB Unsigned Integer	SHAPED_D_4	Threshold counts of 3 pole Gaussian
				shaping circuit, fourth threshold, sector 4.
361	4	MSB Unsigned Integer	SHAPED_D_5	Threshold counts of 3 pole Gaussian
				shaping circuit, fourth threshold, sector 5.
365	4	MSB Unsigned Integer	SHAPED_D_6	Threshold counts of 3 pole Gaussian
				shaping circuit, fourth threshold, sector 6.
369	4	MSB Unsigned Integer	SHAPED_D_7	Threshold counts of 3 pole Gaussian
				shaping circuit, fourth threshold, sector 7.
373	4	MSB Unsigned Integer	SHAPED_D_8	Threshold counts of 3 pole Gaussian
				shaping circuit, fourth threshold, sector 8.
377	4	MSB Unsigned Integer	SHAPED_D_9	Threshold counts of 3 pole Gaussian
				shaping circuit, fourth threshold, sector 9.
381	4	MSB Unsigned Integer	SHAPED_D_10	Threshold counts of 3 pole Gaussian
				shaping circuit, fourth threshold, sector 10.
385	4	MSB Unsigned Integer	SHAPED_D_11	Threshold counts of 3 pole Gaussian
				shaping circuit, fourth threshold, sector 11.

1. MET

Mission elapsed time in seconds.

2. FAST_A_0

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 0, first threshold.

3. FAST_A_1

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 1, first threshold.

4. FAST_A_2

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 2, first threshold.

5. FAST_A_3

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 3, first threshold.

6. FAST_A_4

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 4, first threshold.

7. FAST_A_5

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 5, first threshold.

8. FAST_A_6

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 6, first threshold.

9. FAST_A_7

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 7, first threshold.

10. FAST_A_8

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 8, first threshold.

11. FAST_A_9

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 9, first threshold.

12. FAST_A_10

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 10, first threshold.

13. FAST_A_11

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 11, first threshold.

14. SHAPED_A_0

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 0, first threshold.

15. SHAPED_A_1

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 1, first threshold.

16. SHAPED_A_2

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 2, first threshold.

17. SHAPED_A_3

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 3, first threshold.

18. SHAPED_A_4

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 4, first threshold.

19. SHAPED_A_5

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 5, first threshold.

20. SHAPED_A_6

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 6, first threshold.

21. SHAPED_A_7

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 7, first threshold.

22. SHAPED_A_8

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 8, first threshold.

23. SHAPED_A_9

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 9, first threshold.

24. SHAPED_A_10

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 10, first threshold.

25. SHAPED_A_11

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 11, first threshold.

26. FAST_B_0

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 0, second threshold.

27. FAST_B_1

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 1, second threshold.

28. FAST_B_2

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 2, second threshold.

29. FAST_B_3

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 3, second threshold.

30. FAST_B_4

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 4, second threshold.

31. FAST_B_5

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 5, second threshold.

32. FAST_B_6

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 6, second threshold.

33. FAST_B_7

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 7, second threshold.

34. FAST_B_8

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 8, second threshold.

35. FAST_B_9

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 9, second threshold.

36. FAST_B_10

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 10, second threshold.

37. FAST_B_11

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 11, second threshold.

38. SHAPED_B_0

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 0, second threshold.

39. SHAPED_B_1

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 1, second threshold.

40. SHAPED_B_2

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 2, second threshold.

41. SHAPED_B_3

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 3, second threshold.

42. SHAPED_B_4

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 4, second threshold.

43. SHAPED_B_5

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 5, second threshold.

44. SHAPED_B_6

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 6, second threshold.

45. SHAPED_B_7

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 7, second threshold.

46. SHAPED_B_8

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 8, second threshold.

47. SHAPED_B_9

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 9, second threshold.

48. SHAPED_B_10

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 10, second threshold.

49. SHAPED_B_11

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 11, second threshold.

50. FAST_C_0

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 0, third threshold.

51. FAST_C_1

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 1, third threshold.

52. FAST_C_2

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 2, third threshold.

53. FAST_C_3

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 3, third threshold.

54. FAST_C_4

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 4, third threshold.

55. FAST_C_5

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 5, third threshold.

56. FAST_C_6

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 6, third threshold.

57. FAST_C_7

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 7, third threshold.

58. FAST_C_8

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 8, third threshold.

59. FAST_C_9

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 9, third threshold.

60. FAST_C_10

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 10, third threshold.

61. FAST_C_11

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 11, third threshold.

62. SHAPED_C_0

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 0, third threshold.

63. SHAPED_C_1

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 1, third threshold.

64. SHAPED_C_2

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 2, third threshold.

65. SHAPED_C_3

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 3, third threshold.

66. SHAPED_C_4

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 4, third threshold.

67. SHAPED_C_5

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 5, third threshold.

68. SHAPED_C_6

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 6, third threshold.

69. SHAPED_C_7

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 7, third threshold.

70. SHAPED_C_8

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 8, third threshold.

71. SHAPED_C_9

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 9, third threshold.

72. SHAPED_C_10

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 10, third threshold.

73. SHAPED_C_11

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 11, third threshold.

74. FAST_D_0

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 0, fourth threshold.

75. FAST_D_1

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 1, fourth threshold.

76. FAST_D_2

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 2, fourth threshold.

77. FAST_D_3

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 3, fourth threshold.

78. FAST_D_4

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 4, fourth threshold.

79. FAST_D_5

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 5, fourth threshold.

80. FAST_D_6

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 6, fourth threshold.

81. FAST_D_7

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 7, fourth threshold.

82. FAST_D_8

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 8, fourth threshold.

83. FAST_D_9

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 9, fourth threshold.

84. FAST_D_10

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 10, fourth threshold.

85. FAST_D_11

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the pole-zero shaping circuit. Sector 11, fourth threshold.

86. SHAPED_D_0

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 0, fourth threshold.

87. SHAPED_D_1

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 1, fourth threshold.

88. SHAPED_D_2

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 2, fourth threshold.

89. SHAPED_D_3

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 3, fourth threshold.

90. SHAPED_D_4

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 4, fourth threshold.

91. SHAPED_D_5

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 5, fourth threshold.

92. SHAPED_D_6

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 6, fourth threshold.

93. SHAPED_D_7

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 7, fourth threshold.

94. SHAPED_D_8

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 8, fourth threshold.

95. SHAPED_D_9

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 9, fourth threshold.

96. SHAPED_D_10

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 10, fourth threshold.

97. SHAPED_D_11

Counts the firing of a discriminator when an analog signal exceeds a settable threshold. The discriminator is connected to the output of the 3 pole Gaussian shaping circuit. Sector 11, fourth threshold.

8.9 FIPS_HI.FMT Table Fields

The following are the fields as defined by the FIPS_HI.FMT structure file. This file defines the binary table containing the FIPS High Priority data. Archive volume is optimized by defining the table structure once and providing a reference to it in the PDS label file. The fields are numbered according to their column order in the table. Data_Type refers to the PDS standards data type for a particular column in the table.

The FSW5 upload was implemented on 9/6/2007. As a result the FIPS High Priority EDR format was updated to include two additional columns: FIPS_SCANTYPE and STOP_RATE. The values for these two columns are N/A prior to 9/6/2007.

FIPS High Priority EDRs are no longer generated on or after 8/18/2009 due to the FSW7 upload.

Start Byte	Length (bytes)	Data Type	Column Name	Summary (see full text for column description)
1	4	MSB Unsigned Integer	MET	Mission Elapsed Time in seconds.
5	2	MSB Unsigned Integer	FIPS_SCANTYPE	Indicates FIPS Scan mode.
7	4 X 128	MSB Unsigned Integer	MASS_DIST_HIST	128 bin mass distribution histogram.
519	4 X 64	MSB Unsigned	ENERGY_SPECTRA_1	64 element energy spectra for

Table 21 FIPS_HI.FMT Fields

		Integer		energy vector range 1.
775	4 X 64	MSB Unsigned	ENERGY_SPECTRA_2	64 element energy spectra for
		Integer		energy vector range 2.
1031	4 X 64	MSB Unsigned	ENERGY_SPECTRA_3	64 element energy spectra for
		Integer		energy vector range 3.
1287	4 X 64	MSB Unsigned	ENERGY_SPECTRA_4	64 element energy spectra for
		Integer		energy vector range 4.
1543	4 X 64	MSB Unsigned	ENERGY_SPECTRA_5	64 element energy spectra for
		Integer		energy vector range 5.
1799	4 X 64	MSB Unsigned	HEAVY_ION_DIST_1	64 element array of heavy ion
		Integer		velocity distribution values for
				energy vector range 1.
2055	4 X 64	MSB Unsigned	HEAVY_ION_DIST_2	64 element array of heavy ion
		Integer		velocity distribution values for
				energy vector range 2.
2311	4 X 64	MSB Unsigned	HEAVY_ION_DIST_3	64 element array of heavy ion
		Integer		velocity distribution values for
				energy vector range 3.
2567	4 X 64	MSB Unsigned	HEAVY_ION_DIST_4	64 element array of heavy ion
		Integer		velocity distribution values for
				energy vector range 4.
2823	4 X 64	MSB Unsigned	HEAVY_ION_DIST_5	64 element array of heavy ion
		Integer		velocity distribution values for
				energy vector range 5.
3079	4 X 64	MSB Unsigned	PROTON_V_DIST0	64 element array of proton velocity
		Integer		distribution values.
3335	4 X 64	MSB Unsigned	START_RATE	64 element array of start rate
		Integer		counters.
3591	4 X 64	MSB Unsigned	STOP_RATE	64 element array of stop rate
		Integer		counters.
3847	4 X 64	MSB Unsigned	VALID_EVT_RATE	64 element array of valid event
		Integer		counters.
4103	4 X 64	MSB Unsigned	PROTON_RATE	64 element array of proton rate
		Integer		counters.
4359	4 X 64	MSB Unsigned	EVT_PROC_RATE	64 element array of event processed
		Integer		rate counters.

