Juno
Jovian Auroral Distributions Experiment

JADE Standard Product
 Data Record and Archive Volume Software Interface Specification

Version 02.00
2018-August-07

Prepared by
R. J. Wilson

Juno
 Jovian Auroral Distributions Experiment
 JADE Standard Product
 Data Record and Archive Volume Software Interface Specification

Custodian:

Rob J. Wilson
JADE Archivist
Approved:

Date

Frederic Allegrini
Date
JADE Lead

William Kurth
Juno Archivist

Prachet Mokashi
Date
JSOC Manager

Raymond J. Walker
PDS/PPI Node Manager

Reta Beebe
Date
PDS/ATMOS Node Manager

Table of Contents

Table of Contents iii
List of Figures vi
List of Tables vii
1 Introduction 1
1.1 Distribution list
1.2 Document change log 2
1.3 TBD items 2
1.4 Abbreviations 3
1.5 Glossary 6
1.6 Juno Mission Overview 8
1.7 SIS Content Overview 8
1.8 Scope of this document 9
1.9 Applicable Documents 9
1.10 Audience 9
2 JADE Instrument Description 10
3 Data Set Overview 11
3.1 Data Sets 11
3.1.1 MCP Calibration (CAL) Data Set 14
3.1.2 High Rate Science (HRS) Data Set 15
3.1.3 High Voltage Engineering (HVE) Data Set 15
3.1.4 Low Rate Science (LRS) Data Set 15
3.1.5 Data units for Level 2 Products 16
3.1.6 DATA object vs. onboard data BLOB for Level 2 Products 16
3.1.7 Occasional jitter in reported times 16
3.2 Data Flow 17
3.3 Data Processing and Production Pipeline 19
3.3.1 CODMAC Level 2 Data Production Pipeline 19
3.3.2 CODMAC Level 3 Data Production Pipeline 20
3.4 Data Validation 20
3.4.1 Instrument Team Validation 20
3.4.2 Science Team Validation 20
4 Archive volume generation 21
4.1 Data transfer methods and delivery schedule 21
4.2 Data validation 22
4.3 Data product and archive volume size estimates 22
4.4 Backups and duplicates 23
4.5 Labeling and identification 24
5 Archive volume contents 25
5.1 Root directory 26
5.2 BROWSE directory (Not for Level 2 Volume) 26
5.3 CALIB directory (Level 3 Volume Only) 26
5.4 CATALOG directory 28
5.5 DATA directory 29
5.5.1 Contents 29
5.5.2 Subdirectory structure 29
5.5.3 Required files 29
5.5.4 The yyyy/yyyyddd subdirectory 30
5.5.4.1 The ELECTRONS subdirectory 31
5.5.4.2 The ION_DIRECT_EVENTS subdirectory 32
5.5.4.3 The ION_LOGICALS subdirectory 32
5.5.4.4 The ION_SPECIES subdirectory 32
5.5.4.5 The ION_TOF subdirectory 33
5.6 DOCUMENT directory 34
5.7 EXTRAS directory 35
5.8 INDEX directory. 35
6 Archive volume format. 36
6.1 Volume format 36
6.2 File formats 36
6.2.1 Document files 36
6.2.2 Tabular files 36
6.2.3 PDS labels 37
6.2.4 Catalog files 38
6.2.5 Index files. 38
6.2.6 Binary formats of files 38
6.2.7 Days without Data 38
6.2.8 Level 2 data files 40
6.2.8.1 Electron Data 52
6.2.8.2 Ion Species Data 64
6.2.8.3 Ion Time of Flight Data 68
6.2.8.4 Ion Logicals Data 70
6.2.8.5 Ion Direct Events Data 73
6.2.9 Level 3 data files 77
6.2.9.1 Electron Data. 90
6.2.9.2 Ion Species Data 97
6.2.9.3 Ion Time of Flight Data 101
6.2.9.4 Ion Logicals Data 105
6.2.9.5 Level 3 conversion of data 109
6.2.10 Level 4 data files 117
6.2.11 Level 5 data files 117
Appendix A Support staff and cognizant persons. 118
Appendix B PDS label files 119
B. 1 Sample LBL file for JAD_L20_LRS_ELC_ANY_* 119
B. 2 Sample LBL file for JAD_L20_LRS_ION_ANY_* 134
Appendix C Level 2 data record formats 148
Appendix D Level 3 data record formats 149
D. 1 Sample FMT file for JAD_L30_HRS_ELC_ALL_CNT_V02.FMT 149
D. 2 Sample FMT file for JAD_L30_HLS_ION_TOF_CNT_V02.FMT 173

Appendix E Level 5 data record formats ... 199

List of Figures

Figure 1: Juno science data flow diagram. White boxes are processes and solid arrows indicate data flow. 18

Figure 2: JADE science data pipeline diagram.. 19
Figure 3: Duplication and dissemination of JADE standard archive volumes. 23
Figure 4: Archive volume directory structure... 25
Figure 5: 'Periodic' table comparing the different JADE products, giving their packet ID number in hex (DPID in figure key, see entry in Table 35), decimal, the PDS name fragment and information on what type of compression was used, and whether it records counts per accumulation or count rates. ... 42

Figure 6: Breaking out the JADE Level 2 products in to the different Objects to allow similarities to be drawn
Figure 7: JADE-E Anodes vs. Look Directions (see Table 39 for the values) 52
Figure 8: JADE-I Anodes. 64
Figure 9: The Ion Spin Phase Sector mapping to ion anode and spin phase (start angles). 65
Figure 10: Breaking out the JADE Level 3 products in to the different PDS Objects to allow similarities to be drawn. 80
Figure 11: The Jupiter De-Spun-Sun (JUNO_JSS) co-ordinate system. 116
List of Tables
Table 1: Distribution list 1
Table 2: Document change log 2
Table 3: List of TBD items 2
Table 4: Abbreviations and their meaning 3
Table 5: CODMAC Levels of Data Descriptions and Meaning to JADE 7
Table 6: Relationship Between Data Sets and Standard Data Products 13
Table 7: Standard Data Product Contents 14
Table 8: Archive Schedule and Responsibilities 21
Table 9: Data product size and archive volume production rate (per version number) 22
Table 10: PDS Data Set Volume Assignments 24
Table 11: Root directory contents 26
Table 12: BROWSE directory contents 26
Table 13: CALIB directory contents 26
Table 14: CATALOG directory contents 28
Table 15: DATA directory contents 29
Table 16: CODMAC Level 2 DATA/yyyy/yyyyddd directory contents 30
Table 17: CODMAC Level 3 DATA/yyyy/yyyyddd directory contents 30
Table 18: DATA/yyyy/yyyyddd/ELECTRONS directory contents for Level 2 data 31
Table 19: DATA/yyyy/yyyyddd/ELECTRONS directory contents for Level 3 data 31
Table 20: DATA/yyyy/yyyyddd/ION_DIRECT_EVENTS directory contents 32
Table 21: DATA/yyyy/yyyyddd/ION_LOGICALS directory contents for Level 2 data 32
Table 22: DATA/yyyy/yyyyddd/ION_LOGICALS directory contents for Level 3 data 32
Table 23: DATA/yyyy/yyyyddd/ION_SPECIES directory contents for Level 2 data 33
Table 24: DATA/yyyy/yyyyddd/ION_SPECIES directory contents for Level 3 data 33
Table 25: DATA/yyyy/yyyyddd/ION_TOF directory contents for Level 2 data 33
Table 26: DATA/yyyy/yyyyddd/ION_TOF directory contents for Level 3 data 33
Table 27: DOCUMENT directory contents 34
Table 28: EXTRAS subdirectory contents 35
Table 29: INDEX directory contents 35
Table 30: Format of index files for Level 2 39
Table 31: Format of index files for Level 3 39
Table 32: Size of a record of each Level 2 product. 41
Table 33: Data Collection types by dimensions. 44
Table 34: Data Collection types by units (green), lossy bit compression (red) and number of Level 2 files (purple). 44
Table 35: Format of Level 2 data record header for all binary data files. 45
Table 36: Format of Level 2 data record sub-header for all binary data files of one sensor. 49
Table 37: Format of Level 2 data record sub-header for all binary data files of all electron sensors 49
Table 38: Full description of the ISSUE flag in the FMT/LBL files 50
Table 39: Electron anode mapping to bins and look directions. (Note: Electron spin phasesectors are over many anodes and require an equation, see section 6.2.8.1.4.)53
Table 40: Format of Level 2 data records for JAD_L20_CAL_ELC_ALL_* 55
Table 41: Format of Level 2 data records for JAD_L20_HRS_ELC_ALL_* 57
Table 42: Format of Level 2 data records for JAD_L20_HVE_ELC_ALL_* 59
Table 43: Format of Level 2 data records for JAD_L20_LRS_ELC_ANY_* 61
Table 44: Format of Level 2 data records for JAD_L20_HRS_ION_ANY_* 64
Table 45: Format of Level 2 data records for JAD_L20_HVE_ION_ALL_* 65
Table 46: Format of Level 2 data records for JAD_L20_LRS_ION_ANY_* and JAD_L20_CAL_ION_ANY_* 67
Table 47: Format of Level 2 data records for JAD_L20_HLC_ION_TOF_* 68
Table 48: Format of Level 2 data records for JAD_L20_HVE_ION_TOF_* 69
Table 49: Format of Level 2 data records for JAD_L20_HLC_ION_LOG_* 70
Table 50: Format of Level 2 data records for JAD_L20_HVE_ION_LOG_* 72
Table 51: Format of Level 2 data records for JAD_L20_ALL_ION_DER_* 73
Table 52: Description of DATA two-byte words for JAD_L20_ALL_ION_DER_* files to show how it is split out for the JAD_L20_ALL_ION_DES_* files. 74
Table 53: Format of Level 2 data records for JAD_L20_ALL_ION_DES_* 75
Table 54: Size of a record of each Level 3 product. 79
Table 55: Mapping Level 2 data files to Level 3 data files 79
Table 56: Format of Level 3 data record header 81
Table 57: Format of Level 3 data record subheader for Level 3 ion products. 88
Table 58: Format of Level 3 data record subheader for JAD_L30_HRS_ELC_ALL_* 88
Table 59: Format of Level 3 data record subheader for JAD_L30_HRS_ELC_TWO_* 88
Table 60: Format of Level 3 data record subheader for JAD_L30_LRS_ELC_ANY_* 89
Table 61: Format of Level 3 data records for JAD_L30_HRS_ELC_ALL_CNT 90
Table 62: Format of Level 3 data records for JAD_L30_HRS_ELC_TWO_CNT 94
Table 63: Format of Level 3 data records for JAD_L30_LRS_ELC_ANY_CNT 96
Table 64: Format of Level 3 data records for JAD_L30_HRS_ION_ANY_CNT 97
Table 65: Format of Level 3 data records for JAD_L30_LRS_ION_ANY_CNT 100
Table 66: Format of Level 3 data records for JAD_L30_HLS_ION_TOF_CNT 102
Table 67: Format of Level 3 data records for JAD_L30_HLS_ION_LOG_CNT. 106
Table 68: Format of Level 5 primary science data file records 117
Table 69: Archive collection support staff. 118

1 Introduction

This software interface specification (SIS) describes the format and content of the Jovian Auroral Distributions Experiment (JADE) Planetary Data System (PDS) data archive. It includes descriptions of the Standard Data Products and associated metadata, and the volume archive format, content, and generation pipeline.

1.1 Distribution list

Table 1: Distribution list

Name	Organization	Email
Rob Wilson	LASP, JADE archivist	rob.wilson@lasp.colorado.edu
Chad Loeffler	SwRI, JADE FSW specialist	cloeffler@swri.edu
Frédéric Allegrini	SwRI, JADE Lead and JADE-E Scientist	fallegrini@swri.edu
Rob Ebert	SwRI, JADE-I Scientist	rebert@swri.edu
Phil Valek	SwRI	PValek@swri.edu
Bradley Trantham	SwRI	BTrantham@swri.edu
Fran Bagenal	LASP	Fran.Bagenal@lasp.colorado.edu
Kyung Chae	JADE Operations Lead	kchae@swri.edu
Nigel Angold	JADE Operations Second	nigel.angold@nasa.gov
Barry Birdwell	JADE Project Manager	BBirdwell@swri.edu
David McComas	Princeton	DMcComas@princeton.edu
Prachet Mokashi	JSOC Manager	PMokashi@swri.edu
William Kurth	Juno Archivist	william-kurth@uiowa.edu
Reta Beebe	PDS/ATMOS Node Manager	rbeebe@nmsu.edu
Steve Joy	UCLA/PDS/PPI	sjoy@igpp.ucla.edu
Joe Mafi	UCLA/PDS/PPI	jmafi@igpp.ucla.edu
Ray Walker	UCLA/PDS/PPI	rwalker@igpp.ucla.edu

1.2 Document change log

Table 2: Document change log

Change	Date	Affected portion
Initial template	$01 / 15 / 2010$	All
First draft for JADE	$04 / 15 / 2013$	All
Second draft for JADE	$08 / 30 / 2013$	All
FSW 3 Level 3 SIS parts added	$06 / 30 / 2014$	DPID changed to DPID_COUNT Removed Bill Knopf, Michael New and Tom Morgan from the signature list (email 20 ${ }^{\text {th }}$ Nov '13) Version 02 Level 2 data: Change is an extra object (SCLKSCET_VERSION), and a bug in JAD_HRS_ION_TOF has been fixed from V01. Only V02 now provided to PDS.
FSW3 Level 2 Liens addressed. (Since accepted.)	$06 / 30 / 2015$	All
First draft of FSW4 (rather than FSW3 above) SIS.	$12 / 13 / 2015$	All previous SIS documents were for FSW 3, 2011- 2014 data. In 2015 FSW 4 was uploaded, with new formats, and a new PDS Volume was started. This is the first draft of a FSW 4 only SIS. Previous FSW 3 will have its own volume in the PDS
Second draft of FSW4	$11 / 07 / 2016$	All. Updates to SIS for PDS peer review for Cruise Data Delivery deadline.
Third draft of FSW4	$01 / 04 / 2017$	Clarifying updates here and there while waiting for PDS peer review. Bit 4 and Bit 12 added to ISSUES flag in Table 38, and LRS/CAL ion species when ACCUMULATIONT_TIME = 30 warnings added to section 6.2.8.2.3.
Fourth draft of FSW4 to meet PDS peer review liens	$05 / 19 / 2017$	Clarifications and extra explanations, etc. in response to PDS peer review liens. Section ‘Occasional jitter in reported times' added.
Version 01 released	$07 / 17 / 2017$	All - PDS peer review completed
Version 02 released	$08 / 07 / 2018$	An update for L3 V02 files. For differences from SIS Version 01 to SIS Verions 02: see JADE_FSW4_SIS_V02_DIFF_V01.PDF

1.3 TBD items

Table 3 lists items that are not yet finalized.
Table 3: List of TBD items

Item	Sections	Pages(s)

1.4 Abbreviations

Table 4: Abbreviations and their meaning

Abbreviation	
ASCII	American Standard Code for Information Interchange
BLOB	Binary Large OBject, i.e. a data blob is a large array of binary data
BRT	JADE Burst mode (FSW 3 only)
CAL	JADE Calibration mode
CATS	Juno version of CATS (Cassini Archive Tracking System)
CCSDS	Consultative Committee for Space Data Systems
CD-ROM	Compact Disc - Read-Only Memory
CDR	Calibrated Data Record
CFDP	CCSDS File Delivery Protocol
CHAR	Bytes representing a character string
CK	C-matrix Kernel (NAIF orientation data)
CNT	Units of counts per second, used in filenames
CODMAC	Committee on Data Management, Archiving, and Computing
CRC	Cyclic Redundancy Check
DAC	Digital to Analogue Conversion
DAP	Data Analysis Product
DAT	PDS binary file
DDR	Derived Data Record
DER	JADE Direct Events (Raw) mode
DES	JADE Direct Events (Split-out) mode
DOUBLE	An 8-byte (double-precision) real floating point value
DMAS	Data Management and Storage
DSN	Deep Space Network
DVD	Digital Versatile Disc
DVD-R	DVD - Recordable media
E\&PO	Educational and Public Outreach
EDA	End of data acquisition
EDR	Experiment Data Record
EFB	Earth Fly By
EGA	Earth Gravity Assist
ELC	ELeCtron sensor
SPDR	Standard Product (Experiment and Pipeline) Data Record
FEI	File Exchange Interface
FGM	The 3-letter code for the magnetometer instrument on Juno.
Also known as MAG.	
FLOAT	A-byte (single-precision) real floating point value
FMT	FOV