1. MET

Mission elapsed time in seconds at the end of the accumulation.

2. FIPS_SCANTYPE

Indicates the FIPS Scan Mode. =0 normal scan, =1 high temp scan, =2 burst scan, =3 test scan, =4 Table 4, =5 Table 5, =6 Table 6, =7 Table 7.

3. MASS_DIST_HIST

Mass distribution histogram consisting of 128 bins. Histogram accumulated over a 10-scan sequence. (Section 5.2.2.2)

4. ENERGY_SPECTRA_1

A 64-element energy spectrum accumulated over a 10-scan sequence for energy vector range 1. (Section 5.2.2.2)

5. ENERGY_SPECTRA_2

A 64-element energy spectrum accumulated over a 10-scan sequence for energy vector range 2. (Section 5.2.2.2)

6. ENERGY_SPECTRA_3

A 64-element energy spectrum accumulated over a 10-scan sequence for energy vector range 3. (Section 5.2.2.2)

7. ENERGY_SPECTRA_4

A 64-element energy spectrum accumulated over a 10-scan sequence for energy vector range 4. (Section 5.2.2.2)

8. ENERGY_SPECTRA_5

A 64-element energy spectrum accumulated over a 10-scan sequence for energy vector range 5. (Section 5.2.2.2)

9. HEAVY_ION_DIST_1

A 64-element heavy ion velocity distribution accumulated over a 10-scan sequence for energy vector range 1. (Section 5.2.2.4)

10. HEAVY_ION_DIST_2

A 64-element heavy ion velocity distribution accumulated over a 10-scan sequence for energy vector range 2. (Section 5.2.2.4)

11. HEAVY_ION_DIST_3

A 64-element heavy ion velocity distribution accumulated over a 10-scan sequence for energy vector range 3. (Section 5.2.2.4)

12. HEAVY_ION_DIST_4

A 64-element heavy ion velocity distribution accumulated over a 10-scan sequence for energy vector range 4. (Section 5.2.2.4)

13. HEAVY_ION_DIST_5

A 64-element heavy ion velocity distribution accumulated over a 10-scan sequence for energy vector range 5. (Section 5.2.2.4)

14. PROTON_V_DIST0

A 64-element proton velocity distribution function based on the proton events detected during the first 64step voltage scan of each 10-scan sequence. (Section 5.2.2.4). (See also Section 8.7: FIPS_MED.FMT, column 2)

15. START_RATE

The start rate counter. Sampled at each of the 64 steps in the 1^{st} scan of a 10-scan sequence. (Section 5.2.1.1)

16. STOP_RATE

The stop rate counter. Sampled at each of the 64 steps in the 1^{st} scan of a 10-scan sequence. (Section 5.2.1.1)

17. VALID_EVT_RATE

The valid event rate counter. Sampled at each of the 64 steps in the 1^{st} scan of a 10-scan sequence. (Section 5.2.1.1)

18. PROTON_RATE

The proton rate counter. Sampled at each of the 64 steps in the 1^{st} scan of a 10-scan sequence. (Section 5.2.1.1)

19. EVT_PROC_RATE

The events processed rate counter. Sampled at each of the 64 steps in the 1st scan of a 10-scan sequence. (Section 5.2.1.1)

8.10 FIPS_HK.FMT Table Fields

The following are the fields as defined by the FIPS_HK.FMT structure file. This file defines the ASCII table containing the FIPS Housekeeping data (taken from FIPS High Priority Science Packet). Archive volume is optimized by defining the table structure once and providing a reference to it in the PDS label file. The fields are numbered according to their column order in the table. Data_Type refers to the PDS standards data type for a particular column in the table.

As of the FSW5 upload on 9/6/2007 the data contained in the FIPS housekeeping EDR will be contained in the EPPS_LONG_STATUS EDR. As a result the FIPS Housekeeping EDR will no longer be generated on or after 9/6/2007.

Referenced documents:

- 1. Univ. of Michigan Space Physics Research Lab document 082-0213E, Interface Control Document FIPS to EPS, by Steve Rogacki and Tom LeFever (JHU/APL).
- 2. JHU/APL document 7389-9041, EPPS Flight Software Specification, version 3, by Horace Malcom.
- 3. Univ. of Michigan Space Physics Research Lab document 082-0170G, FIPS Data Processing and Instrument Control, by Steve Rogacki and Jim Raines.

See reference	(1) for further details unless otherwise noted.
Table 22 FIP	S-HK-FMT Fields

Start	Length	Data Type	Column Name	Summary (see full text for column		
Byte	(bytes)			description)		
1	12	ASCII Integer	MET	Mission Elapsed Time in seconds.		
15	5	ASCII Integer	WEDGE_DIGITIZER	Wedge digitizer channel.		
22	5	ASCII Integer	STRIP_DIGITIZER	Strip digitizer channel.		
29	5	ASCII Integer	ZIGZAG_DIGITIZER	Zigzag digitizer channel.		
36	5	ASCII Integer	FIPS_MON_P15V	+15 volt monitor.		
43	5	ASCII Integer	FIPS_MON_N15V	-15 volt monitor.		
50	5	ASCII Integer	FIPS_MON_P5V	+5 volt monitor.		
57	5	ASCII Integer	FIPS_MON_N5V	-5 volt monitor.		
64	5	ASCII Integer	FIPS_MON_P35V	+3.5 volt monitor.		
71	5	ASCII Integer	FIPS_MON_P25V	+2.5 volt monitor.		
78	5	ASCII Integer	VREF_I2C_TEMP	Vref I2C temperature.		
85	5	ASCII Integer	BH_BOT_I2C_TEMP	BH BOT I2C temperature.		
92	5	ASCII Integer	BH_TOP_I2C_TEMP	BH TOP I2C temperature.		
99	5	ASCII Integer	DS_HV_I2C_TEMP	DS-HV I2C temperature.		
106	5	ASCII Integer	MON_MCP_HV	Micro-channel plate high voltage		
		_		monitor.		
113	5	ASCII Integer	MON_PA_HV	Post-acceleration high voltage		
				monitor.		
120	5	ASCII Integer	MON_DS_HV	Deflection system high voltage		
				monitor.		
127	5	ASCII Integer	FIPS_STATUS	Integer value of bit flags for FIPS		
				status.		
134	1	ASCII Integer	FIPS_AUTO_SHUTDWN	Autonomous hi-temperature		
				shutdown flag.		
137	1	ASCII Integer	FIPS_HV_ALARM_SET	Software HV alarm monitor enable.		

140	3	ASCII Integer	START_CFD_THLD	Start constant fraction discriminator (CFD) threshold.
145	3	ASCII Integer	STOP_CFD_THLD	Stop CFD threshold.
150	3	ASCII Integer	PA_HV_SET	Post-acceleration high voltage setting.
155	3	ASCII Integer	MCP_HV_SET	Micro-channel plate high voltage setting.
160	5	ASCII Integer	H_EVT_CNTRL_SET	Proton event control settings.
167	3	ASCII Integer	TOF_CNTRL_SET	Time of flight control settings.
172	5	ASCII Integer	FIPS_BH_BOT_TEMP	Bulkhead bottom temperature.
179	5	ASCII Integer	FIPS_BH_TOP_TEMP	Bulkhead top temperature.
186	8	ASCII Integer	STOP_RATE_COUNTER	Stop rate counter.
196	5	ASCII Integer	STOP_RATE_STEP	Step at which stop rate counter was sampled.
203	5	ASCII Integer	I2C_READ_ADDR	Address of last raw I2C read.
210	5	ASCII Integer	I2C_READ_VAL	Value of last raw I2C read.

Mission elapsed time in seconds at the end of the accumulation.

2. WEDGE_DIGITIZER

The wedge digitizer channel. Taken together with "strip" and "zigzag" channels gives position on stop MCP: See (3) for details.

3. STRIP_DIGITIZER

The strip digitizer channel. Taken together with "wedge" and "zigzag" channels gives position on stop MCP: See (3) for details.

4. ZIGZAG_DIGITIZER

The zigzag digitizer channel. Taken together with "strip" and "wedge" channels gives position on stop MCP : See (3) for details.

5. FIPS_MON_P15V

FIPS +15 volt monitor

6. FIPS_MON_N15V FIPS –15 volt monitor

7. FIPS_MON_P5V FIPS +5 volt monitor

8. FIPS_MON_N5V FIPS –5 volt monitor

9. FIPS_MON_P35V FIPS 3.5 volt monitor

10. FIPS_MON_P25V FIPS 2.5 volt monitor

11. VREF_I2C_TEMP FIPS Vref I2C temperature

12. BH_BOT_I2C_TEMP FIPS BH BOT I2C temperature

13. BH_TOP_I2C_TEMP

FIPS BH TOP I2C temperature

14. DS_HV_I2C_TEMP

FIPS DS-HV I2C temperature

15. MON_MCP_HV

Micro-channel plate high voltage (MCP-HV) monitor. Values: 0..16383. Conversion: 219.73 mV/bit.

16. MON_PA_HV

Post-acceleration high voltage (PA-HV) monitor. Values: 0..16383. Conversion: -915.53mV/bit.

17. MON_DS_HV

Deflection system high voltage monitor. Values: 0..16383. Conversion: 915.53mV/bit.

18. FIPS_STATUS

FIPS status flag. Describes operational mode, individual HV enable/disable status and more:

Bit No.	Bit Name	Function *=reset state	
0-2	Mode	000 reset*	011 maneuver
		001 manual	100 single event test
		010 standby	
3	DSHV Enable	0 Deflection System HV	Note: When read, these bits return the actual HV
		Supply Off*	supply enabled status.
		1 Supply Enabled	
4	PAHV Enable	0 Post Acceleration HV	
		Supply Off*	
		1 Supply Enabled	
5	MCP HV	0 Micro Channel Plate	
	Enable	Supply Off*	
		1 Supply Enabled	
6 (read	Valid Event	when Read:	
only)		0 no event	
-		1 Valid Event detected by TOF	and captured
7	High-Speed Event driver power	0 – LVDS driver enabled only	when transmitting *
	conserve	1 – LVDS driver always enable	ed .
			1
8-10	TOF Clock Select	Set TOF clock:	010 3MHz
		000* 12MHz	011 1.5MHz
		001 6MHz	100 750kHz
11	Retrig Start Delay	0 – non-retrig*	
		1 – retrig, 5us on every start	
12	Event Trigger	0 – Event capture triggered by	transmitted event*
		1 – Event capture triggered by every start pulse, including H events	
13	Dump/	$0 - \text{Dump}^* - \text{peak hold dischar}$	
	Ramp	1 - Ramp - variable discharge	
	F		
14	Peak Hold Enable	0 – disable peak hold (gate	Only valid in modes which do not process events.
		off)*	
		1 – Enable peak holds	
15	Peak Hold/Track	0 – Peak hold for WSZ*	
		1 – Peak track for WSZ	

Table 23 FIPS Status Flag Fields

19. FIPS_AUTO_SHUTDWN

Clear FIPS autonomous hi-temperature shutdown flag. Allowed values: 0=do not clear (thus enabling autonomous hi-temp. shutdown). 1=clear (thus disabling autonomous hi-temp. shutdown. See (2) for details.

20. FIPS_HV_ALARM_SET

FIPS software HV alarm monitor enable. When enabled a particular HV supply will be disabled if the voltage monitor level for that supply exceeds the commanded value. Allowed values: 0=disable software HV monitoring, 1=enable software HV monitoring. See (2) for details.

21. START_CFD_THLD

Start constant fraction discriminator (CFD) Threshold. Allowed values: 0..255.

22. STOP_CFD_THLD

Stop constant fraction discriminator (CFD) Threshold. Allowed values: 0..255.

23. PA_HV_SET

Post-acceleration high voltage (PA-HV) setting. Allowed values: 0..255. Conversion: -61.5234 V/bit. Not to be set to less than 1/3 of maximum, i.e., essentially allowed values are 82..255.

24. MCP_HV_SET

Micro-channel plate high voltage (MCP-HV) Setting. Allowed values: 0..255. Conversion: 14.7656 V/bit. Not to be set to less than 1/3 of maximum, i.e., essentially allowed values are 82..255.

25. H_EVT_CNTRL_SET

Proton event control settings. Convert back to binary notation to interpret the settings. Bits 0-10 control H threshold. If the TOF for an event is less than (or equal?) to this threshold, the event is classified as a proton. Bits 12-15 control H proportion (decimation): 0000=keep all proton events, 1111=keep 1 in 32768 H events.

26. TOF_CNTRL_SET

Time of flight control settings. Convert back to binary notation to interpret the bit settings.

Table 24 TOF Control Settings Fields

Bit	TOF chip control pin description
7	Intb_ext
6	Coreview
5	Srexclwin
4	Tapsel2
3	Tapsel1
2	Fixwin_on
1	Cal_en
0	Half perb

27. FIPS_BH_BOT_TEMP

FIPS bulkhead bottom temperature. Pin #1 on the interface connector. Read by EPPS LVPS board ADC on mux channel 6. Conversion:

$$\begin{split} & BH_BOT_TEMP(n, Vp5raw) := 1/(2.504819233e^{-3} + 2.3875387107e^{-4} * \log((19.99677 * ((304.907e^{-6} * n) + 2.9136e^{-3}))/(((0.000610893 * Vp5raw) + 0.0058375)^{-}((304.907e^{-6} * n) + 2.9136e^{-3}))) + 2.8536026677e^{-6} * \log((19.99677 * ((304.907e^{-6} * n) + 2.9136e^{-3}))/(((0.000610893 * Vp5raw) + 0.0058375)^{-}((304.907e^{-6} * n) + 2.9136e^{-3}))/(((0.000610893 * Vp5raw) + 2.9136e^{-3}))) * 2 + 1.0411088257e^{-7} * \log((19.99677 * ((304.907e^{-6} * n) + 2.9136e^{-3}))) + 2.9136e^{-3}))/(((0.000610893 * Vp5raw) + 0.0058375)^{-}((304.907e^{-6} * n) + 2.9136e^{-3}))) * 2 + 1.0411088257e^{-7} * \log((19.99677 * ((304.907e^{-6} * n) + 2.9136e^{-3}))) + 2.9136e^{-3}))) * 2 + 1.0411088257e^{-7} * \log((19.99677 * ((304.907e^{-6} * n) + 2.9136e^{-3})))) * 2 + 1.0411088257e^{-7} * \log((19.99677 * ((304.907e^{-6} * n) + 2.9136e^{-3}))) * 2 + 2.9136e^{-3}))) * 2 + 2.9136e^{-3})) * 2 + 2.9136e^{-3}) * 2 + 2.9136e^{-3})) * 2 + 2.9136e^{-3})) * 2 + 2.9136e^{-3}) * 2 + 2.9136e^{-3}) * 2 + 2.9136e^{-3})) * 2 + 2.9136e^{-3})) * 2 + 2.9136e^{-3})) * 2 + 2.9136e^{-3}) * 2 + 2.9136e^{-3})) * 2 + 2.9136e^{-3}) * 2 +$$

Where n is the BH_BOT_TEMP value and Vp5raw value is the raw TM item for the +5 V voltage monitor.

28. FIPS_BH_TOP_TEMP

FIPS bulkhead top temperature. Pin #2 on the interface connector. Read by EPPS LVPS board ADC on mux channel 8. Conversion:

$$\begin{split} & BH_TOP_TEMP(n,Vp5raw) := 1/(2.504819233e^{-3} + 2.3875387107e^{-4} * log((20.01703*((304.907e^{-6}*n) + 2.9136e^{-3}))/(((0.000610893*Vp5raw) + 0.0058375) \cdot ((304.907e^{-6}*n) + 2.9136e^{-3}))) + 2.8536026677e^{-6} * log((20.01703*((304.907e^{-6}*n) + 2.9136e^{-3}))/(((0.000610893*Vp5raw) + 0.0058375) \cdot ((304.907e^{-6}*n) + 2.9136e^{-3}))) + 2.9136e^{-3}))/((0.000610893*Vp5raw) + 0.0058375) \cdot ((304.907e^{-6}*n) + 2.9136e^{-3}))) + 2.9136e^{-3}))/((0.000610893*Vp5raw) + 0.0058375) \cdot ((304.907e^{-6}*n) + 2.9136e^{-3}))) + 2.9136e^{-3})) + 2.9136e^{-3}) + 2.9136e^{-3})) + 2.9136e^{-3})) + 2.9136e^{-3}) + 2.9136e^{-3})$$

Where n is the BH_TOP_TEMP value and Vp5raw value is the raw TM item for the +5 V voltage monitor.

29. STOP_RATE_COUNTER Stop rate counter for one deflection voltage step.

30. STOP_RATE_STEP Step at which stop rate counter was sampled.

31. I2C_READ_ADDR Address of last raw I2C read from FIPS FPGA.

32. I2C_READ_VAL Value of last raw I2C read from FIPS FPGA.

8.11 FIPS_MED.FMT Table Fields

The following are the fields as defined by the FIPS_MED.FMT structure file. This file defines the binary table containing the FIPS Medium Priority spectra data. Archive volume is optimized by defining the table structure once and providing a reference to it in the PDS label file. The fields are numbered according to their column order in the table. Data_Type refers to the PDS standards data type for a particular column in the table.

This EDR is retired after the FSW6 upload on 8/18/2008. As a result there are no FIPS Medium EDRs created on or after 8/19/2008. Referenced documents:

- 1. Univ. of Michigan Space Physics Research Lab document 082-0213E, Interface Control Document FIPS to EPS, by Steve Rogacki and Tom LeFever (JHU/APL).
- 2. JHU/APL document 7389-9041, EPPS Flight Software Specification, version 3, by Horace Malcom.
- **3.** Univ. of Michigan Space Physics Research Lab document 082-0170G, FIPS Data Processing and Instrument Control, by Steve Rogacki and Jim Raines.

Start	Length	Data Type	Column Name	Summary (see full text for column
Byte	(bytes)			description)
1	4	MSB Unsigned Integer	MET	Mission Elapsed Time in seconds.
5	2	MSB Unsigned Integer	FIPS_SCANTYPE	Indicates the FIPS scan mode.
7	4 X 64	MSB Unsigned Integer	PROTON_V_DIST210	64 element array of proton velocity distribution values.
263	4 X 64	MSB Unsigned Integer	START_RATE	64 element array of start rate counters.
519	4 X 64	MSB Unsigned Integer	STOP_RATE	64 element array of stop rate counters.
775	4 X 64	MSB Unsigned Integer	VALID_EVT_RATE	64 element array of valid event rate counters.
1031	4 X 64	MSB Unsigned Integer	PROTON_RATE	64 element array of proton rate counters.