FTP	File Transfer Protocol
GB	Gigabyte(s)
GCR	Galactic Cosmic Ray
GRAV	Orbit type focusing on gravity rather than MWR
GSFC	Goddard Space Flight Center
HK	Housekeeping
HLC	High rate, Low rate and Calibration mode
HLS	High and Low rate Science (or HLC minus Calibration)
HRS	JADE High Rate Science mode
HSK	JADE Housekeeping
HTML	Hypertext Markup Language
HV	High Voltage
HVE	High Voltage Engineering mode
HVENG	High Voltage ENGineering mode
HVCO	High Voltage Check Out
ICD	Interface Control Document
INT8	8-bit (1-byte) Signed Integer
INT16	16-bit (2-bytes) Signed Integer
INT32	32-bit (4-bytes) Signed Integer
IOT	Instrument Operations Team
ISO	International Standards Organization
JADE	Jovian Auroral Distributions Experiment
JEDI	Jupiter Energetic Particle Detector Instrument
JIRAM	Jupiter InfraRed Auroral Mapper
JOI	Jupiter Orbit Insertion
JPL	Jet Propulsion Laboratory
JSC	Johnson Spaceflight Center
JSOC	Juno Science Operations Center
JSS	Jupiter De-Spun-Sun co-ordinate system
LASP	Laboratory for Atmospheric and Space Physics, University of Colorado
LBL	PDS label file
LET	Lineal Energy Transport
LSB	Least Significant Byte first (also known as little endian)
LSB_INTEGER	PDS binary format: 1-, 2-, and 4- byte signed integers (little endian)
LSB_UNSIGNED_INTEGER	PDS binary format: 1-, 2-, and 4- byte unsigned integers (little endian)
LOG	LOGigical counters (ion data)
LRS	JADE Low Rate Science mode
LUT	Look-Up Table(s)
MAG	Magnetometer Instrument (also known as FGM)
MB	Megabyte(s)
MCP	Micro Channel Plate

MOS	Mission Operations System
MWR	Microwave Radiometer Instrument
NAIF	Navigation and Ancillary Information Facility (JPL)
NASA	National Aeronautics and Space Administration
NSSDC	National Space Science Data Center
ODL	Object Description Language
PCK	Planetary Cartographic and Physical Constants Kernel (NAIF)
PC_REAL	PDS binary format: $4-, 8$-, and 10 - byte real numbers in IBM/PC format (little endian)
PDS	Planetary Data System
PPI	Planetary Plasma Interactions Node (PDS)
RDR	Reduced Data Record
RPM	Revolutions per Minute
RSSG	Radio Science System Group
SCET	Spacecraft Event Time
SCLK	Spacecraft Clock
SEU	Single Event Upset
SIS	Software Interface Specification
SOC	Science Operations Center
SPDR	Standard Product Data Record
SPE	Solar Particle Event
SPICE	Spacecraft, Planet, Instrument, C-matrix, and Events, (NAIF data format)
SPWG	Science Planning Working Group
SPK	SPICE (ephemeris) Kernel (NAIF)
SSH	Secure Shell
SwRI	Southwest Research Institute
TAR	Tape Archives (file format)
TBC	To Be Confirmed
TBD	To Be Determined
TEP	Tissue Equivalent Plastic
TOF	Time Of Flight
UINT8	8-bit (1-byte) Unsigned Integer
UINT16	16-bit (2-bytes) Unsigned Integer
UINT32	32-bit (4-bytes) Unsigned Integer
UCLA	University of California, Los Angeles
UVS	Ultraviolet Spectrometer Instrument
V-EGA	Venus-Earth Gravity Assist

1.5 Glossary

Archive - An archive consists of one or more data sets along with all the documentation and ancillary information needed to understand and use the data. An archive is a logical construct independent of the medium on which it is stored.
Archive Volume - A volume is a logical organization of directories and files in which data products are stored. An archive volume is a volume containing all or part of an archive; i.e. data products plus documentation and ancillary files.
Archive Volume Set - When an archive spans multiple volumes, they are called an archive volume set. Usually the documentation and some ancillary files are repeated on each volume of the set, so that a single volume can be used alone.
Catalog Information - High-level descriptive information about a data set (e.g. mission description, spacecraft description, instrument description), expressed in Object Description Language (ODL), which is suitable for loading into a PDS catalog.
CODMAC Levels - Descriptive data labels to inform you of the amount of processing from the original raw data product (as defined by the Committee on Data Management, Archiving, and Computing). These are different to NASA levels. Note that JADE data does not require CODMAC level 4 files; the PDS will ultimately contains JADE Level 2, 3 and 5 data. See Table 5 for the different level definitions.
Data Product - A labeled grouping of data resulting from a scientific observation, usually stored in one file. A product label identifies, describes, and defines the structure of the data. An example of a data product is a planetary image, a spectral table, or a time series table.
Data Set - A data set is an accumulation of data products together with supporting documentation and ancillary files.
Experiment Data Record - An accumulation of raw output data from a science instrument, in chronological order, with duplicate records removed, together with supporting documentation and ancillary files.
Pipeline Data Record - An accumulation of calibrated data from a science instrument, derived from experiment data records, together with supporting documentation, calibration data, and ancillary files.
Standard Data Product - A data product generated in a predefined way using well-understood procedures and processed in "pipeline" fashion. Data products that are generated in a nonstandard way are sometimes called special data products.

Table 5: CODMAC Levels of Data Descriptions and Meaning to JADE

CODMAC Level	Description	Meaning for JADE	$\begin{aligned} & \text { Stored } \\ & \text { JSOOC } \\ & \text { / PDS } \end{aligned}$	NASA Level
$\begin{gathered} 1 \\ \text { (Raw) } \end{gathered}$	Telemetry data stream as received at the ground station, with science and engineering data embedded.	Packet Data (Highly Compressed)	No	Packet Data
2 (Edited)	Instrument science data (e.g., raw voltages, counts) at full resolution, time ordered, with duplicates and transmission errors removed.	Unpacked Data (Engineering Units.)	Yes	0
$\stackrel{3}{\text { (Calibrated) }}$	Level 2 data that have been located in space and may have been transformed (e.g., calibrated, rearranged) in a reversible manner and packaged with needed ancillarydata (e.g., radiances with the calibration equations applied).	Unpacked Data (Scientific Units.)	Yes	1-A
4 (Resampled)	Irreversibly transformed (e.g., resampled, remapped, calibrated) values of the instrument measurements (e.g., radiances, magnetic field strength).	Not used for JADE (Better for images than plasma data)	N/A	1-B
$\begin{gathered} 5 \\ \text { (Derived) } \end{gathered}$	Level 3 or 4 data that have been resampled and mapped onto uniform space-time grids. The data are calibrated (i.e., radiometrically corrected) and may have additional corrections applied (e.g., terrain correction).	e.g. Plasma Parameters, Pitch Angle Distributions [TBD]	Yes	1-C
	Geophysical parameters, generally derived from Level 3 or 4 data, and located in space and time commensurate with instrument location, pointing, and sampling.			2
	Geophysical parameters mapped onto uniform Space-time grids.			3
	Any product that also requires data from another instruments for its derivation. (i.e. electron pitch angle derivation requires both level 3 MAG and level 3 electron data.)			2

Table inspired by Appendix F of the Planetary Data System Archive Preparations Guide (APG), Version 1.4 (April 1, 2010) found at https://pds.nasa.gov/documents/apg/apg.pdf.

However they compared CODMAC Levels to NASA Levels and had a description based on NASA levels, which this author has altered in the table above to refer to CODMAC levels. This author also added the final level 5 line about products requiring additional data from other instruments.

1.6 Juno Mission Overview

Juno launched on the first day of its launch window, 5 August 2011. The spacecraft used a $\Delta \mathrm{V}$ EGA trajectory consisting of deep space maneuvers on 08 August 2012 and 14 September 2012 followed by an Earth gravity assist (EGA) on 9 October 2013. Jupiter arrived on 5 July 2016 (UTC), using two 53-day capture orbits prior to commencing operations for a 5-(Earth) year long prime mission comprising 34 high inclination, high eccentricity orbits of Jupiter. Instead of firing the engines a second time to get to the originally intended 14-day orbits, it was decided not to, and remain in the 53-day orbital periods (altering the 34 orbit prime mission duration from the original 1 year to 5 years). The orbit is polar (90° inclination) with a periapsis altitude of ~ 4200 km and a semi-major axis of $\sim 113 \mathrm{R}_{\mathrm{J}}\left(1 \mathrm{R}_{\mathrm{J}}\right.$ is one Jovian radius, $\left.\sim 71492 \mathrm{~km}\right)$. The primary science is acquired for ~ 6 hours, \sim centered on each periapsis although fields and particles data are acquired at low rates for the remaining orbit. Of the first 9 periapses, 4 were dedicated to microwave radiometry (MWR orbits) of Jupiter's deep atmosphere, 4 were dedicated to gravity measurements (GRAV orbits) to determine the structure of Jupiter's interior, and Juno went in to Safe mode on orbit 2 resulting in no perijove data. All orbits will include fields and particles measurements of the planet's auroral regions. Juno is spin stabilized with a rotation rate of 1 to 3 revolutions per minute (RPM). For the MWR orbits the spin axis is, usually, perpendicular to the orbit plane so that the radiometer fields of view pass through the nadir, but is tilted for some orbits. For gravity passes, the spin axis is aligned to the Earth direction, allowing for Doppler measurements through the periapsis portion of the orbit. The orbit plane is initially very close to perpendicular to the Sun-Jupiter line and evolves over the mission. Data acquired during the periapsis passes are recorded and played back over the subsequent apoapsis portion of the orbit.

Juno's instrument complement includes Gravity Science using the X and Ka bands to determine the structure of Jupiter's interior; vector fluxgate magnetometer (MAG) to study the magnetic dynamo and interior of Jupiter as well as to explore the polar magnetosphere; and a microwave radiometer (MWR) experiment covering 6 wavelengths between 1.3 and 50 cm to perform deep atmospheric sounding and composition measurements. The instrument complement also includes a suite of fields and particle instruments to study the polar magnetosphere and Jupiter's aurora. This suite includes an energetic particle detector (JEDI), a Jovian auroral (plasma) distributions experiment (JADE), a radio and plasma wave instrument (Waves), an ultraviolet spectrometer (UVS), and a Jupiter infrared auroral mapping instrument (JIRAM). The JunoCam is a camera included for education and public outreach. While this is not a science instrument, we plan to capture the data and archive them in the PDS along with the other mission data. Appendix A includes Lead Co-Is and archivists for JADE, along with the associated PDS Discipline Node.

1.7 SIS Content Overview

Section 2 describes the JADE instrument. Section 3 describes the data sets, data flow, and validation. Section 4 describes the structure of the archive volumes and contents of each file. Section 5 describes the file formats used in the archive volumes.
Individuals responsible for generating the archive volumes are listed in Appendix A. PDScompliant label files for all JADE standard data products are itemized and described in Appendix B , while the data products file headers and data record formats are itemized and described in section 6, Appendix C, and Appendix D respectively.

1.8 Scope of this document

The specifications in this SIS apply to all JADE Standard Data Record products submitted for archive to the Planetary Data System (PDS), for all phases of the Juno mission. Some sections of this document describe parts of the JADE archive and archiving process that are managed by the PDS archive team. These sections have been provided for completeness of information and are not maintained by the JADE team.

This document is not intended as a JADE Users Guide; it describes the data, not how to interpret the data for science. Seek guidance from the JADE team for how to use the data.

1.9 Applicable Documents

ISO 9660-1988, Information Processing—Volume and File Structure of CD-ROM for Information Exchange, 04/15/1988.
Planetary Data System Archive Preparation Guide, Version 1.1, JPL D-31224, 08/29/2006.
Planetary Data System Standards Reference, JPL D-7669, Part 2, Version 3.8, 02/27/2009.
Planetary Science Data Dictionary Document, Planetary Data System, JPL D-7116, Version 1r65, 02/2007.

Juno Mission Operations Concept Document, JPL D-35531, Version Preliminary, 04/30/2007. Juno Science Data Management and Archive Plan, Version Final, JPL D-34032, 08/26/2009.

The JADE Instrument Paper (also see section 2):
McComas, D.J. and Alexander, N. and Allegrini, F. and Bagenal, F. and Beebe, C. and Clark, G. and Crary, F. and Desai, M.I. and De Los Santos, A. and Demkee, D. and Dickinson, J. and Everett, D. and Finley, T. and Gribanova, A. and Hill, R. and Johnson, J. and Kofoed, C. and Loeffler, C. and Louarn, P. and Maple, M. and Mills, W. and Pollock, C. and Reno, M. and Rodriguez, B. and Rouzaud, J. and Santos-Costa, D. and Valek, P. and Weidner, S. and Wilson, P. and Wilson, R.J. and White, D. (2017), The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter, Space Science Reviews, 213, 547-643, doi: 10.1007/s11214-013-9990-9

1.10 Audience

This document is useful to those wishing to understand the format and content of the JADE PDS data product archive collection. Typically, these individuals would include scientists, data analysts, or software engineers.

2 JADE Instrument Description

Rather than repeat information, we refer the reader to the Open Access instrument paper in Space Science Reviews (SSR) for a full description of the JADE instrument. Below we provide the DOI link to the paper, reference and the abstract that gives an overview of the instrument.

NOTE: JADE had FSW 3 when this instrument paper was written and published. Since then we use FSW 4 and the JADE products are different. This SIS is the best description of the FSW 4 products, however the actual hardware and science goals remain the same.

Official SSR citation and DOI:

McComas, D.J., Alexander, N., Allegrini, F. et al. Space Sci Rev (2017) 213: 547.
https://doi.org/10.1007/s11214-013-9990-9

AGU style reference:

McComas, D. J., et al. (2017), The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter, Space Science Reviews, 213, 547-643, doi:10.1007/s11214-013-9990-9.

The paper was accepted and published online at SSR in 2013, hence some references may have that year. When the Juno special issue came out in 2017, SSR altered the year to 2017 for all Juno instruments papers, but is otherwise the same (same DOI, same paper, only the publish year altered and a printed issue volume and page numbers are now included in the citation).

Abstract

: "The Jovian Auroral Distributions Experiment (JADE) on Juno provides the critical in situ measurements of electrons and ions needed to understand the plasma energy particles and processes that fill the Jovian magnetosphere and ultimately produce its strong aurora. JADE is an instrument suite that includes three essentially identical electron sensors (JADE-Es), a single ion sensor (JADE-I), and a highly capable Electronics Box (EBox) that resides in the Juno Radiation Vault and provides all necessary control, low and high voltages, and computing support for the four sensors. The three JADE-Es are arrayed 120° apart around the Juno spacecraft to measure complete electron distributions from ~ 0.1 to 100 keV and provide detailed electron pitch-angle distributions at a 1 s cadence, independent of spacecraft spin phase. JADE-I measures ions from $\sim 5 \mathrm{eV}$ to $\sim 50 \mathrm{keV}$ over an instantaneous field of view of $270^{\circ} \mathrm{x} 90^{\circ}$ in 4 s and makes observations over all directions in space each 30 s rotation of the Juno spacecraft. JADE-I also provides ion composition measurements from 1 to 50 amu with $m / \Delta m \sim 2.5$, which is sufficient to separate the heavy and light ions, as well as O^{+}vs. S^{+}, in the Jovian magnetosphere. All four sensors were extensively tested and calibrated in specialized facilities, ensuring excellent onorbit observations at Jupiter. This paper documents the JADE design, construction, calibration, and planned science operations, data processing, and data products. Finally, the Appendix describes the Southwest Research Institute [SwRI] electron calibration facility, which was developed and used for all JADE-E calibrations. Collectively, JADE provides remarkably broad and detailed measurements of the Jovian auroral region and magnetospheric plasmas, which will surely revolutionize our understanding of these important and complex regions."

3 Data Set Overview

3.1 Data Sets

The JADE data archive is divided into $\mathbf{3}$ data sets. Each data set is subdivided into different standard data product types. A basic description of each data set is provided in Table 6. The standard data product types are described in Table 7. A more detailed description of each data set is provided in the sections that follow these two tables.

The standard data product IDs for Level 2 data are a series of five three-letter codes (instrument, CODMAC level, telemetry mode, sensor and data type, respectively) separated by an underscore, of the form:
JAD_L20_aaa_bbb_ccc

The products filenames then append that with a date and version number, of the form:

$$
\begin{gathered}
\mathrm{JAD} \text { L20_aaa_bbb_ccc_yyyyddd_Vnn.DAT } \\
\mathrm{JAD} \text { _L20_aaa_bbb_ccc_yyyyddd_Vnn.LBL } \\
\text { JAD_L20_aa_bbb_ccc_Vnn.FMT }
\end{gathered}
$$

Where:
JAD Instrument, short for JADE
L20 CODMAC Level 2, JADE internal convention 0 (zero).
aaa Telemetry mode type:
ALL = All telemetry modes
CAL $=$ Calibration telemetry mode
HLC $=$ High rate, low rate and calibration telemetry modes
HRS = High rate telemetry mode
HSK = Housekeeping telemetry mode
HVE = High Voltage Engineering telemetry mode
LRS = Low rate telemetry mode
$b b b \quad$ Sensor type: ALL, ELC or ION
ELC $=$ electron sensor(s)
ION $=$ ion sensor
ALL $=$ both ion and electron sensors
ccc Data type:
ALL $=$ all three electron sensors, or all eight ion species
ANY = any of the electron sensors, or any ion species
DER / DES = ion Direct Events Raw / Split-out
LOG $=$ ion Logical counters
TOF $=$ ion Time-Of-Flight
BHK, BMS, MEM, ERR, SHK = Not for PDS, JADE operations only
OA0, OA1, OA2, OA3 = Not for PDS, JADE operations only
yyyy 4-digit year
ddd 3-digit day of year
$\boldsymbol{n n} \quad$ 2-digit version number of file
Values in grey italics are JADE operations products not for science and not in PDS, but listed here for completeness to benefit JADE team members. The FMT file is also within the LBL file.