Table 25 FIPS_MED.FMT Fields

1287	4 X 64	MSB Unsigned	EVT_PROC_RATE	64 element array of events processed
		Integer		rate counters.

Mission elapsed time in seconds at the end of the accumulation.

2. FIPS_SCANTYPE

Indicates the FIPS scan mode. =0 normal scan, =1 high temp scan, =2 burst scan, =3 test scan, =4 table 4, =5 table 5, =6 table 6, =7 table 7.

3. PROTON_V_DIST210

A 64-element proton velocity distribution accumulated over each of scans 2-10 in the 10 scan sequence. See (1) Section 4.2.1.3 for details. See also Section 8.5 FIPS_HI.FMT in the EPPS EDR SIS.

4. START_RATE

Start rate counter. See (1) Section 4.2.1.1 for details.

5. STOP_RATE

Stop rate counter. See (1) Section 4.2.1.1 for details.

6. VALID_EVT_RATE

Valid event rate counter. See (1) Section 4.2.1.1 for details.

7. PROTON_RATE

Proton rate counter. See (1) for details.

8. EVT_PROC_RATE

Events processed rate counter. See (1) for details.

8.12 FIPS_PHA.FMT Table Fields

The following are the fields as defined by the FIPS_PHA.FMT structure file. This file defines the binary table containing the FIPS Pulse Height Analysis (PHA) event data.

A FSW5 upload was implemented on 9/6/2007. As a result the FIPS PHA EDR format has been updated to include an additional column, FIPS_SCANTYPE. The values for this column are N/A prior to 9/6/2007.

A FSW7 upload on 8/18/2009 created the FIPS Proton PHA packet. It is necessary to include the proton hardware decimation value in order to analyze proton PHA events but there was a need to keep the same number of columns and byte lengths as in EDRs prior to 8/18/2009. Thus, column 3 now stores either the priority decimation value or the priority level of the PHA data, depending on whether the EDR is pre or post-FSW7.

Start	Length	Data Type	Column Name	Summary (see full text for column	
Byte	(bytes)			description)	
1	4	MSB Unsigned	MET	Mission Elapsed Time in seconds.	
		Integer			
5	2	MSB Unsigned	FIPS_SCANTYPE	Indicates the FIPS scan mode and	

Table 26 FIPS_PHA.FMT Fields

		Integer		particle type.
7	4	MSB Unsigned Integer	PRIORITY_DECIMATION	PHA priority level (for pre-FSW7) or proton hardware decimation level (for post-FSW7).
11	4	MSB Unsigned Integer	STEP_NUM	E/q step number.
15	4	MSB Unsigned Integer	X	Calculated value for FIPS event.
19	4	MSB Unsigned Integer	Y	Calculated value for FIPS event.
23	4	MSB Unsigned Integer	TIME_OF_FLIGHT	Time of flight.
27	4	MSB Unsigned Integer	WEDGE	Wedge number.
31	4	MSB Unsigned Integer	STRIP	Strip number.
35	4	MSB Unsigned Integer	ZIGZAG	Zigzag number.

Mission Elapsed Time in seconds at the end of the accumulation. Used for correlation between PHA EDR records and records in the FIPS Spectra file (for High and Medium priority EDRs).

2. FIPS_SCANTYPE

Indicates the FIPS scan mode and particle type. Tables referenced here are one of the eight E/q stepping tables loaded into the instrument. See the EPPS CDR SIS for details on the E/q tables. =0 normal scan heavy ion, =1 high temp scan heavy ion, =2 burst scan heavy ion, =3 test scan heavy ion, =4 table 4 heavy ion, =5 table 5 heavy ion, =6 table 6 heavy ion, =7 table 7 heavy ion, =8 normal scan proton, =9 high temp scan proton, =10 burst scan proton, =11 test scan proton, =12 table 4 proton, =13 table 5 proton, =14 table 6 proton, =15 table 7 proton. =99 NA; the value in all EDRs prior to 9/6/2007.

3. PRIORITY_DECIMATION

Prior to FSW7 this column records the priority level of the PHA data. 0 = High Priority , 1= Medium priority, 2 = Low priority. After FSW7 this column records the proton hardware decimation level for proton PHAs or =99 for Heavy Ion PHAs.

4. STEP_NUM

E/q Step Number (0-63). Maximum of 64 steps for a given PHA event. Number of steps for a given event may vary from 0-64.

5. X

In FSW4, FSW5, and FSW7, X is computed as

[128*(w+(w-z)/5)/sum], and in FSW6, X is computed as

[96*(s+(s-z)/5)/sum] where

```
w = wedge - wedge_offset
```

```
s = strip - strip_offset
```

 $z = 14*(zigzag - zigzag_offset)/10$

sum = w+s+z.

A value of 9999 means X is NA.

6. Y

In FSW4, FSW5, and FSW7, Y is computed as [128*(s+(s-z)/5)/sum], and in FSW6, Y is computed as

[100*(s+2*(s-z)/11)/sum] where

w = wedge - wedge_offset

s = strip - strip_offset

 $z = 14*(zigzag-zigzag_offset)/10$

sum = w+s+z.

A value of 9999 means Y is NA.

7. TIME_OF_FLIGHT

Time of flight.

8. WEDGE

Wedge number. =9999 (NA), dependent on the flight software used.

9. STRIP

Strip number. =9999 (NA), dependent on the flight software used.

10. ZIGZAG

Zigzag number. =9999 (NA), dependent on the flight software used.

8.13 FIPS_SCAN.FMT Table Fields

The following are the fields as defined by the FIPS_SCAN.FMT structure file. This file defines the binary table containing the FIPS_Scan data. This is a new EDR created as a result of the FSW6 upload.

FIPS Scan EDRs are no longer generated on or after 8/18/2009 due to the FSW7 upload.

Start	Length	Data Type	Column Name	Summary (see full text for column
Byte	(bytes)			description)
1	4	MSB Unsigned Integer	MET	Time tag in seconds.
5	2	MSB Unsigned Integer	FIPS_SCANTYPE	Indicates the FIPS Scan Mode.
7	4 X 64	MSB Unsigned Integer	START_RATE	Start rate counter.
263	4 X 64	MSB Unsigned Integer	STOP_RATE	Stop rate counter.
519	4 X 64	MSB Unsigned Integer	VALID_EVT_RATE	Valid event rate counter.
775	4 X 64	MSB Unsigned Integer	PROTON_RATE	Proton rate counter.
1031	4 X 64	MSB Unsigned Integer	EVT_PROC_RATE	Events processed rate counter.

Table 27 FIPS_SCAN.FMT Fields

1. MET

Mission elapsed time in seconds.

2. FIPS_SCANTYPE

Indicates the FIPS Scan Mode. =0 Normal Scan, =1 High temp Scan, =2 Burst Scan, =3 Test Scan, =4 Table 4, =5 Table 5, =6 Table 6, =7 Table 7.

3. START_RATE

Start rate counter sampled at each Deflection System High Voltage (DSHV) step in the scan.

4. STOP_RATE

Stop rate counter sampled at each DSHV step in the scan.

5. VALID_EVT_RATE

Valid event rate counter sampled at each DSHV step in the scan.

6. PROTON_RATE

Proton rate counter sampled at each DSHV step in the scan.

7. EVT_PROC_RATE

Events processed rate counter sampled at each DSHV step in the scan.

8.14 FIPS_HRPVD.FMT Table Fields

The following are the fields as defined by the FIPS_HRPVD.FMT structure file. This file defines the binary table containing the Hi-resolution proton velocity distributions. This is a new EDR created as a result of the FSW6 upload.

FIPS HRPVD EDRs are no longer generated on or after 8/18/2009 due to the FSW7 upload.

Start	Length	Data Type	Column Name	Summary (see full text for column
Byte	(bytes)			description)
1	4	MSB Unsigned Integer	MET	Time tag in seconds.
5	2	MSB Unsigned Integer	FIPS_SCANTYPE	Indicates the FIPS Scan Mode.
7	4 X 32	MSB Unsigned Integer	PROTONV_L00	Line 0 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
135	4 X 32	MSB Unsigned Integer	PROTONV_L01	Line 1 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
263	4 X 32	MSB Unsigned Integer	PROTONV_L02	Line 2 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
391	4 X 32	MSB Unsigned Integer	PROTONV_L03	Line 3 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
519	4 X 32	MSB Unsigned Integer	PROTONV_L04	Line 4 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
647	4 X 32	MSB Unsigned Integer	PROTONV_L05	Line 5 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
775	4 X 32	MSB Unsigned Integer	PROTONV_L06	Line 6 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
903	4 X 32	MSB Unsigned Integer	PROTONV_L07	Line 7 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
1031	4 X 32	MSB Unsigned Integer	PROTONV_L08	Line 8 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
1159	4 X 32	MSB Unsigned Integer	PROTONV_L09	Line 9 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
1287	4 X 32	MSB Unsigned Integer	PROTONV_L10	Line 10 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
1415	4 X 32	MSB Unsigned Integer	PROTONV_L11	Line 11 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
1543	4 X 32	MSB Unsigned Integer	PROTONV_L12	Line 12 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
1671	4 X 32	MSB Unsigned Integer	PROTONV_L13	Line 13 of a 32X32 hi-res proton vel

Table 28 FIPS_HRPVD.FMT Fields

				distribution, integrated over 10 scan seq
1799	4 X 32	MSB Unsigned Integer	PROTONV_L14	Line 14 of a 32X32 hi-res proton vel
	_			distribution, integrated over 10 scan seq
1927	4 X 32	MSB Unsigned Integer	PROTONV_L15	Line 15 of a 32X32 hi-res proton vel
	_			distribution, integrated over 10 scan seq
2055	4 X 32	MSB Unsigned Integer	PROTONV L16	Line 16 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
2183	4 X 32	MSB Unsigned Integer	PROTONV_L17	Line 17 of a 32X32 hi-res proton vel
	_			distribution, integrated over 10 scan seq
2311	4 X 32	MSB Unsigned Integer	PROTONV_L18	Line 18 of a 32X32 hi-res proton vel
		6 6	_	distribution, integrated over 10 scan seq
2439	4 X 32	MSB Unsigned Integer	PROTONV_L19	Line 19 of a 32X32 hi-res proton vel
		6 6	_	distribution, integrated over 10 scan seq
2567	4 X 32	MSB Unsigned Integer	PROTONV_L20	Line 20 of a 32X32 hi-res proton vel
		0 0		distribution, integrated over 10 scan seq
2695	4 X 32	MSB Unsigned Integer	PROTONV_L21	Line 21 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
2823	4 X 32	MSB Unsigned Integer	PROTONV_L22	Line 22 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
2951	4 X 32	MSB Unsigned Integer	PROTONV_L23	Line 23 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
3079	4 X 32	MSB Unsigned Integer	PROTONV_L24	Line 24 of a 32X32 hi-res proton vel
		0 0		distribution, integrated over 10 scan seq
3207	4 X 32	MSB Unsigned Integer	PROTONV_L25	Line 25 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
3335	4 X 32	MSB Unsigned Integer	PROTONV_L26	Line 26 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
3463	4 X 32	MSB Unsigned Integer	PROTONV_L27	Line 27 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
3591	4 X 32	MSB Unsigned Integer	PROTONV_L28	Line 28 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
3719	4 X 32	MSB Unsigned Integer	PROTONV_L29	Line 29 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
3847	4 X 32	MSB Unsigned Integer	PROTONV_L30	Line 30 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
3975	4 X 32	MSB Unsigned Integer	PROTONV_L31	Line 31 of a 32X32 hi-res proton vel
				distribution, integrated over 10 scan seq
4103	4	MSB Unsigned Integer	PROTON_L	Count of protons in left edge of the
				32X32 window.
4107	4	MSB Unsigned Integer	PROTON_R	Count of protons in right edge of the
				32X32 window.
4111	4	MSB Unsigned Integer	PROTON_BOT	Count of protons in bottom edge of the
				32X32 window.
4115	4	MSB Unsigned Integer	PROTON_TOP	Count of protons in top edge of the
				32X32 window.

Mission Elapsed Time in seconds.

2. FIPS_SCANTYPE

Indicates the FIPS Scan Mode. =0 Normal Scan, =1 High Temp Scan, =2 Burst Scan, =3 Test Scan, =4 Table 4, =5 Table 5, =6 Table 6, =7 Table 7.

3. PROTONV_L00

Line 0 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

4. PROTONV_L01

Line 1 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

5. PROTONV_L02

Line 2 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

6. PROTONV_L03

Line 3 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

7. PROTONV_L04

Line 4 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

8. PROTONV_L05

Line 5 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

9. PROTONV_L06

Line 6 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

10. PROTONV_L07

Line 7 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

11. PROTONV_L08

Line 8 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

12. PROTONV_L09

Line 9 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

13. PROTONV_L10

Line 10 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

14. PROTONV_L11

Line 11 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

15. PROTONV_L12

Line 12 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

16. PROTONV_L13

Line 13 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

17. PROTONV_L14

Line 14 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

18. PROTONV_L15

Line 15 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

19. PROTONV_L16

Line 16 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

20. PROTONV_L17

Line 17 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

21. PROTONV_L18

Line 18 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

22. PROTONV_L19

Line 19 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

23. PROTONV_L20

Line 20 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

24. PROTONV_L21

Line 21 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

25. PROTONV_L22

Line 22 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

26. PROTONV_L23

Line 23 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

27. PROTONV_L24

Line 24 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

28. PROTONV_L25

Line 25 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

29. PROTONV_L26

Line 26 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

30. PROTONV_L27

Line 27 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

31. PROTONV_L28

Line 28 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

32. PROTONV_L29

Line 29 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

33. PROTONV_L30

Line 30 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

34. PROTONV_L31

Line 31 of a 32x32 high-resolution proton velocity distribution, integrated over a 10-scan sequence.

35. PROTON_L

Count of protons off the left edge of the 32x32 window.

36. PROTON_R

Count of protons off the right edge of the 32x32 window.

37. PROTON_BOT

Count of protons off the bottom edge of the 32x32 window.

38. PROTON_TOP

Count of protons off the top edge of the 32x32 window.

8.15 EPPS_STATUS.FMT Table Fields

The following are the fields as defined by the EPPS_STATUS.FMT structure file. This file defines the ASCII table containing the EPPS engineering status and housekeeping data (taken from the EPPS Status Packet). A FSW5 upload was implemented on 9/6/2007. As a result the EPPS Status EDR will not be generated for data collected by the EPPS instrument on or after 9/6/2007. Instead use the EPPS Long Status EDR.

Stant	Length Data Type Column Name Summary (see full text for column)			
Start Byte	Length (bytes)	Data Type	Column Name	Summary (see full text for column description)
1	12	ASCII_INTEGER	MET	Mission Elapsed Time in seconds.
15	5	ASCII_INTEGER STATUS_INTERVAL		Status interval in seconds.
22	5	ASCII_INTEGER	FREE_MACRO_BLOCKS	Number of macro blocks free.
29	5	ASCII_INTEGER	WATCH_ADDRESS	Memory watch address.
36	3	ASCII_INTEGER	WATCH_MEMORY	Page number of watched memory.
41	2 X 1	ASCII_INTEGER	WATCH_DATA	2 element array of watched data values.
51	3	ASCII_INTEGER	SW_VERSION	Software version number.
56	3	ASCII_INTEGER	ALARM_ID	Latest alarm ID.
61	1	ASCII_INTEGER	ALARM_TYPE	Type of latest alarm.
64	3	ASCII_INTEGER	ALARM_COUNT	Count of alarms.
69	3	ASCII_INTEGER	CMD_EXEC	Number of commands executed.
74	3	ASCII_INTEGER	CMD_REJECT	Number of commands rejected.
79	3	ASCII_INTEGER	MAC_EXEC	Macro commands executed.
84	5	ASCII_INTEGER	MAC_REJECT	Macro commands rejected.
89	3	ASCII INTEGER	MAC ID	ID of most recent macro executed.
94	1	ASCII INTEGER	MACRO_LEARN	Macro learn mode.
97	1	ASCII_INTEGER	MONITOR_RESPONSE	Monitor response.
100	1	ASCII_INTEGER	WRITE_ENABLE	Memory write enable.
103	2	ASCII_INTEGER	SPARE	Spare column.
107	5	ASCII_INTEGER	HVPS_I	HVPS current.
114	5	ASCII_INTEGER	HVPS_V	HVPS voltage.
121	5	ASCII_INTEGER	BIAS_I	Bias current.
128	5	ASCII_INTEGER	BIAS_V	Bias voltage.
135	5	ASCII_INTEGER		Integer value of EPS status word.
142	5	ASCII_INTEGER		+5 volt monitor, mux channel 0.
149	5	ASCII_INTEGER	LVPS_M5_V	-5 volt monitor, mux channel 1.
156	5	ASCII_INTEGER	LVPS_P12_V	+12 volt monitor, mux channel 2.
163	5	ASCII_INTEGER	LVPS_M12_V	-12 volt monitor, mux channel 3.
170	5	ASCII_INTEGER	LVPS_P5_I	+5V current.
177	5	ASCII_INTEGER	LVPS_M5_I	-5V current.
184	5	ASCII_INTEGER	LVPS_P12_I	+12V current.
191	5	ASCII_INTEGER	LVPS_M12_I	-12V current.
198	5	ASCII_INTEGER	EPS_TEMP	EPS temperature.
205	5	ASCII_INTEGER	LVPS_TEMP	LVPS temperature.
212	5	ASCII_INTEGER	LVPS_PRIMARY_I	LVPS primary current monitor.
219	5	ASCII_INTEGER	LVPS_SWITCHED_I	Switched primary current monitor.
226	5	ASCII_INTEGER	FIPS_P15_V	+15 volt monitor, FIPS
233	5	ASCII_INTEGER		-15 volt monitor, FIPS
240	5	ASCII_INTEGER		+5 volt monitor, FIPS
247	5	ASCII_INTEGER		-5 volt monitor, FIPS
254	5			+3.5 volt monitor, FIPS
	5		FIPS_P2DOT5_V	+2.5 volt monitor, FIPS
268	5	ASCII_INTEGER	VREF_I2C_TEMP	Vref I2C temperature.
275	5	ASCII_INTEGER		BH Bottom I2C temperature.
233 240 247 254 261 268	5 5 5 5 5 5 5	ASCII_INTEGER ASCII_INTEGER ASCII_INTEGER ASCII_INTEGER ASCII_INTEGER	FIPS_M15_V FIPS_P5_V FIPS_M5_V FIPS_P3DOT5_V FIPS_P2DOT5_V	 -15 volt monitor, FIPS +5 volt monitor, FIPS -5 volt monitor, FIPS +3.5 volt monitor, FIPS +2.5 volt monitor, FIPS Vref I2C temperature.