The standard data product IDs for Level 3 data are a similar series of five three-letter codes (instrument, CODMAC level, telemetry mode, sensor, data type and unit, respectively) separated by an underscore, of the form:
L30_aaa_bbb_ccc_uии
[The starting "JAD_" of level 2 files has been dropped from level 3 files as a PDS requirement forbids STANDARD_PRODUCT_ID being more than 20 characters, however JAD_ is still used for level 3 filenames.]

The products filenames then append that with a date and version number, and prepend with $J A D_{_}$, of the form:

$$
\begin{gathered}
\text { JAD_L30_aaa_bbb_ccc_uии_yyyyddd_Vnn.DAT } \\
\text { JAD_L30_aaa_bbb_ccc_uии_yyyyddd_Vnn.LBL } \\
\text { JAD_L30_aaa_bbb_ccc_uиu_Vnn.FMT }
\end{gathered}
$$

Where:

JAD Instrument, short for JADE

L30 CODMAC Level 3, JADE internal convention 0 (zero).
aaa Telemetry mode type:
CAL $=$ Calibration telemetry mode, Not for PDS, JADE operations only
HLS $=$ High rate and low rate telemetry mode (not including calibration)
HRS = High rate telemetry mode
LRS = Low rate telemetry mode
bbb Sensor type:
ELC $=$ electron sensor(s)
ION = ion sensor
ccc Data type:
ALL $=$ all three electron sensors, or all eight ion species
TWO = Electron sensors E060 and E180, but not E300.
ANY $=$ any of the electron sensors, or any ion species
LOG $=$ ion Logical counters
TOF = ion Time-Of-Flight
иии Unit type:
CNT $=$ counts per second
yyyy 4-digit year
ddd 3-digit day of year
$\boldsymbol{n} \boldsymbol{n}$ 2-digit version number of file

Table 6: Relationship Between Data Sets and Standard Data Products

| Data Set ID | CODMAC
 Level | Standard Data Product ID |
| :--- | :--- | :--- | :--- |\quad ID

Table 7: Standard Data Product Contents

ID	Key/Physical Parameters	Processing Inputs	Product Format	Description
P0	Reformatted Engineering Data Record (REDR). Time ordered (duplicates removed) full resolution science data (counts at voltage levels). Time ordered counts (per accumulation or per second) vs. voltage level vs. direction.	JADE raw telemetry packets	Binary	Packets are uncompressed bitmaps expanded to single objects, extra objects added to describe FSW and LUT versions, data units and a UTC timestamp.
P1	Time ordered counts per second in energy vs. look direction, with uncertainties.	JADE P0 data	Binary	Like JADE packets are combined to fewer files with position/auxiliary info necessary to calculate position or moments
P2	Time ordered \{electron or ion\} flux vs. direction vs. energy. TBC.	JADE P1 data	Binary	[TBD]
P3	Time ordered ion flux vs. energy vs. TOF. TBC.	JADE P1 data	Binary	[TBD]
P4	Time ordered electron pitch angle distribution vs. energy. TBC.	JADE P2 and MAG data	Binary	[TBD]
P5	Time ordered plasma moments vs. composition. TBC.	JADE P2/3 and MAG data	ASCII	[TBD]

The following sub-sections describe the different modes of JADE, but are best summarized in the periodic table inspired Figure 5.

3.1.1 MCP Calibration (CAL) Data Set

This is not intended for science use, but for the JADE instrument team to perform calibration tests. It occurs for a total of ~ 80 minutes per orbit.

The data has a minimum value removed (the MIN_SUBTRACTED_VALUE object), then is compressed from 4-byte values to 1-byte values, then losslessly compressed for transmission. The Direct Events products are the exception in not being compressed in any way.
There is just one electron product that contains all three electron sensors separately but within the same record.

The ion data records are split into ping and pongs, each containing half the energy sweep, which must be merged for Level 3 and higher products.

3.1.2 High Rate Science (HRS) Data Set

This is the highest data rate mode, occurring for a total of ~ 6 hours per orbit.
The data has a minimum value removed (the MIN_SUBTRACTED_VALUE object), then is compressed from 2-byte values to 1-byte values, then losslessly compressed for transmission. The Direct Events products are the exception in not being compressed in any way.
There is just one electron product that contains all three electron sensors separately but within the same record.

The ion data records are split in to ping and pongs, each containing half the energy sweep, which must be merged for Level 3 and higher products.

3.1.3 High Voltage Engineering (HVE) Data Set

This is not intended for science use, but for the JADE instrument team to perform tests, occurring for a total of ~ 1 to 2.5 hours per orbit (depending on any maneuvers).
The data is collected as total counts without any compression at all (and does not remove a minimum subtracted value).
There is just one electron product that contains all three electron sensors, and just one ion species product that contains all eight ion species.
The ion data records are split into ping and pongs, each containing half the energy sweep, which must be merged for Level 3 and higher products.

3.1.4 Low Rate Science (LRS) Data Set

This is the most common mode and the lowest data rate, occurring for a total of ~ 327 hours per orbit, with ~ 19 hours of that within an intermediate (higher time cadence) LRS mode.

The data has a minimum value removed (the MIN_SUBTRACTED_VALUE object), then is compressed from 4-byte values to 1-byte values, then losslessly compressed for transmission. The Direct Events products are the exception in not being compressed in any way.
There are three electron products, one for each sensor. However, only one electron sensor can be active at a time while in LRS mode.

The ion data records are split into ping and pongs, each containing half the energy sweep, which must be merged for Level 3 and higher products.

3.1.5 Data units for Level 2 Products

The base data unit (for products with PACKETID >10) is total counts for that record (as such are integer numbers), with the exception of JAD_L20_CAL_ION_ANY_*, JAD_L20_LRS_ION_ANY_* and JAD_L20_LRS_ELC_ANY_* products. These are in units of count rates as these are data products related to spin phase and the spin-period may vary slightly. The count rates are total counts divided by number of views within the accumulation time, to the nearest $1 / 512$ of a count (represented as a float).

The number of views is simply the number of times an anode has been included in the record's accumulation time; for instance if two anodes are summed together for a product, then that's two views. If the accumulation is over many spacecraft spin periods and the product is one regarding spin-phase, then every spin the number of views increases for a particular spin-phase angle. The record normalized total counts measured by total number of views, however that is rarely equivalent to units of counts per second.

To be certain you know which units, all products have had an object added to their PDS record, DATA_UNITS, which (for Level 2 data) is either 0 or 1 for total count or rate respectively.

3.1.6 DATA object vs. onboard data BLOB for Level 2 Products

Many JADE products onboard JUNO remove a minimum value from the data prior to compression of the data BLOB for transmission. On the ground when we decompress these data packets we add back on this value so that the end user does not have to; with the MIN_SUBTRACT_VALUE object used reported in the file. If the object did not have a minimum value removed and so not object (e.g. HSK telemetry modes) then for consistency a MIN_SUBTRACT_VALUE object is added to the file on the ground, but if so will be set to zero, and the upper and lower valid limits for that product will be fixed at zero.

3.1.7 Occasional jitter in reported times

Occasionally the reported spacecraft clock value is a second out from where you would expect, e.g. in a series of records all with an ACCUMULATION_TIME of 30 seconds, you may get times that are consistently 30 seconds apart, then (very occasionally) have one that is 29 or 31 seconds apart from its neighbor based on the spacecraft clock (used to make UTC). This is a known Juno feature related to having two spacecraft clocks, but any correction would be a level 3 data product (as it is a time calibration). The two clocks on Juno are not always synchronized, and the time message from them can occasionally have a stutter/jitter where instead of advancing 2 ticks, sometimes it advances 3 ticks, then some 2 ticks, then 1 tick, then returns to the regular 2 tick pattern. JADE Level 2 data records use the onboard reported time message as is, and has no in-situ way to know if the reported time is during this stutter. However, on the ground we add ISSUES object bit 10 to mark Level 2 records where we know that the JADE packet's TIMESTAMP_WHOLE/SUB has been stuttered. [Note version 01+ files will have this, but version 00 file (not on PDS) are made before the time stutter intervals are known, so may not be flagged until later when we make the non-zero version file.] For Level 3 JADE files, we correct for the Juno time stutter in the TIMESTAMP_WHOLE/SUB object, and adjust the ISSUES object: removing ISSUES bit 10 and flagging ISSUES bit 5.

This Juno time stutter affects all spacecraft clock times reported by JADE, and tends to occur every few days. While we do track the times it affects the JADE packet's TIMESTAMP_WHOLE/SUB, we do not track any others spacecraft clock times. For example the Electron files have MAG_TIMESTAMP_WHOLE/SUB objects which may also be affected, but JADE does not track these nor attempt to correct. This is because publishable work requiring MAG data should be using the MAG team's Version 01+ MAG files, rather than the uncalibrated 'quicklook' spacecraft reported MAG from JADE's files.

For JADE team operations work (files not on PDS), the OSCOPE MET times may also be affected, as could the SPIN_TIME_WHOLE/SUB values in SHK files, neither of which is tracked for time stutter effects. In all cases listed above, the LBL file for these objects note they may be subject to the Juno time stutter.

3.2 Data Flow

The Juno Data Management and Storage (DMAS) will receive packets and CCSDS File Delivery Protocol (CFDP) products from the Deep Space Network (DSN) and place these on the Project data repository system. The DMAS will provide the initial processing of the raw telemetry data bringing it to Committee on Data Management and Archive (CODMAC) Level 1 science data. The JADE Instrument Operations Team (IOT) will retrieve the CODMAC Level 1 data from the DMAS using FEI services and ancillary data from the JPL Mission Support Area (MSA) via Juno Science Operations Center (JSOC). The IOT will decompress the Level 1 data and return them to the JSOC as CODMAC Level 2 data. The JSOC will also receive and organize higherlevel data products developed by the Science Investigation Teams associated with each instrument. JSOC development and operations will be carried out at SwRI, in coordination with the MOS at JPL.

The JADE Science Investigation Team will verify the content and the format will be validated. The resulting decompressed, restructured Level 2 data will constitute the lowest level of data to be archived with the PDS. JSOC will coordinate the validation of the edited (CODMAC Level 2) data archive volumes created by the IOT. The Science Investigation Team will develop higherlevel data products based on the Level 2 data and ancillary data and return these to the JSOC. JSOC will support archiving the Level 2 data by building archive volumes and verifying the format of the volumes and included data and metadata. Higher-level data set archives will be coordinated through the JSOC. The Science Investigation Team will be responsible for ensuring that the metadata and documentation included with these data sets are complete and accurate. This means that both JSOC and the Science Investigation Team will need to work closely with the PDS. This coordination will be fostered via the Data Archive Working Group.

A comprehensive description of the Juno Mission System is provided in the Juno Mission Operations Concept. A data flow diagram for the downlink process is shown in Fig. 1.

Simplified Juno Data/Process Flow

Figure 1: Juno science data flow diagram. White boxes are processes and solid arrows indicate data flow.

3.3 Data Processing and Production Pipeline

A single pipeline generates EDR records temporarily on route to generating RDR records, with the CODMAC level 2 data being the RDR records only, as shown in Figure 2.

Figure 2: JADE science data pipeline diagram.

3.3.1 CODMAC Level 2 Data Production Pipeline

New data is pushed to LASP by FEI (JPL software) subscriptions to the CODMAC Level 1 data at JPL. The FEI subscriptions permanently run on a production computer hosted at LASP, with hourly cron checks to ensure the subscriptions are still running (and re-establish if necessary). In addition, a cron does a weekly check that all data available by FEI has been downloaded locally. Ingestion scripts can be triggered by FEI or by a regular cron job that looks for new local files. The binary files can contain any number of packets of any type of JADE data (PACKETIDs > 10), which are split out such that every unique packet is written to its own file - a PDS packetsnippet. The software that does that is written in c for speed, and every object in the packet is checked that it is within an allowed range expected for that particular packet. A few extra objects are added, such as a UTC object generated from the spacecraft clock values in the packet and converted with SPICE routines. PDS packet-snippets contain the time of day in the filename and are written in to directory structures based on date (yyyy/yyyyddd/data_type/), and are almost PDS compliant in that the DAT files obey the FMT file descriptions for the given product, but do not have a corresponding LBL file (LBL files are only generated once daily files are created). Duplicate packets in the FEI data originally over-wrote the previous PDS packet-snippet so only one is kept, but now a duplicate packet loads in the old one first, and if identical leaves it, otherwise reports an error as being different (a situation that has never occurred to date).

Reordering the data is now merely a cron to go through each yyyy/yyyyddd/data_type/ directory, seeing if any files were modified/created since the last time the cron ran, and if so, concatenating the files of each product to a single file (with a Linux cat command). Due to the time of day
being noted in the filenames, this concatenates them in the correct time order. The daily files are written to a different set of yyyy/yyyyddd/data_type/ directories (see Figure 4), and code run to create the LBL file for each daily file. These are then fully PDS compliant CODMAC Level 2 daily files for each product available that day, ready for upload to JSOC via FTP.

3.3.2 CODMAC Level 3 Data Production Pipeline

The Level 2 data (previous section) are used as input to generate the Level 3 files, together with reconstructed SPICE kernels in order to provide position and orientation information (see section 6.2.9.5 for more details about the conversion to science units). This is done in IDL, and can take several minutes to run per file, as such a cron job will run nightly (if not more often) to call IDL to create level 3 DAT files for any new level 2 files that have appeared in the last day. The same cron job then runs a python code that generates the corresponding LBL files (containing the FMT file) for the DAT file and pushes them to the appropriate yyyy/yyyyddd/data_type/ directories (see Figure 4). These are then fully PDS compliant CODMAC Level 3 daily files for each product available that day, ready for upload to JSOC via FTP.

3.4 Data Validation

General PDS syntax / formatting checks are carried out at the earliest stage of processing to ensure the data obeys the PDS standards. Periodically PDS online validation tools are run on local volumes to ensure that the CODMAC Level $2 / 3$ product standards are met, as well as bespoke checks carried out locally. This ensures values are within acceptable ranges (or a fill value, a.k.a. MISSING_CONSTANT), correctly ordered, and correctly labeled.

3.4.1 Instrument Team Validation

The JADE instrument team will be the first to see any data by monitoring trend plots and examining the data to ensure what was commanded occurred. In addition they will monitor the health of the various sensors and carry out regular calibration exercises. During these activities any inconsistencies that may arise will be investigated, corrected where possible, or noted in the ERRATA.TXT for the volume.

3.4.2 Science Team Validation

The JADE science team will provide validation by virtue of using the data and reporting any inconsistencies to the instrument team. Since each orbit takes 14 days and there is a 3 to 6 month lag between acquiring the data and providing it to the PDS (see Table 8) there is enough time for the science team to work with the data prior to PDS submission.

4 Archive volume generation

The JADE Standard Data Record archive collection is produced by the JADE IOT in cooperation with the JSOC, and with the support of the PDS Planetary Plasma Interactions (PPI) Node at the University of California, Los Angeles (UCLA). The archive volume creation process described in this section sets out the roles and responsibilities of each of these groups. The assignment of tasks has been agreed by all parties. Archived data received by the PPI Node from the JADE team will be made electronically available to PDS users as soon as practical but no later than as laid out in Table 8.

4.1 Data transfer methods and delivery schedule

The JADE team will deliver data to the PPI Node in standard product packages containing three months of data, also adhering to the schedule set out in Table 8. Each package will comprise both data and ancillary data files organized into directory structures consistent with the volume design described in Section 5, and combined into a deliverable file(s) using file archive and compression software. When these files are unpacked at the PPI Node in the appropriate location, the constituent files will be organized into the archive volume structure.

Table 8: Archive Schedule and Responsibilities
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \text { Instrument } & \begin{array}{c}\text { Data } \\ \text { Product }\end{array} & \text { Provider } & \text { Earth Flyby } & \text { Other Cruise } & \text { Orbital Phase } \\ \hline & \text { P0 } & \text { (EFB) }\end{array}\right)$

EDA - End of data acquisition
The archives will be sent electronically from the JADE IOT to a user account on the PPI node using the $s s h$ protocol. The IOT operator will copy each volume (see Table 10) in the form of a compressed tar archive (a.k.a. tarball) to an appropriate location within the PPI file system. Only those files that have changed since the last delivery will be included. The PPI operator will decompress the data, using the tar checksums to verify that the archive is complete. Each step of data submission process will be tracked in a version CATS (Cassini Archive Tracking System) which has been adapted for use by Juno.
Following receipt of a data delivery, PPI will organize the data into PDS archive volume structure within its online data system. PPI will generate all of the required files associated with a PDS archive volume (index file, read-me files, etc.) as part of its routine processing of incoming JADE data. Newly delivered data will be made available publicly through the PPI online system once accompanying labels and other documentation have been validated. It is anticipated that this validation process will require no more than fourteen working days from receipt of the data by PPI. The first two data deliveries are expected to require somewhat more time for the PPI Node to process before making the data publicly available.

The Juno prime mission begins after JOI and two subsequent correction orbits, and lasts for 33 ~ 14 day orbits. Table 8 formalizes the data delivery schedule for the entire Juno mission, including cruise, commissioning and prime mission phases. Data delivery from JSOC to PPI node will occur on the $15^{\text {th }}$ of the month and the data will be publicly available on the $1^{\text {st }}$ of the following month. Archiving of products from any extended mission period will be negotiated with the Project at a later date.

4.2 Data validation

The JADE standard data archive volume set will include all data acquired during the Juno mission. The archive validation procedure described in this section applies to volumes generated during both the cruise and prime phases of the mission.