Table 29 EPPS	STATUS.FMT Fields

282	5	ASCII INTEGER	BH_TOP_I2C_TEMP	BH Top I2C temperature.
	5	—		1 1
289	5	ASCII_INTEGER	DSHV_I2C_TEMP	DS-HV I2C temperature.
296	5	ASCII_INTEGER	MCP_HV_MON	MCP-HV monitor.
303	5	ASCII_INTEGER	PA_HV_MON	PA-HV monitor.
310	5	ASCII_INTEGER	DSHV_MON	DSHV monitor.
317	5	ASCII_INTEGER	DSHV_STEP	Steps at which HV values were sampled.
324	5	ASCII_INTEGER	FIPS_BH_BOT_TEMP	BH bottom temperature, mux channel 6.
331	5	ASCII_INTEGER	FIPS_BH_TOP_TEMP	BH top temperature, mux channel 8.
338	3	ASCII_INTEGER	SPARE	Spare column.
343	5	ASCII_INTEGER	I2C_READ_CMD_ADDR	I2C read command address.
350	5	ASCII_INTEGER	I2C_READ_CMD_RES	I2C read command result.

Mission Elapsed Time in seconds at the end of the accumulation.

2. STATUS_INTERVAL Status interval in seconds.

3. FREE_MACRO_BLOCKS Number of macro blocks free.

4. WATCH_ADDRESS

Memory watch address.

5. WATCH_MEMORY Watched memory (page number)

6. WATCH_DATA Watched memory data.

7. SW_VERSION Software version number.

8. ALARM_ID Latest alarm ID.

9. ALARM_TYPE Latest alarm type. =0 persistent, =1 transient.

10. ALARM_COUNT Count of alarms.

11. CMD_EXEC Number of commands executed.

12. CMD_REJECT Number of commands rejected.

13. MAC_EXEC Macro commands executed.

14. MAC_REJECT Macro commands rejected.

15. MAC_ID ID of most recent macro executed. **16. MACRO_LEARN** Macro learn mode. =0 not learning, =1 learning.

17. MONITOR_RESPONSE Monitor response. =0 disabled, =1 enabled.

18. WRITE_ENABLE Memory write enable. =0 disabled, =1 enabled.

19. SPARE Spare column.

20. HVPS_I HVPS current.

21. HVPS_V HVPS voltage.

22. BIAS_I Bias current.

23. BIAS_V Bias voltage.

24. EPS_STATUS_WORD EPS status word.

25. LVPS_P5_V +5 volt monitor, I2C read of LVPS ADC on mux channel 0.

26. LVPS_M5_V -5 volt monitor, I2C read of LVPS ADC on mux channel 1.

27. LVPS_P12_V +12 volt monitor, I2C read of LVPS ADC on mux channel 2.

28. LVPS_M12_V -12 volt monitor, I2C read of LVPS ADC on mux channel 3.

29. LVPS_P5_I +5 current monitor, I2C read of LVPS ADC on mux channel 9.

30. LVPS_M5_I -5 current monitor, I2C read of LVPS ADC on mux channel 10.

31. LVPS_P12_I +12 current monitor, I2C read of LVPS ADC on mux channel 11.

32. LVPS_M12_I -12 current monitor, I2C read of LVPS ADC on mux channel 12.

33. EPS_TEMP EPS temperature, I2C read of LVPS ADC on mux channel 7.

34. LVPS_TEMP LVPS temperature, I2C read of VLPS ADC on mux channel 13. **35.** LVPS_PRIMARY_I Primary current monitor, I2C rad of LVPS ADC on mux channel 14.

36. LVPS_SWITCHED_I Switched primary current monitor, I2C read of LVPS ADC on mux channel 15.

37. FIPS_P15_V FIPS +15 volt monitor.

38. FIPS_M15_V FIPS –15 volt monitor.

39. FIPS_P5_V FIPS +5 volt monitor.

40. FIPS_M5_V FIPS –5 volt monitor.

41. FIPS_P3DOT5_V FIPS 3.5 volt monitor.

42. FIPS_P2DOT5_V FIPS 2.5 volt monitor.

43. VREF_I2C_TEMP FIPS Vref I2C temperature.

44. BH_BOT_I2C_TEMP FIPS BH BOT I2C temperature.

45. BH_TOP_I2C_TEMP FIPS BH TOP I2C temperature.

46. DSHV_I2C_TEMP FIPS DS-HV I2C temperature.

47. MCP_HV_MON MCP-HV monitor.

48. PA_HV_MON PA-HV monitor.

49. DSHV_MON DSHV Monitor.

50. DSHV_STEP Steps at which HV values were sampled.

51. FIPS_BH_BOT_TEMP FIPS BH Bottom temperature, I2C read of LVPS ADC on mux channel 6.

52. FIPS_BH_TOP_TEMP FIPS BH Top temperature, I2C read of LVPS ADC on mux channel 8.

53. SPARE Spare column.

54. I2C_READ_CMD_ADDR

I2C read command address.

55. I2C_READ_CMD_RES I2C read command result.

8.16 EPPS_LONG.FMT Table Fields

The following are the fields as defined by the EPPS_LONG.FMT structure file. This file defines the ASCII table containing the EPPS engineering status and housekeeping data taken from the EPPS Status Packet (updated by the version 5 flight software upload). This new EPPS status format contains an additional 48 columns over the old EPPS Status EDR. Refer to the data description following the table for more details on each field.

This EDR is the result of the FSW5 upload on 9/6/2007. For engineering and status data prior to 9/6/2007 use the EPPS Status EDR.

Start	Length	Data Type	Column Name	Summary (see full text for column
Byte	(bytes)			description)
1	12	ASCII_INTEGER	MET	Mission Elapsed Time in seconds.
15	5	ASCII_INTEGER	STATUS_INTERVAL	Status interval in seconds.
22	5	ASCII_INTEGER	MACRO_BLOCKS	Number of macro blocks free.
29	5	ASCII_INTEGER	WATCH_ADDRESS	Memory watch address.
36	3	ASCII_INTEGER	WATCH_MEMORY	Watched memory.
41	2 X 3	ASCII_INTEGER	WATCH_DATA	Watched memory data.
51	3	ASCII_INTEGER	SW_VERSION	Software version number.
56	3	ASCII_INTEGER	ALARM_ID	Latest alarm ID.
61	1	ASCII_INTEGER	ALARM_TYPE	Latest alarm type.
64	3	ASCII_INTEGER	ALARM_COUNT	Count of alarms.
69	3	ASCII_INTEGER	CMD_EXEC	Number of commands executed.
74	3	ASCII_INTEGER	CMD_REJECT	Number of commands rejected.
79	3	ASCII_INTEGER	MAC_EXEC	Macro commands executed.
84	3	ASCII_INTEGER	MAC_REJECT	Macro commands rejected.
89	3	ASCII_INTEGER	MAC_ID	ID of most recent macro executed.
94	1	ASCII_INTEGER	MACRO_LEARN	Macro learn mode.
97	1	ASCII_INTEGER	MONITOR_RESPONSE	Monitor response.
100	1	ASCII_INTEGER	WRITE_ENABLE	Memory write enable.
103	5	ASCII_INTEGER	LVPS_P5_V	+5 volt monitor,
110	5	ASCII_INTEGER	LVPS_M5_V	-5 volt monitor,
117	5	ASCII_INTEGER	LVPS_P12_V	+12 volt monitor,
124	5	ASCII_INTEGER	LVPS_M12_V	-12 volt monitor,
131	5	ASCII_INTEGER	EPS_TEMP	EPS temperature
138	5	ASCII_INTEGER	FIPS_BH_TOP_TEMP	FIPS BH Top temperature
145	5	ASCII_INTEGER	LVPS_P5_I	+5 current monitor.
152	5	ASCII_INTEGER	LVPS_M5_I	-5 current monitor.
159	5	ASCII_INTEGER	LVPS_P12_I	+12 current monitor.
166	5	ASCII_INTEGER	LVPS_M12_I	-12 current monitor.
173	5	ASCII_INTEGER	LVPS_TEMP	LVPS temperature
180	5	ASCII_INTEGER	LVPS_PRIMARY_I	Primary current monitor
187	1	ASCII_INTEGER	FIPS_15V_PWR	FIPS +15 volt Power enable
190	1	ASCII_INTEGER	FIPS_5V_PWR	FIPS +5 volt Power enable
193	2	ASCII INTEGER	EPS_START1	EPS start anode enable A0