PPI node staff will carefully examine the first archive volume that they receive that contains data from JADE to determine whether the archive is appropriate to meet the stated science objectives of the instrument. The PPI node will also review the archive product generation process for robustness and ability to detect discrepancies in the end products; documentation will be reviewed for quality and completeness.

As expertise with the instrument and data develops the JADE team may decide that changes to the structure or content of its standard data products are warranted. Should these changes be implemented, the new data product and archive volume will be subjected to a full PDS peer review, and this document will be revised to reflect the modified archive. Table 2 lists the history of all modifications to the archive structure and contents.

4.3 Data product and archive volume size estimates

JADE standard data products are organized into files that span 24 hours, breaking at 0h UTC. Files vary in size depending on the telemetry rate and allocation. Table 9 summarizes the expected sizes of the JADE standard products and are per version number of data.

All JADE standard data are organized by the PDS team onto a single archive volume. The data on the volume are organized into one-day subdirectories.

Table 9: Data product size and archive volume production rate (per version number)

Data Product	Production rate per day ${ }^{\text {b }}$ (approx.)	Production rate per orbit ${ }^{\text {a }}$ (approx.)	Size for primary mission (assuming 33 53-day orbits)
Level 2 Science	38 MB	$2.0 \mathrm{~GB}$ (180 MB for HRS$)^{\mathrm{c}}$	64 GB
Level 3 Science	239 MB	$\begin{gathered} 12.4 \mathrm{~GB} \\ (1.8 \mathrm{~GB} \text { for } \mathrm{HRS})^{\mathrm{c}} \end{gathered}$	408 GB
Level 5 Science	TBD	TBD	TBD
Total	277 MB	14.4 GB	472 GB

a. Per orbit value based on full day data from PJ4 to PJ5-1 day (2017 DOY 033-085 inclusive).
b. Per day value is per orbit divided by 53 for this table.
c. Typically 6 hours of HRS data per 53-day orbit, usually on the same day, hence the daily production rate (as an average or per orbit) is greater than the median daily production rate.

Following receipt of JADE data by the PPI Node it is expected that fourteen working days will be required to validate and process the delivery before the data are made available on PPI web pages. New deliveries will be added to the existing volume structure to which they belong.

4.4 Backups and duplicates

The PPI Node keeps three copies of each archive volume. One copy is the primary online archive, another is an onsite backup copy, and the final copy is an off-site backup copy. Once the archive volumes are fully validated and approved for inclusion in the archive, a copy of the data is sent to the National Space Science Data Center (NSSDC) for long-term archive in a NASAapproved deep-storage facility. The PPI Node may maintain additional copies of the archive volumes, either on or off-site as deemed necessary. The process for the dissemination, and preservation JADE archive volumes is illustrated in Figure 3

Figure 3: Duplication and dissemination of JADE standard archive volumes.

4.5 Labeling and identification

Each JADE data volume bears a unique volume ID using the last two components of the volume set ID [PDS Standards Reference, see §19]. For each physical medium, the volume IDs are USA_NASA_PDS_??????_mnnn, where ?????? is the VOLUME_SET_ID defined by the PDS and $m n n n$ is the sequence number of the individual volume, where the m refers to the CODMAC level of the data. Hence the first JADE Level 2 volume has the volume ID JNOJAD_2001, as shown in Table 10.

Table 10: PDS Data Set Volume Assignments

Level	DATA_SET_ID	VOLUME_ID
2	JNO-SW-JAD-2-UNCALIBRATED-V1.0 JNO-J/SW-JAD-2-UNCALIBRATED-V1.0	JNOJAD_2001 JNOJAD_2002
3	JNO-J/SW-JAD-3-CALIBRATED-V1.0	JNOJAD_3001

Note: JNOJAD_2001 is described in a separate SIS for FSW3 (2011-2014), found in that volume.

5 Archive volume contents

This section describes the contents of the JADE standard product archive collection volumes, including the file names, file contents, file types, and the organizations responsible for providing the files. The complete directory structure is shown in Figure 4. All the ancillary files described herein appear on each JADE standard product volume, except where noted (highlighted yellow).

JNOJAD_3001: CODMAC Level 3 Directories (FSW4)

Figure 4: Archive volume directory structure
(File names shown, not STANDARD_DATA_PRODUCT_ID.)

5.1 Root directory

The files listed in Table 11 are contained in the (top-level) root directory, and are produced by the JADE team in consultation with the PPI node of the PDS. With the exception of the hypertext file and its label, all of these files are required by the PDS volume organization standards.

Table 11: Root directory contents

File	Description	Responsibility
AAREADME.TXT	This file completely describes the volume organization and contents (PDS label attached)	PPI
ERRATA.TXT	A text file containing a cumulative listing of comments and updates concerning all JADE standard products on all JADE volumes in the volume set published to date	JADE team
VOLDESC.CAT	A description of the contents of this volume in a PDS format readable by both humans and computers	PPI

5.2 BROWSE directory (Not for Level 2 Volume)

The BROWSE directory contains [TBD granularity] browse plots of the JADE data, split into [TBD] intervals. The contents of this directory and its subdirectories are described in Table 12.

Table 12: BROWSE directory contents

File	Description	Responsibility
BROWINFO.TXT	A description of the contents of this directory	PPI
$[T B D]$	$[\mathrm{TBD}]$	

5.3 CALIB directory (Level 3 Volume Only)

The CALIB directory, which only exists on the CODMAC Levels 3 archives, contains a copy of the calibration plan and the ancillary data used to calibrate the JADE instrument performance. The contents of this directory are described in Table 13 (over two pages), where every file has a corresponding label (*.LBL) file that is not listed in the table. Most files are comma separated variable (csv) files so that they are easy to open in a text editor or spreadsheet, and are based on the look up table (LUT) version uploaded to the spacecraft for a given time.

Table 13: CALIB directory contents

File	Description	Respon- sibility
CALINFO.TXT	A description of the contents of this directory.	PPI
ANODE_LOOK_ELC_DEFL_EQNS_	PDF of Electron sensor anode elevation look direction equations for when deflectors are on (HRV.PDF at Jupiter only). Version number $v v$.	JADE team
	Azimuths are unaffected, in file: ANODE_LOOK_ELC_DEFL_NONE_Vvv.CSV	

File	Description	Responsibility
ANODE_LOOK_ELC_DEFL_NONE_ Vvv.CSV	Electron sensors anodes look directions in spacecraft azimuth and elevation when the deflectors are off. Version number $v v$. Lower, center and upper values (in degrees).	JADE team
ANODE_LOOK_ION_DEFL_NONE_ Vvv.CSV	lon sensor anodes look directions in spacecraft azimuth and elevation when the deflectors are off. Version number $v v$. Lower, center and upper values (in degrees).	JADE team
DATA_UNCERTAINTY_EQNS_Vvv.P DF	PDF of the method and equations used to generate the DATA_SIGMA values in the level 3 files. Version number vv.	JADE team
JADE_LEVEL3_Vmm_COMPARED_ TO_Vnn_DESCRIPTIŌN_Vvv.PDF	Describes the differences between Level 3 version $m m$ and Level 3 version $n n$ files. Document version number $v v$. Note: $m m=n n+1$.	JADE team
JAD_L30_CALIB_LIST_nnnnn.TXT	List of JADE calibration files used to generate level 3 products, version nnnnn.	JADE team
JAD_L30_SPICE_METAKERNEL_nn nnn.TXT	SPICE metakernel used to generate level 3 products, version nnnnn. (The individual SPICE kernels can be downloaded from NAIF.)	JADE team
LUT_m_nn_COMPRESSION.CSV e.g. LUT_3_00_COMPRESSION.CSV	LUT m.nn (e.g. LUT 3.00), $16->8$ bit and $32->8$ bit compression tables. (No version number as tables uploaded to s / c.)	JADE team
LUT_m_nn_ENERGY_Vvv.CSV e.g. LUT_3_00_ENERGY_V01.CSV	LUT m.nn (e.g. LUT 3.00), Version number $v v$. Ion and electron sensors E and $\Delta \mathrm{E} / \mathrm{E}$ tables. (Note, LUT 3.08 is never used in flight.)	JADE team
```LUT_m_nn_TOF_SPECIES_MAP.CS V e.g. LUT_3_00_TOF_SPECIES_MAP.CS V```	LUT m.nn (e.g. LUT 3.00), which TOF channels map to ion species $3,4 \& 5$ for a given energy step. (No version number as tables uploaded to $\mathrm{s} / \mathrm{c}$.)	JADE team
TOF_CHANNEL_TO_SECONDS_HL C_Vvv.CSV	Convert the 96 TOF channels numbers to seconds. Version number $v v$. (The Level 3 TOF data files contain these values.)	JADE team
TOF_CHANNEL_TO_SECONDS_HV E_Vvv.CSV	Convert the 128 TOF channels numbers to seconds. Version number vv. (For Level 2 HVE TOF.)	JADE team

### 5.4 CATALOG directory

The files in the CATALOG directory provide a top-level understanding of the Juno mission, spacecraft, instruments, and data sets in the form of completed PDS templates. The information necessary to create the files is provided by the JADE team and formatted into standard template formats by the PPI Node. The files in this directory are coordinated with PDS data engineers at both the PPI Node and the PDS Engineering Node.

Table 14: CATALOG directory contents

File	Description	Responsibility
CATINFO.TXT	A description of the contents of this directory	PPI
JADE_INST.CAT	PDS instrument catalog description of the JADE instrument	JADE team
JADE_DS.CAT	PDS data set catalog description of the JADE data files	Initial: JADE team   Up-keep: PPI
JADE_REF.CAT	JADE-related references mentioned in other CAT files	JADE team
INSTHOST.CAT	A description of the Juno spacecraft	Juno Project
MISSION.CAT	PDS mission catalog description of the Juno mission	Juno Project
PERSON.CAT	PDS personnel catalog description of JADE team members   and other persons involved with generation of JADE   standard data products	JADE team
PROJ_REF.CAT	References mentioned in INSTHOST.CAT and   MISSION.CAT	Juno Project

### 5.5 DATA directory

### 5.5.1 Contents

The DATA directory contains the data files produced by the JADE team. In the Level 2 archive, these files contain the raw binary instrument EDR's, organized into correct time sequence, time tagged, and edited to remove obviously bad data. In the higher level archives, the contents of the DATA directory are binary files that result from passing the corresponding Level 2 files through the processing pipeline.
The data files are of the highest quality possible. Any residual issues are documented in AAREADME.TXT and ERRATA.TXT files in the volume's root directory, or in JADE_DS.CAT in the CATALOG directory. Users are referred to these files for a detailed description of any outstanding matters associated with the archived data.

## Table 15: DATA directory contents

File	Description	Responsibility
yyyy	Subdirectories containing JADE data acquired in year yyyy	JADE team

### 5.5.2 Subdirectory structure

In order to manage files in an archive volume more efficiently the DATA directory is divided into subdirectories. The two levels of division are based on time; data are organized into yearly subdirectories, which are further divided into a number of daily sub-subdirectories. The naming convention for the yearly directories is yyyy, and for the daily directories it is yyyyddd, where $d d d$ is the three-digit day of year. For example, all data for the year 2015 are contained below the directory 2015, with data for Jan 12015 UTC found in the subdirectory 2015/2015001, and so on.
'Daily' files are from UTC midnight to midnight, where the day of year at the start of each JADE record defines which day of year that record is assigned to; e.g. if a JADE record had a 30 second accumulation time starting at 2015-015T23:59:54, then the record is considered to be part of 2015-015, despite the center time being 2015-016T00:00:09, or end time being 2015016T00:00:24. Level 2 records UTC times are always start times. Level 3 records provide start (lower), center and end (upper) UTC times separately.

### 5.5.3 Required files

A PDS label describes each file in the DATA path of an archive volume. Text documentation files have attached (internal) PDS labels and data files have detached labels. Detached PDS label files have the same root name as the file they describe but have the extension LBL. The label files contain both data file content and record structure information.

### 5.5.4 The yyyy/yyyyddd subdirectory

This directory contains JADE data files and their corresponding PDS labels. As shown in Table 16 and Table 17 for CODMAC levels 2 and 3 respectively, the data in these files span a time interval of one day, the particular day being identified from both the file name and the name of the parent directory. The names also contain a 2-digit version. The initial version is V01.

Table 16: CODMAC Level 2 DATA/yyyy/yyyyddd directory contents

Filename	Description
ELECTRONS	Subdirectories containing JADE electron data (all electron   sensors) acquired for year/doy yyyyddd.
ION_DIRECT_EVENTS	Subdirectories containing JADE ion Direct Event data   acquired for year/doy yyyyddd.
ION_LOGICALS	Subdirectories containing JADE ion Logicals data   acquired for year/doy yyyyddd.
ION_SPECIES	Subdirectories containing JADE ion species data (for   various ion species) acquired for year/doy yyyyddd.
ION_TOF	Subdirectories containing JADE ion time of flight data   acquired for year/doy yyyyddd.

Table 17: CODMAC Level 3 DATA/yyyy/yyyyddd directory contents

Filename	Description
ELECTRONS	Subdirectories containing JADE electron data (all electron   sensors) acquired for year/doy yyyyddd.
ION_LOGICALS	Subdirectories containing JADE ion Logicals data   acquired for year/doy yyyyddd.
ION_SPECIES	Subdirectories containing JADE ion species data (for   various ion species) acquired for year/doy yyyyddd.
ION_TOF	Subdirectories containing JADE ion time of flight data   acquired for year/doy yyyyddd.

Binary data file names have the "DAT" file extension. Each file is accompanied by a PDS label (LBL) describing its contents. The labels permit the contents of most of the products to be browsed by PDS software, e.g., NASAView, etc.

### 5.5.4.1 The ELECTRONS subdirectory

This directory contains JADE data files from the electron sensors and their corresponding PDS labels. As shown in Table 18 and Table 19, the data in these files span a time interval of one day, the particular day being identified from both the file name and the name of the parent directory. The names also contain a 2-digit version. The initial version is V01. This directory exists in both CODMAC level 2 and 3 volumes.

Table 18: DATA/yyyy/yyyyddd/ELECTRONS directory contents for Level 2 data

Filename	Description
JAD_L20_CAL_ELC_ALL_yyyyddd_Vnn.DAT	MCP calibration mode electron counts,   all 3 sensor.
JAD_L20_HRS_ELC_ALL_yyyyddd_Vnn.DAT	High Rate Science electron counts,   all 3 sensors.
JAD_L20_HVE_ELC_ALL_yyyyddd_Vnn.DAT	High Voltage Engineering electron   counts, all 3 sensors.
JAD_L20_LRS_ELC_ANY_yyyyddd_Vnn.DAT	Low Rate Science electron count rate,   any of the 3 electron sensor.

Table 19: DATA/yyyy/yyyyddd/ELECTRONS directory contents for Level 3 data

Filename	Description
JAD_L30_HRS_ELC_ALL_CNT_yyyyddd_Vnn.DAT	High Rate Science electron counts per   second, all 3 sensors per record.
JAD_L30_HRS_ELC_TWO_CNT_yyyyddd_Vnn.DA   T	High Rate Science electron counts per   second, for E060 and E180, not E300.
JAD_L30_LRS_ELC_ANY_CNT_yyyyddd_Vnn.DAT	Low Rate Science electron counts per   second, just one of the 3 sensors per   record (see record for which one).

### 5.5.4.2 The ION_DIRECT_EVENTS subdirectory

This directory contains JADE data files from ion direct events and their corresponding PDS labels. As shown in Table 20, the data in these files span a time interval of one day, the particular day being identified from both the file name and the name of the parent directory. The names also contain a 2 -digit version. The initial version is V01. This is a CODMAC level 2 only directory.

Table 20: DATA/yyyy/yyyyddd/ION_DIRECT_EVENTS directory contents

Filename	Description
JAD_L20_ALL_ION_DER_yyyyddd_Vnn.DAT	Direct events (raw),   for high and low rate science, calibration   and high voltage engineering modes.
JAD_L20_ALL_ION_DES_yyyyddd_Vnn.DAT	Direct events (split out),   for high and low rate science, calibration   and high voltage engineering modes.

### 5.5.4.3 The ION_LOGICALS subdirectory

This directory contains JADE data files from ion Logicals and their corresponding PDS labels. As shown in Table 21 and Table 22, the data in these files span a time interval of one day, the particular day being identified from both the file name and the name of the parent directory. The names also contain a 2 -digit version. The initial version is V01. This directory exists in both CODMAC level 2 and 3 volumes.

Table 21: DATA/yyyy/yyyyddd/ION_LOGICALS directory contents for Level 2 data

Filename	Description
JAD_L20_HLC_ION_LOG_yyyyddd_Vnn.DAT	Ion Logical counts,   for high and low rate science plus   calibration modes.
JAD_L20_HVE_ION_LOG_yyyyddd_Vnn.DAT	Ion Logical counts,   for the high voltage-engineering mode.

Table 22: DATA/yyyy/yyyyddd/ION_LOGICALS directory contents for Level 3 data

Filename	Description
JAD_L30_HLS_ION_LOG_CNT yyyyddd_Vnn.DAT	Ion Logical counts per second,   for high and low rate modes.

### 5.5.4.4 The ION_SPECIES subdirectory

This directory contains JADE data files and their corresponding PDS labels. As shown in Table 23 and Table 24, the data in these files span a time interval of one day, the particular day being identified from both the file name and the name of the parent directory. The names also contain a

2-digit version. The initial version is V01. This directory exists in both CODMAC level 2 and 3 volumes.

Table 23: DATA/yyyy/yyyyddd/ION_SPECIES directory contents for Level 2 data

Filename	Description
JAD_L20_CAL_ION_ANY_yyyyddd_Vnn.DAT	Calibration mode ion species count rate.
JAD_L20_HRS_ION_ANY_yyyyddd_Vnn.DAT	High rate science ion species counts.
JAD_L20_HVE_ION_ALL_yyyyddd_Vnn.DAT	High Voltage Engineering for all ion   species counts.
JAD_L20_LRS_ION_ANY_yyyyddd_Vnn.DAT	Low Rate Science ion species count rate.

Table 24: DATA/yyyy/yyyyddd/ION_SPECIES directory contents for Level 3 data

Filename	Description
JAD_L30_HRS_ION_ANY_CNT_yyyyddd_Vnn.DAT	High Rate Science ion species counts per   second.
JAD_L30_LRS_ION_ANY_CNT_yyyyddd_Vnn.DAT	Low Rate Science ion species count per   second.

### 5.5.4.5 The ION_TOF subdirectory

This directory contains JADE data files and their corresponding PDS labels. As shown in Table 25 and Table 26, the data in these files span a time interval of one day, the particular day being identified from both the file name and the name of the parent directory. The names also contain a 2-digit version. The initial version is V01. This directory exists in both CODMAC level 2 and 3 volumes.

Table 25: DATA/yyyy/yyyyddd/ION_TOF directory contents for Level 2 data

Filename	Description
JAD_L20_HLC_ION_TOF_yyyyddd_Vnn.DAT	Ion time of flight counts,   for high and low rate science plus   calibration modes.
JAD_L20_HVE_ION_TOF_yyyyddd_Vnn.DAT	Ion time of flight counts,   for the high voltage-engineering mode.

Table 26: DATA/yyyy/yyyyddd/ION_TOF directory contents for Level 3 data

Filename	Description
JAD_L30_HLS_ION_TOF_CNT_yyyyddd_Vnn.DAT	Ion time of flight counts per second,   for high and low rate modes.

### 5.6 DOCUMENT directory

The DOCUMENT directory contains a range of documentation considered either necessary or useful for users to understand the archive data set. Documents may be included in multiple forms, for example, ASCII, PDF, or HTML. PDS standards require that any documentation needed for use of the data be available in an ASCII format. "Clean" HTML is an acceptable ASCII format in addition to plain text. "Clean" HTML refers to HTML with minimal markup, and formatted in such a way as to facilitate reading in a text browser. Table 27 describes the contents of the DOCUMENT directory.

Table 27: DOCUMENT directory contents

Filename	Description	Responsibility
DOCINFO.TXT	A description of the contents of this directory	PPI
JADE_INST_PAPER.LBL	A PDS detached label for the JADE Instrument paper	JADE team
JADE_INST_PAPER.PDF	PDF version of the published paper (open access)	JADE team
JADE_INST_PAPER.HTM	The JADE instrument paper in HTML format (HTML Version 3.2)	JADE team
JADE_INST_PAPER_IMAGE _mmm.JPG/PNG	Image files for JADE_INST_PAPER.HTM, some are JPG, others PNG, where mmm is a non-repeating incrementing number from 001 to 116.	JADE team
JADE_INST_PAPER_TABLE _mm.PNG	Image files of the 18 tables from JADE_INST_PAPER.PDF, where $m m$ is a nonrepeating incrementing number from 01 to 18 .	JADE team
JADE_FSW4_SIS_Vmm.LBL	A PDS detached label for the SIS document, version mm .	JADE team
$\begin{aligned} & \text { JADE_FSW4_SIS_Vmm.DO } \\ & \text { CX } \end{aligned}$	The SIS in Microsoft Word format; this was used to make the PDF - which is the file of record.	JADE team
JADE_FSW4_SIS_V01.HTM	The SIS in a simple HTML format. (Saved from Word, then hand edited.   Only done for V01, future versions will use the PDF as the primary document of record, so no PNG files either.)	JADE team
JADE_FSW4_SIS_EQN_ $n n . P N G$ (Only for JADE_FSW4_SIS_V01.HTM)	Image files of 6 equations (for the HTML file) from JADE_FSW4_SIS_V01.PDF, where $n n$ is a non-repeating incrementing number from 01 to 06. (Note the SIS does not number equations.)	JADE team
$\begin{aligned} & \text { JADE_FSW4_SIS_FIG_ } \\ & \text { nn.PNG } \\ & \text { (Only for JADE_FSW4_SIS_V01.HTM) } \end{aligned}$	Image files of the 11 figures from JADE_FSW4_SIS_V01.PDF, where $n n$ is a nonrepeating incrementing number from 01 to 11 . (Note that $n n$ may not map to SIS figure nn.)	JADE team
JADE_FSW4_SIS_Vmm.PDF	SIS in PDF format, the SIS version of record.	JADE team
JADE_FSW4_SIS_Vmm_DIF F Vnn_PDF	Tracked Changes PDF between SIS version $m m$ and SIS version $n n$ (usually $m m=n n+1$ ).	JADE team

### 5.7 EXTRAS directory

The EXTRAS directory contains files which facilitate the use of the archive volume but which are not considered part of the archive itself. Table 28 contains a list of the important contents of the EXTRAS directory. [Helpful Software may be included here, rather than a SOFTWARE directory.]

Table 28: EXTRAS subdirectory contents

File	Description	Responsibility
EXTRINFO.TXT	A description of the contents of this directory	PPI
$[T B D]$		

### 5.8 INDEX directory

The INDEX.TAB file contains a listing of all data products on the archive volume. The index (INDEX.TAB) and index information (INDXINFO.TXT) files are required by the PDS volume standards. The format of these ASCII files is described in §6.2.5. An online and web-accessible index file will be available at the PPI Node while data volumes are being produced.

Table 29: INDEX directory contents

File	Description	Responsibility
INDXINFO.TXT	A description of the contents of this directory	PPI
INDEX.LBL	A PDS detached label that describes INDEX.TAB	JSOC
INDEX.TAB	A table listing all JADE data products on this volume	JSOC

## 6 Archive volume format

Data that comprise the JADE standard product archives will be formatted in accordance with PDS specifications [see Planetary Science Data Dictionary, PDS Archiving Guide, and PDS Standards Reference in § 1.9].

### 6.1 Volume format

Although the JADE team does not control the volume format to be used by the PDS, it is necessary to define the format in which the data sets are to be transmitted via network from the SOC to the PPI node. This will be in the form of compressed tar archives, as created by the open source gtar program. Pathnames, in lower-case letters only, will be relative to the ROOT directory, e.g., "./data", "./index", etc.

### 6.2 File formats

The following section describes file formats for the kinds of files contained on archive volumes. For more information, see the PDS Archive Preparation Guide [see §1.9].

### 6.2.1 Document files

Document files with a TXT extension exist in nearly all directories. They are ASCII files with embedded PDS labels. All TXT document files contain 80-byte fixed-length records; records are terminated with a carriage return (ASCII 13) and line feed character (ASCII 10) in the 79th and 80th byte, respectively. This format allows the files to be read by many operating systems, e.g., UNIX, Mac OSX, Windows, etc.

In general, documents are provided in ASCII text format. However, some documents in the DOCUMENT directory contain formatting and figures that cannot be rendered as ASCII text. Hence these documents are also given in additional formats such as hypertext, Microsoft Word, and Adobe Acrobat (PDF). Hypertext files contain ASCII text plus hypertext mark-up language (HTML) commands that enable them to be viewed in a web browser such as Mozilla or MS Internet Explorer. Hypertext documents may reference ancillary files, such as images, that are incorporated into the document by the web browser.

### 6.2.2 Tabular files

Tabular files (TAB extension) exist in the DATA and INDEX directories. Tabular files are ASCII files formatted for direct reading into database management systems on various computers. Columns are fixed length, separated by commas or white space, and character fields are enclosed in double quotation marks ("). Character fields are padded with spaces to keep quotation marks in the same columns of successive records. Character fields are left justified, and numeric fields are right justified. The "start byte" and "bytes" values listed in the labels do not include the commas between fields or the quotation marks surrounding character fields. The records are of fixed length, and the last two bytes of each record contain the ASCII carriage return and line feed characters. This line format allows a table to be treated as a fixed length record file on computers
that support this file type and as a text file with embedded line delimiters on those that don't support it.
Detached PDS label files will describe all tabular files. A detached label file has the same name as the data file it describes, but with the extension LBL. For example, the file INDEX.TAB is accompanied by the detached label file INDEX.LBL in the same directory.

### 6.2.3 PDS labels

All data files in the JADE Standard Product Archive Collection have associated detached PDS labels [see the Planetary Science Data Dictionary and the PDS Standards Reference in §1.9]. These label files are named using the same prefix as the data file together with an LBL extension.
A PDS label provides descriptive information about the associated file. The PDS label is an object-oriented structure consisting of sets of "keyword = value" declarations. The object that the label refers to (e.g. IMAGE, TABLE, etc.) is denoted by a statement of the form:

```
^
```

in which the carat character ( $\wedge$, also called a pointer in this context) indicates where to find the object. In a PDS label, the location denotes the name of the file containing the object, along with the starting record or byte number, if there is more than one object in the file. For example:

```
^HEADER = ("98118.TAB", 1)
^TABLE = ("98118.TAB", 1025 <BYTES>)
```

indicates that the HEADER object begins at record 1 and that the TABLE object begins at byte 1025 of the file 98118.TAB. The file 98118.TAB must be located in the same directory as the detached label file.

Below is a list of the possible formats for the ${ }^{\wedge}$ object definition in labels in this product.

```
\({ }^{\wedge}\) object \(=n\)
\({ }^{\wedge}\) object \(=n<B Y T E S>\)
^object = "filename.ext"
^object \(=\) ("filename.ext", \(n\))
^object \(=(\) "filename.ext", \(n<\) BYTES \(>\))
```

where

- $n$ is the starting record or byte number of the object, counting from the beginning of the file (record 1, byte 1),
- <BYTES> indicates that the number given is in units of bytes (the default is records),
- filename is the up-to-36-character, alphanumeric upper-case file name,
- ext is the up-to-3-character upper-case file extension,
- and all detached labels contain ASCII records that terminate with a carriage return followed by a line feed (ASCII $13_{10}, 10_{10}$ ). This allows the files to be read by most computer operating systems, e.g., UNIX, MacOS, MSWindows, etc.

Examples of PDS labels required for the JADE archive are shown in Appendix B.

### 6.2.4 Catalog files

Catalog files (extension CAT) exist in the Root and CATALOG directories. They are plain text files formatted in an object-oriented structure consisting of sets of "keyword = value" declarations.

### 6.2.5 Index files

The PDS team provides PDS index files. The format of these files is described in this SIS document for completeness.
A PDS index table contains a listing of all data products on an archive volume. For products described by a detached PDS label, the index file points to the label file, which in turn points to the data file. A PDS index is an ASCII table composed of required columns and optional columns (user defined). When values are constant across an entire volume, it is permissible to promote the value out of the table and into the PDS label for the index table.

To facilitate users' searches of the JADE data submission, a few optional columns will be included in the index table. In particular, the file start and stop times will be included. Table 30 contains a description of the JADE archive volume index files. Index files are by definition fixed length ASCII files containing comma-delimited fields. Character strings are quoted using double quotes, and left justified in their field, followed where necessary by trailing blanks. The "Start Byte" column in Table 30 gives the location of the first byte (counting from 1) of the column within the file, skipping over delimiters and quotation marks.

### 6.2.6 Binary formats of files

Most JADE data files are binary, where each object of each record of a file may be encoded in a different way. Each object has a DATA_TYPE entry in the LBL (or FMT) file that describes the binary format of that object in standard PDS 3 terms. The four most common binary object types are DATE (ASCII character string of time), PC_REAL (a float), LSB_INTEGER (signed integer) and LSB_UNSIGNED_INTEGER (unsigned integer), the latter 3 being little endian.

For JADE Level 2 and 3 records, DATE objects will always be 21 characters long in ASCII, in the PDS UTC format CCYY-DDDTHH:MM:SS.sss. LSB_INTEGER is a 'least significant byte first' (LSB, also known as little endian) signed integer and may be 1,2 or 4 bytes long (the ITEM_BYTES or if a scalar, BYTES, entry indicates which). LSB_UNSIGNED_INTEGER is similar, but for unsigned integers. PC_REAL is an LSB float, and may be 4 or 8 bytes long (a single or double float respectively), which one is indicated by ITEM_BYTES or BYTES.

There is also a bit level value indicated by BIT_DATA_TYPE = BOOLEAN entry, either 0 or 1 .

### 6.2.7 Days without Data

If a given day has no data of a given type, then there is simply no file present for that day. For instance, high rate science is generally only for 6 hours per orbit, and usually on the same day; therefore the vast majority of days will have no data files for high rate science data.

Table 30: Format of index files for Level 2

Column Name	$\begin{aligned} & \text { Start } \\ & \text { Byte } \end{aligned}$	Bytes	Description
VOLUME_ID	2	11	Contains the value JNOJAD nnnn, where nnnn is a 4 digit number. (See Table 10)
STANDARD_DATA_PRODUCT_ID (SID)	16	19	The "type" of the data file. (See Table 7)
DATA_SET_ID	38	32	The PDS ID of the data set of which this file is a member. (See Table 10)
PRODUCT_ID	73	27	Identifier for the product [Typically filename without version number or extension]
START_TIME	102	21	Time (UTC) of the first record in the data file.
STOP_TIME	124	21	Time (UTC) of the last record in the data file.
FILE_SPECIFICATION_NAME	147	71	The full specification name of the PDS label file (including the file name and the path) that describes the product, relative to the root of the archive volume.
PRODUCT_CREATION_TIME (or CR_DATE)	220	17	Creation time of the PDS labeled data product.
PRODUCT_LABEL_MD5CHECKS UM	239	32	Labels contain product checksums, this field records the label's checksum.

Table 31: Format of index files for Level 3

Column Name	Start   Byte	Bytes	Description
VOLUME_ID	2	11	Same description as from Table 30
STANDARD_DATA_PRODUCT_ID   (SID)	16	19	Same description as from Table 30
DATA_SET_ID	38	30	Same description as from Table 30
PRODUCT_ID	71	31	Same description as from Table 30
START_TIME	104	21	Same description as from Table 30
STOP_TIME	126	21	Same description as from Table 30
FILE_SPECIFICATION_NAME	149	70	Same description as from Table 30
PRODUCT_CREATION_TIME   (or CR_DATE)	221	17	Same description as from Table 30
PRODUCT_LABEL_MD5CHECKS   UM	240	32	Same description as from Table 30

### 6.2.8 Level 2 data files

The Level 2 data files are binary and have files ending in the extension .DAT. Accompanying them in the same directory are the label files with the same filename but the extension .LBL.

For example, the PDS file pairs will have the following paths in the Volume:

> ROOT/DATA/yyyy/yyyyddd/subdir/JAD_L20_aaa_bbb_ccc_yyyyddd_Vnn.DAT ROOT/DATA/yyyy/yyyyddd/subdir/JAD_L20_aa__bbb_ccc_yyyyddd_Vnn.LBL

The format file (same filename minus the date part, but including the version number, with the extension .FMT) accompanying (and already listed within) the LBL files are usually found in the LABEL directory at the root of the volume - however it was decided to exclude this LABEL directory (and therefore exclude FMT files) as they are redundant and may be copy/pasted out of the LBL files. [FMT files are made locally for JADE file production, but do not get to the PDS.]

See section 3.1 for the explanation of JAD_L20_aaa_bbb_ccc_yyyyddd_Vnn, and subdir is the subdirectory name given in Table 16.

To save space in this document, Table 35 gives the 25 -object header for the binary files for Level 2 products, which is then used throughout. This is the same for all but a few objects, e.g. PACKETID, that gives a slightly different description for each product, where text that may be different is shown in blue.

Other objects may have similar names in different product types, i.e. MIN_SUBTRACTED_VALUE, MCP_NOT_AT_COMMANDED, SWEEP_TABLE, MCP_COMMANDED_VALUE or DATA, but may have different sizes or be different types (i.e. float or unsigned integer, of either 2 or 4 bytes, or 1 or 3 elements) depending on which Level 2 product they are.

CODMAC Level 1 data (not in PDS, see section 3.3.1) collects counts in the DATA object, however has a MIN_SUBTRACTED_VALUE removed from it prior to onboard compression. For CODMAC Level 2 data here we re-add it to the DATA object, where:

DATA $\{$ Level 2$\}=$ DATA $\{$ Level 1$\}+$ MIN_SUBTRACTED_VALUE
Since MIN_SUBTRACTED_VALUE is always provided, you can work out the Level 1 DATA yourself if required.

Figure 5 shows all 43 different JADE *_SCI product IDs that will go in to the PDS, grouping them together in to Science and Operations. Product IDs are numerically represented in hex, and only those with PACKETIDs greater than 0x0A (16 decimal) and less than 0xA0 (160 decimal) will go in to the PDS.

Table 33 and Table 34 summarize the type of data the 43 different JADE *_SCI products provide over 14 file types, and how they are arranged and lossy compressed. For instance 16-8 bit means that the value onboard was collected as a two-byte unsigned integer, but lossy compressed to 1 byte for transmission to ground (lossless compression may also have occurred after this step). Although low rate science can send back electron data from any individual sensor, only one is returned due to bandwidth constraints.

Table 32 lists the 14 level 2 products and provides information on how many PDS Objects are in each record, and how many bytes are in a record. The number of records per day, however, is dependent on which products are commanded and what their ACCUMULATION_TIME is (which may vary).

Note that the LBL/FMT files describe DATA as 2D containers (a container within a container that holds a scalar), but also show a 1D data array description that is commented out. The original telemetry stream is of 1 D data blobs, but for convenience to the user we describe it in the 2D way in the FMT file, but you can use whichever description you find easier. The 1D ordering is based on c , in that the last dimension changes fastest, i.e. if a 1 D array is $\mathrm{x}=[1,2,3,4$, 5,6 ] and that should be a $3 \times 2$ array $y$, then:

$$
\mathrm{y}[0][0]=1 ; \quad \mathrm{y}[0][1]=2 ; \quad \mathrm{y}[1][0]=3 ; \quad \mathrm{y}[1][1]=4 ; \quad \mathrm{y}[2][0]=5 ; \quad \mathrm{y}[2][1]=6 ;
$$

Table 32: Size of a record of each Level 2 product.

Product	Bytes per record	Objects per record
JAD_L20_ALL_ION_DER_V01	4406	27
JAD_L20_ALL_ION_DES_V01	84	35
JAD_L20_CAL_ELC_ALL_V01	13154	30
JAD_L20_CAL_ION_ANY_V01	10054	25
JAD_L20_HLC_ION_LOG_V01	3270	25
JAD_L20_HLC_ION_TOF_V01	12358	25
JAD_L20_HRS_ELC_ALL_V01	6628	32
JAD_L20_HRS_ION_ANY_V01	838	25
JAD_L20_HVE_ELC_ALL_V01	282	25
JAD_L20_HVE_ION_ALL_V01	454	25
JAD_L20_HVE_ION_LOG_V01	170	25
JAD_L20_HVE_ION_TOF_V01	582	25
JAD_L20_LRS_ELC_ANY_V01	12384	32
JAD_L20_LRS_ION_ANY_V01	10054	25



Figure 5: 'Periodic' table comparing the different JADE products, giving their packet $I D$ number in hex (DPID in figure key, see entry in Table 35), decimal, the PDS name fragment and information on what type of compression was used, and whether it records counts per accumulation or count rates.

			Packet ID	0x8E	$\begin{aligned} & 0 \times 68 \\ & 0 \times 6 A \\ & 0 \times 6 B \end{aligned}$	0x7E	0x1E	$\begin{aligned} & 0 \times 1 \mathrm{~F} \\ & 0 \times 6 \mathrm{~F} \\ & 0 \times 7 \mathrm{~F} \\ & 0 \times 8 \mathrm{~F} \end{aligned}$	$0 \times 1 \mathrm{~F}$   $0 \times 6 \mathrm{~F}$   $0 \times 7 \mathrm{~F}$   0x8F	$0 \times 80$   $0 \times 81$   $0 \times 82$   $0 \times 83$   $0 \times 84$   $0 \times 85$   $0 \times 86$   $0 \times 87$	$0 \times 60$   $0 \times 61$   $0 \times 62$   $0 \times 63$   $0 \times 64$   $0 \times 65$   0x66   0x67	$\begin{aligned} & 0 \times 70 \\ & 0 \times 71 \\ & 0 \times 72 \\ & 0 \times 73 \\ & 0 \times 74 \\ & 0 \times 75 \\ & 0 \times 76 \\ & 0 \times 77 \\ & \hline \end{aligned}$	0×18	$\begin{aligned} & 0 \times 69 \\ & 0 \times 79 \\ & 0 \times 89 \end{aligned}$	0x19	$\begin{aligned} & 0 \times 6 C \\ & 0 \times 7 C \\ & 0 \times 8 C \end{aligned}$	0x1C
PDS FMT   Name	TLM Spreadsheet Name	$\begin{gathered} \text { \# } \\ \text { Bytes } \\ \hline \end{gathered}$	Data Type			JAD＿L20＿CAL＿ELC＿ALL							JAD＿L20＿HVE＿ION＿ALL		JAD＿L20＿HVE＿ION＿TOF		
SYNC	Sync Pattern	4	uint32［1］	$\checkmark$													
DPID＿COUNT	DPID Count（Source Sequence Count）	1	uint8［1］	$\checkmark$													
COMPRESSION	Lossless Compression Status	1	uint8［1］	$\checkmark$													
IDPLENGTH	IDP Length	2	uint16［1］	$\checkmark$													
PACKETID	Packet ID（DPID）	1	uint8［1］	$\checkmark$													
FLIGHT＿OR＿STL	Added on Ground （Placed to byte pack）	1	uint8［1］	$\wedge$	ヘ	$\wedge$	ヘ	$\wedge$	$\wedge$	$\wedge$	$\wedge$						
PACKET＿MODE	Added on Ground	1	int8［1］	$\wedge$	$\wedge$	$\wedge$	$\wedge$	ヘ	$\wedge$	$\wedge$	$\wedge$	$\wedge$	$\wedge$	ヘ	$\wedge$	$\wedge$	$\wedge$
PACKET＿SPECIES	Added on Ground	1	int8［1］	$\wedge$	ヘ	＾	ヘ	$\wedge$	$\wedge$	ヘ	$\wedge$	ヘ	$\wedge$	ヘ	ヘ	$\wedge$	ヘ
TIMESTAMP＿WHOLE	Timestamp（Whole Second）	4	uint32［1］	$\checkmark$													
TIMESTAMP＿SUB	Timestamp（Subsecond）	2	uint16［1］	$\checkmark$													
ACCUMULATION＿TIME	Accumulation Time	2	uint16［1］	$\checkmark$													
TABLES＿VERSION	LUT Version（float version of Hex）	4	float（1）	$\checkmark$	$\checkmark$	$\checkmark$	$\wedge$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	＾	$\checkmark$	$\wedge$	$\checkmark$	ヘ
FSW＿VERSION	FSW Version（float version of Hex）	4	float（1）	$\checkmark$	$\checkmark$	$\checkmark$	$\wedge$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	ヘ	$\checkmark$	ヘ	$\checkmark$	＾
ACCUM＿TRUNCATION	Accum Truncation	1	Lint8［1］	$\checkmark$	$\checkmark$	$\checkmark$	$\wedge$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\wedge$	$\checkmark$	，	$\checkmark$	，
DATA＿UNITS	Added on Ground （Placed to byte pack）	1	uint8［1］	$\wedge$	$\wedge$	$\wedge$	$\wedge$	$\wedge$	$\wedge$	ヘ	$\wedge$						
COMPRESSION＿RATIO	Added on Ground	4	float［1］	$\wedge$	$\wedge$	ヘ	$\wedge$	＾	$\wedge$	＾							
UTC	Added on Ground	21	char［21］	ヘ	$\wedge$	$\wedge$	$\wedge$	$\wedge$	$\wedge$	ヘ	$\wedge$	$\wedge$	ヘ	$\wedge$	$\wedge$	ヘ	$\wedge$
LEAP＿SECOND＿VERSION	Added on Ground （Placed to byte pack）	1	uint8［1］	$\wedge$	ヘ	$\wedge$	$\wedge$	ヘ	$\wedge$	ヘ	$\wedge$	$\wedge$	ヘ	$\wedge$	ヘ	$\wedge$	$\wedge$
SCLKSCET＿VERSION	Added on Ground	2	int16［1］	ヘ	ヘ	$\wedge$	$\wedge$	$\wedge$	$\wedge$	$\wedge$	ヘ	ヘ	$\wedge$	$\wedge$	ヘ	$\wedge$	$\wedge$
ISSUES（bit flags）	Added on Ground	4	uint32［1］	$\wedge$	$\wedge$	ヘ	$\wedge$	$\wedge$	$\wedge$	$\wedge$	$\wedge$	$\wedge$	へ	$\wedge$	$\wedge$	$\wedge$	$\wedge$
	Min Subtracted Value	4	uint32［1］	$\checkmark$		$\checkmark$	$\wedge$	，		$\checkmark$				$\checkmark$	，	$\checkmark$	
Min＿SUBtRACTED＿VALUE	Min Subtracted Value	4	float（1）		$\checkmark$						$\checkmark$	$\checkmark$					
MCP＿NOT＿AT＿COMMANDED	MCP not at Commanded	1	uint8［1］		$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$		$\checkmark$	
SWEEP＿TAbLe	Sweep Table	1	uint8［1］		$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\wedge$	$\checkmark$	$\wedge$	$\checkmark$	$\wedge$
MCP＿COMMANDED＿VALUE	MCP Commanded，or， Ion MCP Commanded	2	uint16［1］		$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\wedge$	$\checkmark$	$\wedge$	$\checkmark$	$\wedge$
MCP＿NOT＿AT＿COMMANDED   SWEEP＿TABLE   MCP＿COMMANDED＿VALUE	E060，E180 and E300 MCPs not at Commanded E060，E180 \＆E300 Sweep Tables E060，E180 \＆E300 MCPs Commanded	3	uint8［3］   uint8［3］   uint16［3］														
DATA	Array Data Blob Array Data Blob Array Data Blob	Depends Depends Depends	uint16   uint32   float	$\checkmark$	$\checkmark$		$\checkmark$				$\checkmark$						
MAG＿TIME＿DIR	mag＿time＿direction	1	uint8［1］	$\checkmark$													
MAG＿LOOK＿DIR	mag＿anode	1	uint8［1］	$\checkmark$													
MAG＿FIRST＿DFL	first＿dif	2	uint16［1］	$\checkmark$													
MAG＿ELEVATION	elevation＿sign＋elevation＿angle	1	int8［1］	$\checkmark$													
MAG＿TIME＿LATENCY	mag＿time＿latency	1	uint8［1］	$\checkmark$													
MAG＿TIMESTAMP＿WHOLE	mag＿whole＿seconds or Mag＿time＿whole	4	uint32［1］	$\checkmark$	$\checkmark$	$\checkmark$											
MAG＿TIMESTAMP＿SUB	Mag＿time＿sub	2	uint16［1］		$\checkmark$	$\checkmark$											
MAG COUNT VALID	Mag count valid	1	uint8［1］		$\checkmark$	$\checkmark$											
MAG＿COUNT＿INVALID	Mag＿count＿invalid	1	uinti8［1］		$\checkmark$	$\checkmark$											
MAG＿VECTOR	mag＿$x+$ mag $y+$ mag＿z	12	int32［3］														
BACKGROUND＿COUNTS	Background Counter	4	uint32［1］	Inc. in DATA	$\checkmark$	$\begin{aligned} & \text { Inc. in } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { Inc. in } \\ & \text { DATA } \end{aligned}$										
ESENSOR	Added on Grounc	2	uint16［1］		$\wedge$												
DE＿COL＿SUB＿SEQ＿COUNT	Collection sub－sequence count	2	uint16［1］					$\checkmark$	$\checkmark$								
DATA［＂］	Dataklob Padded to Fixed Size	4332	uint16［2166］					$\checkmark$									
DE＿SIZE	Added on Ground	2	uint16［1］					＾									
DE＿BAD	Added on Ground	1	uint8［1］						＾								
DE＿EVENTO＿BOUNDARY1＿MARKER2	Added on Ground	1	uint8［1］						$\wedge$								
De＿SWEEP＿NUMBER	Added on Ground	2	uint16［1］						$\wedge$								
DE＿ESA＿STEP	Added on Ground	1	uint8［1］						$\wedge$								
DE＿DFL＿STEP	Added on Ground	1	uint8［1］						$\wedge$								
DE＿TOF	Added on Ground	2	uint16［1］						$\wedge$								
DE＿ANODE＿ID	Added on Ground	1	uint8［1］						$\wedge$								
DE＿QUALITY＿FLAG＿2	Added on Ground	1	uinte［1］						$\wedge$								
DE＿QUALITY＿FLAG＿1	Added on Ground	1	uint8［1］						$\wedge$								
DE＿QUALITY＿FLAG＿0	Added on Ground	1	uint8［1］						$\wedge$								

Figure 6：Breaking out the JADE Level 2 products in to the different Objects to allow similarities to be drawn．
There are a total of 14 products，compressed here for readability．A green shaded ${ }^{\wedge}$ mark values added on the ground，red shaded ones means MISSING＿CONSTANTS were added．Electron products include a background anode；only LRS data splits it out from the DATA object．

Table 33: Data Collection types by dimensions.
One spin is 48 E-Spin-Phase Sectors or 78 I-Spin-Phase Sectors.
Ion species may be commanded to return 1-8 species for HRS/LRS/CAL modes, but 3 is typical.
Electron background anodes have been ignored for this table.
A full ion energy sweep is of 64 steps, however each packet contains either the top 32 or bottom 32 only.

	HRS	LRS	MCP CAL	HVE
Electrons	3 Sensors   64 Energies   48 Anodes   (Same as CAL)	1 Sensor 64 Energies 48 E-Spin-Phase	3 Sensors   64 Energies   48 Anodes   (Same as HRS)	3 Sensors   1 Energy   48 Anodes
Ion Species	1-8 Species 32 Energies 12 Anodes	$\begin{array}{r} 1-8 \mathrm{~S} \\ 32 \mathrm{Er} \\ 78 \mathrm{I}-\mathrm{Sp} \end{array}$	cies gies Phase	8 Species   1 Energy   12 Anodes
Ion TOF		32 Energies 96 TOF		1 Energy 128 TOF
Ion Logicals		32 Energies 25 Logs		1 Energy 25 Logs
Ion DE	DE Words			

Table 34: Data Collection types by units (green), lossy bit compression (red) and number of Level 2 files (purple).

	HRS	LRS	MCP CAL	HVE
Electrons	1 File	3 Files	1 File	1 File
	Counts	Rate	Counts	Counts
	$16>8$ bit	$32>8$ bit	$32>8$ bit	None