Table 30 EPPS_LONG.FMT Fields

197	2	ASCII_INTEGER	EPS_TOF_MODE	EPS TOF mode
201	1	ASCII_INTEGER	EPS_ELEC_PIX_SIZE	EPS elec pix size
201 204	1	ASCII_INTEGER	EPS ION PIX SIZE	EPS ion pix size
204	2	ASCII_INTEGER	EPS_HV_LIMIT	EPS HV limit
207	2	ASCII_INTEGER	EPS_START2	EPS start anode enable A2-A5
211	1	ASCII_INTEGER	EPS HV CLKS	EPS HV clcks enable
213	1	ASCII_INTEGER	EPS_HV_ADC	EPS HV ADC enable
213	1	ASCII_INTEGER	EPS_HV_MON	EPS HV mon enable
224	1	ASCII_INTEGER	EPS_TOF_CLK	EPS TOF clck
224	1	ASCII_INTEGER	EPS_FLIGHT_MODE	EPS flight mode
230	4	ASCII_INTEGER	EPS_SSD_CHAN	EPS SSD channels
236	1	ASCII_INTEGER	EPS_MULTI_DET	EPS multi start/stop detection
230	1	ASCII_INTEGER	EPS_STIM_PORT	EPS stim port enable
239	1	ASCII_INTEGER	FIPS_FIFO	Stores the value of the FIPS FIFO.
242	1	ASCII_INTEGER	EPS_FIFO	EPS FIFO enable
243	1	ASCII_INTEGER	EPS_DIAG_MODE	EPS diagnostic mode enable
248	1	ASCII_INTEGER	EPS 12US LOCKOUT	EPS 12us lockout enable
254	1	ASCII_INTEGER	EPS_ION_TRIPLE	EPS ion triple events only
257	1	ASCII_INTEGER	EPS_COIN_STOP	EPS coincidence stop window
260	1	ASCII_INTEGER	EPS_COIN_START	EPS coincidence stop window EPS coincidence start window
263	1	ASCII_INTEGER	EPS_TEST_MODES	EPS test modes
265	2	ASCII_INTEGER	EPS ELEC DECIMATION	EPS electron decimation
200	5	ASCII_INTEGER	HVPS I	HVPS current.
270	5	ASCII_INTEGER	HVPS_V	HVPS voltage.
284	5	ASCII_INTEGER	BIAS_I	Bias current.
284	5			
291	5	ASCII_INTEGER	BIAS_V EPS_STATUS_WORD	Bias voltage. EPS status word.
305	5	ASCII_INTEGER		HVPS setting.
312	5	ASCII_INTEGER ASCII_INTEGER	HVPS_SET BIAS_SET	Bias setting.
312	5	ASCII_INTEGER	EPS_ION_FAST_1_3_5	Ion fast channels 1,3,5.
326	5	ASCII_INTEGER	EPS_ION_SHPD_1_3_5	Ion shaped channels 1,3,5.
333	5	ASCII_INTEGER	EPS_ION_FAST_7_9_11	Ion fast channels 7,9,11.
340	5	ASCII_INTEGER	EPS_ION_SHPD_7_9_11	Ion shaped channels 7,9,11.
340	5	ASCII_INTEGER	EPS_ELEC_FAST_0_2_4	Electron fast channels 0,2,4.
354	5	ASCII_INTEGER	EPS_ELEC_SPHD_0_2_4	Electron shaped channels 0,2,4.
361	5	ASCII_INTEGER	EPS_ELEC_FAST_6_8_10	Electron fast channels 6,8,10.
368	5	ASCII_INTEGER		Electron shaped channels 6,8,10.
375	5	ASCII_INTEGER	EPS_BIAS_CLOCK_ADJ	Bias clock adjust value.
382	5	ASCII_INTEGER	I2C_ERRORS	I2C bus error count.
389	5	ASCII_INTEGER	EPS_BUS_READ_VALUE	Most recent bus read command.
396	5	ASCII_INTEGER	FIPS_WEDGE	Wedge digitizer channel.
403	5	ASCII_INTEGER	FIPS_STRIP	Strip digitizer channel.
410	5	ASCII_INTEGER	FIPS_ZIGZAG	Zigzag digitizer channel.
417	5	ASCII_INTEGER	FIPS_P15_V	FIPS +15V monitor.
417	5	ASCII_INTEGER	FIPS M15 V	FIPS -15V monitor.
431	5	ASCII_INTEGER	FIPS_P5_V	FIPS +5V monitor.
431	5	ASCII_INTEGER	FIPS_M5_V	FIPS -5V monitor.
445	5	ASCII_INTEGER	FIPS_3DOT5_V	FIPS +3.5V monitor.
443	5	ASCII_INTEGER	FIPS_2DOT5_V	FIPS +2.5V monitor.
452	5	ASCII_INTEGER	V_REF_T	FIPS Vref I2C temperature.
459	5	ASCII_INTEGER	BH_TOP_I2C_T	FIPS bulkhead top temperature from I2C.
400	5	ASCII_INTEGER	DSHV_I2C_T	FIPS DSHV temperature from I2C.
475	5	ASCII_INTEGER	MCP_HV_MON	MCPHV monitor.
480	5	ASCII_INTEGER		PAHV monitor.
487	5	ASCII_INTEGER	PA_HV_MON DSHV_MON	DSHV monitor.
474	5	ASCII_INTEUEK		

501	5	ASCII_INTEGER	DSHV_STEP	Steps at which HV values were sampled.
508	1	ASCII_INTEGER	FIPS_PEAKHOLD_TRACK	FIPS peak hold/track.
511	1	ASCII_INTEGER	FIPS_PEAKHOLD	FIPS peak hold.
514	1	ASCII_INTEGER	FIPS_DUMPRAMP	FIPS dump/ramp.
517	1	ASCII_INTEGER	FIPS_EVENTTRIG	FIPS event trigger.
520	1	ASCII_INTEGER	FIPS_RETRIG	FIPS retrigger start dealy.
523	1	ASCII_INTEGER	FIPS_TOFCLOCK	FIPS time of flight clock select.
526	1	ASCII_INTEGER	FIPS_HIGHSPEED	FIPS LVDS power mode.
529	1	ASCII_INTEGER	FIPS_VALIDEVENT	FIPS valid event.
532	1	ASCII_INTEGER	FIPS_MCPHV	FIPS MCPHV enable.
535	1	ASCII_INTEGER	FIPS_PAHV	FIPS PAHV enable.
538	1	ASCII_INTEGER	FIPS_DSHV	FIPS DSHV enable.
541	1	ASCII_INTEGER	FIPS_STAT_MODE	FIPS mode.
544	1	ASCII_INTEGER	PAHVTRIPPED	PAHV autonomous shutdown flag.
547	1	ASCII_INTEGER	MCPHVTRIPPED	MCPHV autonomous shutdown flag.

Mission Elapsed Time in seconds.

2. STATUS_INTERVAL

Status interval in seconds.

3. FREE_MACRO_BLOCKS Number of macro blocks free.

4. WATCH_ADDRESS Memory watch address.

5. WATCH_MEMORY Watched memory (page number)

6. WATCH_DATA Watched memory data.

7. SW_VERSION Software version number.

8. ALARM_ID Latest alarm ID.

9. ALARM_TYPE Latest alarm type. =0 persistent, =1 transient.

10. ALARM_COUNT Count of alarms.

11. CMD_EXEC Number of commands executed.

12. CMD_REJECT Number of commands rejected.

13. MAC_EXEC Macro commands executed.

14. MAC_REJECT

EPPS EDR SIS

Macro commands rejected.

15. MAC_ID ID of most recent macro executed.

16. MACRO_LEARN Macro learn mode. =0 not learning, =1 learning.

17. MONITOR_RESPONSE Monitor response. =0 disabled, =1 enabled.

18. WRITE_ENABLE Memory write enable. =0 disabled, =1 enabled.

19. LVPS_P5_V +5 volt monitor.

20. LVPS_M5_V -5 volt monitor.

21. LVPS_P12_V +12 volt monitor.

22. LVPS_M12_V -12 volt monitor.

23. EPS_TEMP EPS temperature.

24. FIPS_BH_TOP_TEMP FIPS BH Top temperature.

25. LVPS_P5_I +5 current.

26. LVPS_M5_I -5 current monitor.

27. LVPS_P12_I +12 current monitor.

28. LVPS_M12_I -12 current monitor.

29. LVPS_TEMP LVPS temperature,

30. LVPS_PRIMARY_I Primary current monitor,

31. FIPS_15_V_PWR FIPS +15v Power enable =0 off, =1 on.

32. FIPS_5_V_PWR FIPS +5v Power enable. =0 off, =1 on.

33. EPS_START1

EPS_Start_Anode _Enable:A0, A1:Enable=1.

34. EPS_TOF_MODE EPS_TOF_MODE:half period, tap_sel1,tap_sel2.

35. EPS_ELEC_PIX_SIZE EPS_Elec_Pix_Size: large=0, small=1.

36. EPS_ION_PIX_SIZE EPS_Ion_Pix_Size: large=0, small=1.

37. EPS_HV_LIMIT EPS_HV_Limit (8 bit signed voltage limit).

38. EPS_START2 EPS_Start_Anode _Enable:A2-A5:Enable=1.

39. EPS_HV_CLKS EPS_HV_Clks_Enable: Enable=1.

40. EPS_HV_ADC EPS_HV_ADC_Enable: Enable=1.

41. EPS_HV_MON EPS_HV_Mon_Enable: Enable=1.

42. EPS_TOF_CLK EPS_TOF_Clk: 6MHz=1, 3MHz=0.

43. EPS_FLIGHT_MODE EPS_Flight_Mode: Flight=1, Ground_test=0.

44. EPS_SSD_CHAN EPS_SSD_Channels: 12 bit field for each SSD: enable=1.

45. EPS_MULTI_DET EPS_Multi_start/stop_Detection: Enable=1.

46. EPS_STIM_PORT EPS_Stim_Port_Enable: Enable=1.

47. FIPS_FIFOStores the status of the FIPS event FIFO.=0 FIPS events disabled, =1 FIPS events enabled in FIPS FIFO of EPU.

48. EPS_FIFO EPS_FIFO_Enable: Enable=1.

49. EPS_DIAG_MODE EPS_Diagnostic_Mode_Enable: Enable=1

50. EPS_12US_LOCKOUT EPS_12us_Lockout_Enable: Enable=1.

51. EPS_ION_TRIPLE EPS_Ion_Triple_Events_only: Enable=1. **52. EPS_COIN_STOP** EPS_Coincidence_Stop_window: 3 bit delay tap code.

53. EPS_COIN_START EPS_Coincidence_Start_window: 3 bit delay tap code.

54. EPS_TEST_MODES EPS_Test_Modes: Enable=1.

55. EPS_ELEC_DECIMATION EPS_Electron_Decimation: 7 bit discard rate.

56. HVPS_I HVPS current.

57. HVPS_V HVPS voltage.

58. BIAS_I Bias current.

59. BIAS_V Bias voltage.

60. EPS_STATUS_WORD EPS status word.

61. HVPS_SET HVPS setting.

62. BIAS_SET Bias Setting.

63. EPS_ION_FAST_1_3_5 Ion fast channels 1,3,5.

64. EPS_ION_SHPD_1_3_5 Ion shaped channels 1,3,5.

65. EPS_ION_FAST_7_9_11 Ion fast channels 7,9,11.

66. EPS_ION_SHPD_7_9_11 Ion shaped channels 7,9,11.

67. EPS_ELEC_FAST_0_2_4 Electron fast channels 0,2,4.

68. EPS_ELEC_SHPD_0_2_4 Electron shaped channels 0,2,4.

69. EPS_ELEC_FAST_6_8_10 Electron fast channels 6,8,10.

70. EPS_ELEC_SHPD_6_8_10 Electron shaped channels 6,8,10.

71. EPS_BIAS_CLOCK_ADJ Bias clock adjust value.

72. I2C_ERRORS I2C bus error count.

73. EPS_BUS_READ_VALUE Value provided by most recent bus command.

74. FIPS_WEDGE Wedge digitizer channel.

75. FIPS_STRIP Strip digitizer channel.

76. FIPS_ZIGZAG Zigzag digitizer channel.

77. FIPS_P15_V FIPS +15V monitor,

78. FIPS_M15_V FIPS -15V monitor.

79. FIPS_P5_V FIPS +5V monitor.

80. FIPS_M5_V FIPS –5V monitor.

81. FIPS_3DOT5_V FIPS +3.5V monitor.

82. FIPS_2DOT5_V FIPS +2.5V monitor.

83. V_REF_T FIPS Vref I2C temperature.

84. BH_TOP_I2C_T FIPS bulk head top temperature (read via I2C).

85. DSHV_I2C_T FIPS DSHV temperature (read via I2C).

86. MCP_HV_MON MCPHV monitor.

87. PA_HV_MON PAHV monitor.

88. DSHV_MON DSHV monitor.

89. DSHV_STEP Steps at which HV values were sampled.

90. FIPS_PEAKHOLD_TRACK FIPS Peak Hold/Track. =0 Peak hold for WSZ. =1 Peak track for WSZ.

91. FIPS_PEAKHOLD FIPS Peak Hold. =0 Disable =1 Enable.

92. FIPS_DUMPRAMP FIPS Dump/Ramp. =0 Dump, =1 Ramp.

93. FIPS_EVENTTRIG FIPS Event Trigger. =0 Transmit, =1 Start.

94. FIPS_RETRIG FIPS Retrigger start delay. =0 Non-retrig, =1 Retrig.

95. FIPS_TOFCLOCK FIPS Time of Flight Clock Select: =0 12MHz, =1 6MHz, =2 3MHz, =3 1.5MHz, =4 750kHz.

96. FIPS_HIGHSPEED FIPS LVDS Power mode. =0 Transmit, =1 Always.

97. FIPS_VALIDEVENT FIPS Valid Event. =0 No event, =1 Valid event.

98. FIPS_MCPHV FIPS MCPHV enable =0 off, =1 on.

99. FIPS_PAHV FIPS PAHV enable. =0 off, =1 on.

100.FIPS_DSHV FIPS DSHV enable. =0 off, =1 on.

101.FIPS_STAT_MODE FIPS mode =0 reset, =1 manual, =2 standby, =3 maneuver, =4 single.

102.PAHVTRIPPED FIPS autonomous shutdown flag for PAHV shutdown. =0 OK, =1 shutdown.

103.MCPHVTRIPPED

FIPS autonomous shutdown flag for MCPHV shutdown. =0 OK, =1 shutdown.

8.17 SPICE Kernel Files Used in MESSENGER Data Products

The following SPICE kernel files will be used to compute the UTC time and any geometric quantities found in the PDS labels. Kernel files will be generated throughout the mission with a filenaming convention specified by the MESSENGER project.

*.bsp:

MESSENGER spacecraft ephemeris file. Also known as the Planetary Spacecraft Ephemeris Kernel (SPK) file.

*.bc:

Messenger spacecraft orientation file. Also known as the Attitude C-Kernel (CK) file.

*.tf:

MESSENGER reference frame file. Also known as the Frames Kernel. Contains the MESSENGER spacecraft, science instrument, and communications antennae frame definitions.

*.ti:

MESSENGER instrument kernel (I-kernel). Contains references to mounting alignment, operation modes, and timing as well as internal and field of view geometry for the EPPS.

*.tsc:

MESSENGER spacecraft clock coefficients file. Also known as the Spacecraft Clock Kernel (SCLK) file.

*.tpc:

Planetary constants file. Also known as the Planetary Constants Kernel (PcK) file.

*.tls:

NAIF leapseconds kernel file. Used in conjunction with the SCLK kernel to convert between Universal Time Coordinated (UTC) and MESSENGER Mission Elapsed Time (MET). Also called the Leap Seconds Kernel (LSK) file.

8.18 CODMAC/NASA Definition of Processing Levels

CODMAC	Proc. Type	Data Processing Level Description
Level		
1	Raw Data	Telemetry data stream as received at the ground station, with science and engineering
		data embedded. Corresponds to NASA packet data.
2	Edited Data	Instrument science data (e.g. raw voltages, counts) at full resolution, time ordered, with duplicates and transmission errors removed. Referred to in the MESSENGER
		program as Experiment Data Records (EDRs). Corresponds to NASA Level 0 data.
3	Calibrated Data	Edited data that are still in units produced by instrument, but have transformed (e.g. calibrated, rearranged) in a reversible manner and packaged with needed ancillary and auxiliary data (e.g. radiances with calibration equations applied). Referred to in the MESSENGER Program as Calibrated Data Records (CDRs). In some cases these also qualify as derived data products (DDRs). Corresponds to NASA Level 1A.
4	Resampled	Irreversibly transformed (e.g. resampled, remapped, calibrated) values of the
	data	instrument measurements (e.g. radiances, magnetic field strength). Referred to in the MESSENGER program as either derived data products (DDPs) or derived analysis products (DAPs). Corresponds to NASA Level 1B.
5	Derived Data	Derived results such as maps, reports, graphics, etc. Corresponds to NASA Levels 2 through 5
6	Ancillary Data	Non-Science data needed to generate calibrated or resampled data sets. Consists of instrument gains, offsets; pointing information for scan platforms, etc.
7	Corrective	Other science data needed to interpret space-borne data sets. May include ground
	Data	based data observations such as soil type or ocean buoy measurements of wind drift.
8	User	Description of why the data were required, any peculiarities associated with the data
	Description	sets, and enough documentation to allow secondary user to extract information from the data.

Table 31 CODMAC/NASA Definition of processing levels for science data sets

The above is based on the national research council committee on data management and computation (CODMAC) data levels.

8.19 MESSENGER Glossary and Acronym List

ACT ADC AMU	Applied Coherent Technology Corporation Analog-to-Digital Converter Atomic Mass Unit
APL	The Johns Hopkins university Applied Physics Laboratory
ASCII	American Standard Code for Information Interchange
BH	Bulk Head
CCSDS	Consultative Committee for Space Data Systems
CDR	Calibrated Data Record
CK	Attitude C-Kernel (SPICE)
CODMAC Co-I	Committee on Data Management and Computation
DAP	Co-Investigator Derived Analysis Products
DDP	Derived Data Products
DN	Digital number, the raw telemetry count
DPU	Data Processing Unit
DSHV	Deflection System High Voltage
DSN	Deep Space Network
EDR	Experiment Data Records
EPPS	Energetic Particle and Plasma Spectrometer
EPS	Energetic Particle Spectrometer
ESA	Electrostatic Analyzer
ET	Ephemeris Time
FIFO	First In, First out. An electronic component that stores and
	retrieves information following a first-in-first-out discipline.
FIPS	Fast Imaging Plasma Spectrometer
FOV FSW	Field-of-View Flight Software
FTP	File Transfer protocol
GC	Geochemistry Group
GP	Geophysics Group
GRNS	Gamma-ray and Neutron Spectrometer
GRS	Gamma-ray Spectrometer
GSFC	Goddard Space Flight Center
HV	High Voltage
HVPS	High Voltage Power Supply
I&T	Integration and Test
12C	Inter-Integrated Circuit
JPL	Jet Propulsion Laboratory
IEM	Integrated Electronic Module
LSB LSK	Least Significant Bit Leapseconds Kernel (SPICE)
LVPS	Low Voltage Power Supply
MAG	Magnetometer
MASCS	Mercury Atmospheric and Surface Composition Spectrometer
MCP	Micro-channel Plate
MCPHV	Micro-channel Plate High Voltage
MDIS	Mercury Dual Imaging System
MESSENGER	MErcury, Surface, Space ENvironment, GEochemistry, and Ranging
MET	Mission Elapsed Time
MLA	Mercury Laser Altimeter
NAIF	Navigation and Ancillary Information Facility
NASA NS	National Aeronautics and Space Administration Neutron Spectrometer
PAHV	Post Acceleration High Voltage
PCK	Planetary Constant Kernel (SPICE)
PDS	Planetary Data System
PHA	Pulse Height Analysis
PPI	Planetary Plasma Interactions PDS Node
RDR	Reduced Data Record

SCLK SOC SPICE	Space Clock Kernel (SPICE) Science Operations Center Spacecraft, Planet, Instrument, C-matrix Events, refers to the kernel files and NAIF software used to generate viewing geometry.
SPK SQL SSD SSR TOF UTC	Spacecraft and Planets Kernel (SPICE) Structured Query Language Solid-State Detector Space Sciences Review Time of Flight Coordinated Universal Time
XRS	X-Ray Spectrometer