Ion Species	1 File	1 File	1 File	1 File
	Counts	Rate	Rate	Counts
	$16>8$ bit	$32>8$ bit	$32>8$ bit	None
Ion TOF	1 File	1 File	1 File	1 File
	Counts	Counts	Counts	Counts
	$16>8$ bit	$32>8$ bit	$32>8$ bit	None
Ion Log	1 File	1 File	1 File	1 File
	Counts	Counts	Counts	Counts
	$16>8$ bit	$32>8$ bit	$32>8$ bit	None
Ion DE	1 File	1 File	1 File	1 File
	DE Word	DE Word	DE Word	DE Word
	None	None	None	None

[^0]The following table (over 4 pages) describes the header that is identical for all the following data products. The names and word type (int/float/etc.) for all level 2 data is also summarized in Figure 6. Any text in red italics is a note that is not in the LBL nor FMT file, while any text in blue boldface may change depending on the product (usually just the product ID or species number). This color system will apply for format tables throughout the rest of section 6.2.

Table 35: Format of Level 2 data record header for all binary data files.

Byte	Bit	Length (bits)	Name	Description
1	0	32	SYNC	JADE Sync Pattern for IDP packets.   Hex value $=0 x F A F 33403$, Decimal $=4210242563$
5	0	8	DPID_COUNT	DPID Count (Source Sequence Count) Count of the number of times this product has been generated since the startup (or reset) of the generating application (Boot Program or Science Program). This count resets to 0 upon entry to the modes of BOOT, LVENG, HVENG, LOW_RATE_SCI,   MCP_CAL_-SCI, HI_RATE_SCI, LOW_RATE_SCI2, MCP_CAL_SCI2, HI_RATE_SCI2.   Note: starts with 0 , increments by 1 , eventually rolls over at 255 .
6	0	8	COMPRESSION	Lossless Compression Status.   Indicates whether the data (non-header) segment of the IDP packet (IDP Data) was lossless compressed.   $0=$ Not Compressed   1 = Compressed   Last line only shown if the packet could be compressed.
7	0	16	IDPLENGTH	IDP Length,   Byte Length of the IDP packet.   Uncompressed size for this product should be 416.
9	0	8	PACKETID	Packet ID (DPID), Data Product Identifier Followed by Name of Packet ID for each product, e.g. High Rate Science - Ion Species Histogram Each packet is one of the following ion species: SP0, species 0, PACKETID $=128 / * 0 \times 80 * /$ SP1, species 1, PACKETID $=129 / * 0 \times 81 * /$ SP2, species 2, PACKETID $=130 / * 0 \times 82 * /$ SP3, species 3, PACKETID $=131 / * 0 \times 83 * /$ SP4, species 4, PACKETID $=132 / * 0 \times 84$ */ SP5, species 5, PACKETID = $133 / * 0 \times 85$ */ SP6, species 6, PACKETID $=134 / * 0 \times 86 * /$ SP7, species 7, PACKETID $=135 / * 0 \times 87$ */
10	0	8	$\begin{aligned} & \text { FLIGHT_OR_ST } \\ & \text { L } \end{aligned}$	In Flight data, or STL (ground EM tests): $0=$ In flight, from JADE on Juno (via FEI) $1=$ On ground, from STL tests (via FEI) $2=$ On ground, from SwRI tests (not FEI) $255=$ Unknown


Byte	Bit	Length (bits)	Name	Description
11	0	8	$\begin{aligned} & \text { PACKET_MOD } \\ & \text { E } \end{aligned}$	Packet Mode, describes type of data telemetry.   -2 = HSK / Housekeeping Engineering   $-1=$ HVE / High Voltage Engineering   $0=$ CAL / MCP Calibration Science   $1=$ LRS / Low Rate Science   $2=$ HRS / High Rate Science   $127=$ Unknown   254 = Wrong - but HSK, see below.   255 = Wrong - but HVE, see below.   (Note, this could also be calculated via PACKETID.)   If you have 254 or 255 then your code is incorrect, check you read a signed byte, rather than unsigned.
12	0	8	PACKET_SPECI ES	Packet Species, describes type of plasma data.   $-1=$ electrons   $0=$ ion species $0, \mathrm{SP} 0$   $1=$ ion species 1, SP1   $2=$ ion species 2, SP2   $3=$ ion species 3 , SP3   $4=$ ion species 4, SP4   $5=$ ion species 5, SP5   $6=$ ion species 6, SP6   $7=$ ion species 7, SP7   $8=$ Not Used   $9=$ All ions   $127=$ Unknown   $255=$ Wrong - but electrons, see below.   If you have 255 then your code is incorrect, check you read a signed byte, rather than unsigned.
13	0	32	$\begin{aligned} & \text { TIMESTAMP_ } \\ & \text { WHOLE } \end{aligned}$	Timestamp (Whole Second).   Timestamp (whole second) of the data for this packet when collection began.   This is sometimes referred to as Mission Elapsed Time (MET) and is Referenced from 2000-001T12:00:00.000 UTC,   but 1 tick is not exactly 1 S.I. second.   See UTC object for corrected converted time.   Note: Spacecraft Clock =   TIMESTAMP_WHOLE:TIMESTAMP_SUB
17	0	16	TIMESTAMP_S UB	Timestamp (Subsecond).   Timestamp subsecond of the data for this packet when collection began.   Unit: Microseconds scaled to 16 bits.   Note: Spacecraft Clock =   TIMESTAMP WHOLE:TIMESTAMP SUB


Byte	Bit	Length (bits)	Name	Description
19	0	16	ACCUMULATI ON_TIME	Accumulation Time.   Number of seconds over which the data in this product was collected (Science Program).   NOTE: This is not the collection period of a given energy step at a given angle, etc., that would be used to convert to counts/second. It is the time it took to collect all the data measured within this record.
21	0	32	TABLES_VERSI ON	Look Up Tables (LUT) version used onboard. All tables are combined (compression, sweeping, macros, etc.) onboard in to a large image. This is the image number, or table version. Number should be to 2 decimal places.
25	0	32	FSW_VERSION	Flight Software version used. Number should be to 2 decimal places.
29	0	8	ACCUM_TRUN	Accumulation Truncation,   Whether commanded accumulation time ended early. $\begin{aligned} 0 & =\text { Nominal } \\ 1 & =\text { Early } \\ 255 & =\text { Unknown } \end{aligned}$
30	0	8	DATA_UNITS	Science Data could be total counts (per accumulation) or a rate, normalized to counts per view.   $0=$ All counts in the accumulation period (int)   $1=$ All counts divided by number of views (float)   2 = Counts per second (float)   $255=$ Not appropriate for this dataset, or Unknown.
31	0	32	COMPRESSION RATIO	Data compression ratio of data blob when it was transmitted to Earth:   Ratio $=\{$ Uncompressed size $\} /\{$ Compressed size $\}$ This is the compression due to the lossless scheme, and does not include any lossy compression which may have occurred prior to it, such as the 32 -bit to 8 -bit or 16 -bit to 8 -bit look up tables that are often used prior to the lossy compression. A value of 1 means there was no lossless data compression, i.e. it was turned off, and object COMPRESSION should equal 1.
35	0	168	UTC	UTC timestamp, of format yyyy-dddTHH:MM:SS.sss where yyyy = year, ddd = day of year, $\mathrm{HH}=$ hour, $\mathrm{MM}=$ minute, SS.sss $=$ decimal seconds to millisecond resolution. Value calculated via SPICE from spacecraft clock time, \{TIMESTAMP_WHOLE $\}:\left\{T I M E S T A M P _S U B\right\}$
56	0	8	LEAP SECOND _VERSION	The NAIF SPICE kernel for lsk used to generate UTC. The lsk (leap second kernels) files are used in time conversions and have filenames naifnnnn.tls, where is the lsk version number (with leading zeros).


Byte	BitLength   (bits)	Name	Description	
57	0	16	SCLKSCET_VE   RSION	The NAIF SPICE kernel for sclk used to generate UTC.   The JUNO sclk files are used to convert the spacecraft   clock timestamps to UTC time, and all have filenames   JNO_SCLKSCET.nnnnn.tsc, where nnnnn is the   SCLKSCET   version number (with leading zeros and positive).   Each kernel has a reconstructed and predicted part for   it's values, typically any time after the last row of   the SCLK01_COEFFICIENTS_61999 table is predicted.   If TIMESTAMP_WHOLE:TIMESTAMP_SUB is in the   predicted   part then SCLKSCET_VERSION will be negative, the   absolute value would be the version number. If a later   SCLKSCET kernel version is used the UTC time will
likely be different.				
If TIMESTAMP_WHOLE:TIMESTAMP_SUB is in the				
reconstructed region the number will be positive				
(equal to the version number) and will not vary with				
later kernels.				
e.g. If SCLKSCET_VERSION = -17 then kernel				
JNO_SCLKSCET.00017.tsc was used to convert to UTC,				
but				
it's a predicted UTC time.				
If SCLKSCET_VERSION = 18 then kernel				
JNO_SCLKSCET.00018.tsc was used to convert to UTC,				
and				
it's a reconstructed UTC time that will not change with				
later SCLKSCET kernel versions.				
Within the PDS archive this value should always be				
positive.				

Table 36: Format of Level 2 data record sub-header for all binary data files of one sensor.

Byte	Bit	Length   (bits)	Name	Description
67	0	8	MCP_NOT_AT_-_信   COMMANDED	MCP not at Commanded flag. This denotes whether   the MCP voltage was reduced during the data collection.   $0=$ Nominal   $1=$ Reduced   $255=$ Unknown
68	0	8	SWEEP_TABLE	Which sweep table does the ion sensor have, 0-3.
69	0	16	MCP_COMMA   NDED_VALUE	Ion MCPs Commanded raw DAC value.

Table 37: Format of Level 2 data record sub-header for all binary data files of all electron sensors.

Byte	Bit	Length   (bits)	Name	Description

The ISSUES object description is far too large to fit in the tables above, so is given here in two column format and a reduced font size over two pages (with some line breaks from the FMT/LBL file contents altered/removed). Reading the FMT/LBL file itself may be clearer.

## Table 38: Full description of the ISSUE flag in the FMT/LBL files.

Issues or potential issues in this data record.
These are issues that can be identified within the JADE packet of data itself without any external information. e.g. timing issues due to the MAG time stutter, or any voltage pulsing, would not be included as there are no indicators to them within this JADE packet.
[For a more comprehensive list of potential issues from internal and external sources please see the Level 3 data.]

Level 2 issues of this JADE packet are flagged by individual bits, and several may be hit. If no issues are flagged then this 4-byte unsigned integer is zero. A value of 4294967295 is the MISSING_CONSTANT and means that the issue status is currently unknown.

All bits at 0 implies all is okay as seen by this packet. If a bit is set to 1 then that bit is flagged, otherwise it is set to zero and unflagged.

The bits are set as followed, grouped in to seriousness:
Not very serious issues for doing science:
Bit $0=$ UTC time is predicted, yet to be finalized.
Bit $1=$ Position/Orientation values predicted, yet to be finalized. Level 3 (and above) data only.
Bit 2 = TABLES_VERSION object was altered on the ground to accurately reflect a 'commanded parameter update' outside the initial per-orbit commands JADE is returning. [If changed, the original downlinked TABLES_VERSION value can be found by crossreferencing the PARAM_TABLE_VER object in the JAD_L20_HSK_ALL_SHK files. Note here the PARAM_TABLE_VER value is given as a unsigned integer of Hex Major-Middle-Minor, such that a value of 770 decimal is in hex $0 \times 302$, meaning Table Version 3.02 ]
Bit $3=$ FSW_VERSION 4.00 LRS/CAL Ion Species bug fixed on the ground by adjusting TIMESTAMP_WHOLE, TIMESTAMP_SUB, and ACCUMULATION_TIME based on cross-referencing JADE commanding.
Bit $4=$ LRS/CAL Ion Species record with unobserved look directions (views) populated using views from neighboring record. See Bit 12 for uncorrected/unpopulated description. (Only possible if ACCUMULATION_TIME = 30.)
Bit 5 = TIMESTAMP_WHOLE/SUB adjusted on the ground to mitigate any Juno time stutter affects. [Other TIMESTAMPs are susceptible to the onboard time stutter too, but only the JADE packet TIMESTAMP_WHOLE/SUB is tracked here.]
Bit $6=$ Currently unused.
Bit $7=$ Warning, a leap second occurs during the accumulation period.

Data slightly different than expected, but can be used for science with a little extra coding:
Bit $8=$ ACCUM_TRUNCATION object flagged.
Bit $9=$ Electron (HRS/LRS/CAL) MAG objects are not
tracked, are either zeros or MISSING_CONSTANT. [LRS and CAL did not have MAG objjects prior to FSW_VERSION 4.10, therefore those MAG objects here are set to MISSING_CONSTANT when FSW_VERSION < 4.10.]
Bit $10=$ TIMESTAMP_WHOLE/SUB affected by a Juno onboard time stutter, JADE reported timestamp is likely 1 whole tick too large.
[Other TIMESTAMPs are susceptible to the onboard time stutter too, but only the JADE packet TIMESTAMP_WHOLE/SUB is tracked here.]
Bit $11=$ Currently unused.
Bit $12=$ LRS/CAL Ion Species record potentially has unobserved look directions (spin phase sectors or views) present in the data, meaning the record may not contain data for a full 4 pi steradians field-of-view.
Unobserved look directions have zero counts per view (or counts per second) in the data, although an observed look direction may also have zero counts if no ions were measured. Therefore there is a potential confusion over zero measured counts or simply unmeasured. e.g. if the spin period is 30.7 seconds, then not all of the 78 spin phase sectors will be sampled in 30 seconds. (Unobserved views are only possible if ACCUMULATION_TIME $=30$.) See the JADE SIS for more information
Bit 13 = At least one anode is blanked.
See SIS document for further information.
Bit 14 = FSW_VERSION 4.00 LRS/CAL Ion Species bug warning:
Not fixed as yet - when fixed it will become bit 3 of ISSUES instead.
Level 2 data only when FSW_VERSION $=4.00$, ACCUMULTION_TIME object is MISSING_CONSTANT. Also, TIMESTAMP_WHOLE:TIMESTAMP_SUB is the end of the packet rather than the usual start, see TIMESTAMP_WHOLE object for more details. [Only affects data from 2015-089 to 2015-115.]
Bit $15=$ Electron Anodes Reversed.
Level 2 data only when FSW_VERSION $<4.10$ and only electron packets. Electron anodes are reversed in order and need to be remapped, however electron Spin Phase data (LRS data) cannot be remapped. See the SIS document for more information about this. [Affects all electron data 2011 to 2015-115.]

Data very different than expected, may not be suitable for science - use with extreme caution.
Bit 16 = Data is not from flight instrument on Juno, see FLIGHT_OR_STL object.
Bit $17=$ MCP_NOT_AT_COMMANDED object flagged. Electron HRS/CAL/HVE packets use all three electron sensors and therefore have three MCP_NOT_AT_COMMANDED values per packet. Setting this flag means at least one of those three mcps is not at its commanded value.
Bit 18 = Data includes some JADE-E300 sensor data. (Only flagged for HRS, LRS, CAL and HVE data.) E300 has a high voltage power supply issue and reported energy steps may be incorrect. If E300 is off but still reported in the data product, it may be zeros of fill values.
Bit $19=$ Ion packet abruptly truncated.
This packet should not be used. It had an
ACCUMULATION_TIME $=1$,
ACCUM_TRUNCATION $=1$ and the DATA object is all zeros, with a timestamp that matches an earlier valid packet that was not truncated and has non-zero DATA. e.g. TOF and LOG example in level 2 data at TIMESTAMP_WHOLE of 495879710 (UTC 2015-261).
Bit $20=$ MCP Dipping Triggered, in one or more sensors. If the sensor measures excessive counts, it temporarily lowers the MCP voltage to reduce the number of counts and protect the sensor.
The MCP_NOT_AT_COMMANDED object is also flagged (Bit 17 in ISSUES) since the MCP is no longer at the commanded voltage.
For HRS/CAL/HVE electrons (datasets where multiple sensors are on) it is possible that one sensor has been dipped, but the others are not and still providing good data.
(First MCP dip was HRS electrons, 2017-350.)
Bit $21=$ MCP Dipped sensor's DATA set to fill values.
If MCP dipping has triggered (Bit 20 of ISSUES)
then: DATA and BACKGROUND objects (and their
*_SIGMAs) have been replaced with
MISSING_CONSTANT values.
(Never used for Level 2 data, which has the counts as measured in the dipped state.)
In addition, Bit 17 of the ISSUES object (i.e.
MCP_NOT_AT_COMMANDED object $=1$ ) is set to zero, and, if it exists, the
MCP_NOT_AT_COMMANDED object itself is changed (from 1) to be 0 for the offending sensor(s). If the DATA object contains data from multiple sensors (HRS/CAL/HVE electrons) then only the elements of the DATA object for the dipped sensor are set to MISSING_CONSTANT (as identified by the MCP_NOT_AT_COMMANDED value for each sensor (prior to setting them to 0 )).
[See Bit 22 for a similar flag.]

Bit $22=1$ or more ELC sensor DATA set to fill values. Affects only electron HRS/CAL/HVE products (i.e. products that use multiple sensors), and generally only when starting that mode.
When switching to HRS/CAL/HVE from LRS, one JADE-E sensor is already on, and the other(s) have to turn on, then it takes some time for that sensor to reach the commanded voltage. For a given record,
MCP_NOT_AT_COMMANDED $=0$ for one sensor but is still = 1 for others. That is one sensor is taking valid science but the other(s) are not there yet and for those sensors: DATA and BACKGROUND objects (and their * SIGMAs) have been replaced with MISSING_C ONSTANT values.
(Never used for Level 2 data, which has the counts as measured in the dipped state.)
In addition, Bit 17 of the ISSUES object (i.e.
MCP_NOT_AT_COMMANDED object $=1$ ) is set to zero, and, if it exists, the
MCP_NOT_AT_COMMANDED object itself is changed (from 1) to be 0 for the offending sensor(s). Only the elements of the DATA object for the original MCP_NOT_AT_COMMANDED $=1$ sensor(s) (prior to setting them to 0 ) are set to MISSING_CONSTANT.
[Bits 21 and 22 are essentially the same feature caused by an mcp voltage not being at the commanded value, but the reason why this is the case is different. The treatment is identical for both Bit 21 and Bit 22.]
Bit $23=$ Currently unused.

Bit $24=$ Currently unused.
Bit $25=$ Currently unused.
Bit $26=$ Currently unused.
Bit $27=$ Currently unused.
Bit $28=$ Currently unused.
Bit $29=$ Currently unused.
Bit $30=$ Currently unused.
Bit 31 = Reserved for MISSING_CONSTANT use.

Each bit has a decimal value of $2^{\wedge}$ \{bit number $\}$, and the Issues flag is the sum of $2^{\wedge}$ \{flagged bit numbers $\}$. For instance, if this ISSUES flag $=131329$, then in binary that value is 00000000000000100000000100000001 showing bits 17,8 and 0 are flagged.
[If a currently unused bit is set, please check the latest LBL file for this product that you can find to see if it now has a definition.]

### 6.2.8.1 Electron Data

JADE-E consists of three electron sensors. For high rate science, calibration and high voltage engineering; data from all three sensors are returned in each record. For low rate science, only one sensor of the three is on at any given time, therefore just that one sensor's data is returned per record. Each electron sensor has 16 anodes and 1 background anode. The following figure provides the look directions and numbering of the different anodes (excluding background ones) from 0 to 47 .


Figure 7: JADE-E Anodes vs. Look Directions (see Table 39 for the values).
For FSW4.00 only (or any FSW3) with anodes reversed (see ISSUES flag), you need to reorder the data packets of 51 bins to get sequential azimuth coverage, using this anode order:

```
{15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, /* E060 */
31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, /* E180 */
47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, /* E300 */
48, 49, 50 /* Background anodes remain at end*/ };
```

Table 39 maps bins to the sensor anodes and look directions for CAL, HRS, HVE and LRS, and should be used as the guide to convert to field of view directions for level 3 data. LRS data arrays are returned in electron spin phase sectors, calculated from look_direction_id as shown in section 6.2.8.1.4.

Table 39: Electron anode mapping to bins and look directions. (Note: Electron spin phase sectors are over many anodes and require an equation, see section 6.2.8.1.4.)

Sensor	Hardware Anode (anode_id or a_id)	JADE SC Look Direction	JSIB Data Index	$\begin{aligned} & \text { HRS/CAL/HVE } \\ & \text { Bin } \end{aligned}$	LRS Sensor Loop Index (look_direction_id)
E060	15	0	15	0	0
E060	14	1	14	1	1
E060	13	2	13	2	2
E060	12	3	12	3	3
E060	11	4	11	4	4
E060	10	5	10	5	5
E060	9	6	9	6	6
E060	8	7	8	7	7
E060	7	8	7	8	8
E060	6	9	6	9	9
E060	5	10	5	10	10
E060	4	11	4	11	11
E060	3	12	3	12	12
E060	2	13	2	13	13
E060	1	14	1	14	14
E060	0	15	0	15	15
E180	15	16	31	16	0
E180	14	17	30	17	1
E180	13	18	29	18	2
E180	12	19	28	19	3
E180	11	20	27	20	4
E180	10	21	26	21	5
E180	9	22	25	22	6
E180	8	23	24	23	7
E180	7	24	23	24	8
E180	6	25	22	25	9
E180	5	26	21	26	10
E180	4	27	20	27	11
E180	3	28	19	28	12
E180	2	29	18	29	13
E180	1	30	17	30	14
E180	0	31	16	31	15
E300	15	32	47	32	0
E300	14	33	46	33	1
E300	13	34	45	34	2
E300	12	35	44	35	3
E300	11	36	43	36	4
E300	10	37	42	37	5
E300	9	38	41	38	6
E300	8	39	40	39	7
E300	7	40	39	40	8
E300	6	41	38	41	9
E300	5	42	37	42	10
E300	4	43	36	43	11
E300	3	44	35	44	12
E300	2	45	34	45	13
E300	1	46	33	46	14
E300	0	47	32	47	15
E060	Background	$N / A$	48	48	N/A
E180	Background	$N / A$	49	49	N/A
E300	Background	$N / A$	50	50	N/A

The electron products may all contain the onboard MAG vector, depending if the magnetic field magnitude is above a threshold value, set in the uploaded Look-Up Tables (LUT, also known as the TABLES_VERSION object in Level 2 files). From LUT 3.00 (2015, start of this archive) the threshold magnitude was set to 200 nT , meaning that a valid MAG_VECTOR object was only returned near perijove (and never in the solar wind) when the magnetic field magnitude was stronger than 200 nT . This changed in LUT 3.11 (starting 2017-074) to 25 nT . Future LUT versions may change this threshold again, generally there is a usable MAG_VECTOR (when the threshold is met) or MAG_VECTOR $=[0,0,0]$, indicating that the threshold was not met, and the true mag vector is unknown to the JADE instrument. (Earlier LUTs (pre 2015) had also set the threshold to zero for operational testing.)

This MAG_VECTOR object (when the threshold is met and not returning zeroes) is only a guide. The user should cross reference the JADE timestamp with the Level 3 MAG (also known as FGM) team's calibrated magnetic field vectors for any publications involving magnetometer data.

JADE-E has three electron sensors, but publications may refer to only two electron sensors. This is because E300 was turned off in 2016 (prior to arrival at Jupiter) and remains off. As such, any data product still including E300 data (such as JAD_L20_HRS_ELC_ALL_*) will have elements relating to E300 populated with the MISSING_CONSTANT value (see Table 41).

### 6.2.8.1.1 JAD_L20_CAL_ELC_ALL_*

The electron product for calibration mode is PACKETID 0x7E and includes data from all three electron sensors.
The DATA object is 2-D, 64 energies x 51 anodes, and is described in Table 40 .
From 2016 onwards E300 will remain off, but the downlinked product still contains values from all three sensors. For bins that are from E300 ( 32 to 47 and 50), their values will be replaced with the DATA object's MISSING_CONSTANT value, so should be obvious.

Table 40: Format of Level 2 data records for JAD_L20_CAL_ELC_ALL_*

Byte	Bit	Length (bits)	Name	Description
See Level 2 binary header from Table 35 and Table 37 for bytes 1 to 78.				
79	0	104448	DATA	DATA: Electron Counts 64 Energies x 51 Bins The 51 Bins are: 0-15 : E060 Look Directions 0-15 16-31: E180 Look Directions 0-15 32-47: E300 Look Directions 0-15 48 : E060 Background Anode   49 : E180 Background Anode 50 : E300 Background Anode (See SIS document for a figure.)
13135	0	32	MAG_TIMEST AMP_WHOLE	MAG_TIMESTAMP_WHOLE   Whole-second timestamp of last received MAG vector *before* data collection start.   Referenced from 12:00UTC 2000/01/01.   [May be affected by a Juno Time Stutter.]
13139	0	16	$\begin{aligned} & \text { MAG_TIMEST } \\ & \text { AMP_SUB } \end{aligned}$	MAG_TIMESTAMP_SUB   Sub-second timestamp of last received MAG vector   *before* data collection start.   A value of 65535 could be real or a MISSING_CONSTANT, however it is MISSING_CONSTANT only if MAG_TIMESTAMP_WHOLE $=0$, e.g. WHOLE and SUB must both be real or both be MISSING_CONSTANT.   Unit: Microseconds scaled to 16 bits. [May be affected by a Juno Time Stutter.]
13141	0	8	MAG_COUNT VALID	MAG_COUNT_VALID   Count of valid (above threshold and not saturated) MAG vectors between start of *previous* packet and start of this packet.   Note: This saturates at 255 . e.g if there is a 600 s accumulation period, and the MAG vector is given every 2 -seconds, then that's 300 counts. If all are valid then that 300 will be expressed as 255 , however MAG COUNT INVALID would still be zero.


Byte	Bit	Length (bits)	Name	Description
13142	0	8	$\text { MAG_COUNT_ }^{2}$ INVAL̄ID	MAG_COUNT_INVALID   Count of invalid (below threshold or saturated) MAG vectors between start of *previous* packet and start of this packet.   Note: This saturates at 255 . e.g if there is a 600 s accumulation period, and the MAG vector is given every 2 -seconds, then that's 300 counts. If all are invalid then that 300 will be expressed as 255 , however MAG COUNT VALID would still be zero.
13143	0	96	$\begin{aligned} & \text { MAG_VECTO } \\ & \text { R } \end{aligned}$	Last received MAG vector in nT before data collection start: 3 components [X, Y, Z]   MAG range is $+/-16 \mathrm{G}$, hence limits.   The coordinate system is spacecraft based, with:   +X is between E060 and E300, along the 0 degree mark where E060 anode 0 starts   +Y is 90 degrees, between E060 anodes 11 and 12, +Z is the spin axis.   Note: these are signed integers.   A Mag vector of $\left[\begin{array}{ll}0 & 0\end{array}\right]$ has four meanings: [Meanings 1 and 2 require   MAG_TIMESTAMP_WHOLE $=0$. The MAG_COUNT_VALID and MAG_COUNT_INVALID objects can help distinguish meaning 1 from 2.]   1) JADE never received a mag vector at all. (So initialized to 0s.) e.g. MAG_COUNT_VALID $=0$ for this record.   2) A 25 s timeout has expired without JADE receiving a MAG vector over a threshold magnitude.   [Meanings 3 and 4 require   MAG_TIMESTAMP_WHOLE > 0]   3) The threshold parameter was set to 0 nT . (Some early HVCO1 check-out data may have this.)   4) The broadcast message was corrupted and the magnitude and components mismatched.

### 6.2.8.1.2 JAD_L20_HRS_ELC_ALL_*

The electron product for high rate science is PACKETID 0x8E and includes data from all three electron sensors.
The DATA object is 2-D, 64 energies $\times 51$ anodes, and is described in Table 41.
From 2016 onwards E300 will remain off, but the downlinked product still contains values from all three sensors. For bins that are from E300 ( 32 to 47 and 50), their values will be replaced with the DATA object's MISSING_CONSTANT value, so should be obvious.

Table 41: Format of Level 2 data records for $J A D_{\text {_L }}$ L20_HRS_ELC_ALL_*

Byte	Bit	Length (bits)	Name	Description
See Level 2 binary header from Table 35 and Table 37 for bytes 1 to 78.				
79	0	52224	DATA	DATA: Electron Counts 64 Energies x 51 Bins The 51 Bins are: 0-15: E060 Look Directions 0-15 16-31: E180 Look Directions 0-15 32-47: E300 Look Directions 0-15   48 : E060 Background Anode   49 : E180 Background Anode   50 : E300 Background Anode   (See SIS document for a figure.)   [Note: E300 was turned off in 2016, so look directions 32-47 and 50 are usually populated with the MISSING_CONSTANT value of 65535.]
6607	0	8	$\begin{aligned} & \text { MAG_TIME_DI } \\ & \text { R } \end{aligned}$	MAG Time Direction.   Indicates whether the MAG_TIME_LATENCY object indicates a past or future latency.   0 : (time_received - time_in_packet)   1: (time_in_packet - time_received)
6608	0	8	MAG_LOOK_DI   R   [In earlier drafts was known as MAG_ANODE.]	MAG Look direction ( 0 to 47), e.g. which electron bin the MAG vector fell on.   E060 has bins 0 to 15   E180 has bins 16 to 31   E300 has bins 32 to 47   (See DATA object for description of bins and look directions, and see the SIS document for a figure.)   Note: Background anodes (per sensor) are not included for this mapping.
6609	0	16	$\begin{aligned} & \text { MAG_FIRST_D } \\ & \text { FL } \end{aligned}$	MAG First Deflection.   First Deflection value written to the electron sweep table for the sensor the mag vector landed on. (1-bit range/gain (MSb) +12 -bit DAC value).
6611	0	8	MAG_ELEVATI ON	MAG elevation. Elevation angle of the mag vector, rounded to the nearest degree.


Byte	Bit	Length (bits)	Name	Description
6612	0	8	MAG_TIME_LA TENCY	MAG Time Latency.   Time difference (in 250 ms blocks) between the timestamp of the MAG vector and the time it was received by JADE. Values map to: $\begin{aligned} & 0=0.000-0.249 \mathrm{~s} \\ & 1=0.250-0.499 \mathrm{~s} \\ & 2=0.500-0.749 \mathrm{~s} \\ & 3=0.750-0.999 \mathrm{~s} \end{aligned}$   etc. $\begin{aligned} & 14=3.500-3.749 \mathrm{~s} \\ & 15=3.750-\text { infinity s } \end{aligned}$
6613	0	32	MAG_TIMESTA MP_WHOLE	MAG_TIMESTAMP_WHOLE   Timestamp (whole second) for MAG vector.   MAG timestamp subsecond is not returned in JADE   high rate science electron packets.   Referenced from 12:00UTC 2000/01/01.   [May be affected by a Juno Time Stutter.]
6617	0	96	MAG_VECTOR	MAG vector in nT, 3 components [ $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ]   MAG range is $+/-16 \mathrm{G}$, hence limits.   The coordinate system is spacecraft based, with:   +X is between E060 and E300, along the 0 degree mark where E060 anode 0 starts   +Y is 90 degrees, between E060 anodes 11 and 12,   +Z is the spin axis.   Note: these are signed integers.   A Mag vector of $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ has four meanings:   [Meanings 1 and 2 require   MAG_TIMESTAMP_WHOLE $=0$ ]   1) JADE never received a mag vector at all. (So initialized to 0s.)   2) A 25 s timeout has expired without JADE receiving a MAG vector over a threshold magnitude.   [Meanings 3 and 4 require   MAG_TIMESTAMP_WHOLE > 0]   3) The threshold parameter was set to 0 nT . (Some early HVCO1 check-out data may have this.)   4) The broadcast message was corrupted and the magnitude and components mismatched.

### 6.2.8.1.3 JAD_L20_HVE_ELC_ALL_*

The electron product for high voltage engineering is PACKETID 0x1E and includes data from all three electron sensors.
The DATA object is 1-D, 51 anodes (over 1 energy), and is described in Table 42.
[The one energy is really 64 energy steps where all 64 -steps are at the same fixed energy.]

Table 42: Format of Level 2 data records for $J A D_{-} L 20 _H V E _E L C _A L L_{-}$*

Byte	Bit	Length (bits)	Name	Description
See Level 2 binary header from Table 35 and Table 37 for bytes 1 to 78.				
79	0	1632	DATA	DATA: Electron Counts   1 Energy x 51 Bins   The 51 Bins are:   0-15: E060 Look Direction 0-15   16-31 : E180 Look Directions0-15   32-47: E300 Look Directions0-15   48 : E060 Background Anode   49 : E180 Background Anode   50 : E300 Background Anode   (See SIS document for a figure.)   16-bit counter at 1 energy step over   ACCUMULATION_TIME. Theoretical range (with max Accumulation of 1800 s ) is 0 to 7549632000 , greater than a 4-byte unsigned int. It is extremely unlikely to fill 4bytes, but if it does it will simply roll over to zero and keep going.

### 6.2.8.1.4 JAD_L20_LRS_ELC_ANY_*

The electron products for low rate science (PACKETID 0x68, 0x6A and 0x6B) cover all three electron sensors in the same file but one record contains data from one electron sensor only. At any time only one sensor will have a record.

This product is not about anodes, but electron Spin Phase sectors (different to ion Spin Phase sectors). For electron spin sectoring, there is a many-many relationship between anodes and spin sectors; an anode will travel through many sectors, and many anodes will contribute to each sector.

The formula for mapping sensor look directions into electron spin-phase sectors is:

$$
\text { spin_sector }=((\text { spin_phase }+ \text { sensor_id }+7.5 * \text { look_direction_id }) / 7.5-8) \text { MOD } 48
$$

where:
spin_sector (electron) is 0 to 47 (rounded down to an integer).
spin_phase is in the range 0 to 360 degrees (angle from last crossing)
(S/C reports in SHK files the angle to next crossing, a decreasing number, hence this spin-phase is 360 degrees minus that.)
sensor_id is either 60, 180, or 300, depending on which sensor it is for.
look_direction_id is 0 to 15 (also known as sensor_loop_index in operations documents)
and is the look direction of anode anode_id, where look_direction_id $=15$-anode_id.
anode_id (or $a _i d$ ) is one of the 16 anodes of the given sensor, 0-15.
7.5 degrees is the width of one anode.
( 15 - anode_id) is to correct for the look directions of the anodes.
Simplifying the equation (the last one is the one listed in the PDS file description):

$$
\begin{gathered}
=>\text { spin_sector }=((\text { spin_phase }+ \text { sensor_id }+7.5 *(15-\text { anode_id }) / 7.5-8) \mathrm{MOD} 48 \\
=>\text { spin_sector }=((\text { spin_phase }+ \text { sensor_id }) / 7.5+(15-\text { anode_id })-8) \mathrm{MOD} 48 \\
=>\text { spin_sector }=((\text { spin_phase }+ \text { sensor_id }) / 7.5+7-\text { anode_id }) \mathrm{MOD} 48
\end{gathered}
$$

Note that during FSW4.0 (April 2015 data only) the flight software had reversed anode mapping which messed up this calculation (see ISSUES object) (this reverse mapping affected all earlier FSW versions too, which are not covered in this PDS volume). If using FSW4.00/April 2015 data for this product (cruise solar wind only, no Jupiter science use) do not trust the spin sector calculation (in Level 3 data DIM2_AZIMUTH_DESPUN is replaced with fill values for FSW4.00). The only science use is to sum over spin phase sector to reduce the array to energy by time only. This was fixed in FSW4.10 (uploaded prior to the August 2015 data), from when this calculation was done correctly.

The DATA object is 2-D, 64 energies x 48 Electron Spin Phase sectors (from one electron sensor), and is described in

Table 43: Format of Level 2 data records for JAD_L20_LRS_ELC_ANY *

Byte	Bit	Length (bits)	Name	Description
See Level 2 binary header from Table 35 and Table 36 for bytes 1 to 70.				
71	0	98304	DATA	DATA: Counts   64 Energies x 48 Electron Spin Phase Sectors. The formula for mapping anodes into spin-phase sectors is described in full in the PDS JADE SIS and simplifies to: $\text { SP_sector }=\left((\text { s_phase }+ \text { s_id }) / 7.5+7-\mathrm{a} _ \text {id }\right) \text { MOD } 48$   where:   SP_sector (electron spin phase sector) is 0 to 47 (rounded down to an integer).   s_phase is spin phase, 0 to 360 degrees.   s_id is the sensor in question, either 60, 180, or 300 .   a_id is one of the 16 anodes of the given sensor, $0-15$.   (This is anode, not the look direction.)   7.5 degrees is the width of one anode.   Note the data units are rates (counts per views), are floats rather than integers, and are fractions of $1 / 512$.   Note 2: Rate is independent of accumulation time.   Note 3: If the data is from FSW 4.00 (April 2015 only, when anodes were reversed - see ISSUES object) then the SP_sector calculation was done incorrectly. If you must use this FSW4.00 data, sum over electron spin phase sector to reduce the data to energy by time and use that.
12359	0	32	MAG TIMESTA MP_WHOLE	MAG_TIMESTAMP_WHOLE   Whole-second timestamp of last received MAG vector *before* data collection start.   Referenced from 12:00UTC 2000/01/01.
12363	0	16	MAG_TIMESTA MP_SUB	MAG_TIMESTAMP_SUB   Sub-second timestamp of last received MAG vector   *before* data collection start.   A value of 65535 could be real or a MISSING_CONSTANT, however it is MISSING_CONSTANT only if MAG_TIMESTAMP_WHOLE $=0$, e.g. WHOLE and SUB must both be real or both be MISSING_CONSTANT.   Unit: Microseconds scaled to 16 bits.


Byte	Bit	Length (bits)	Name	Description
12365	0	8	$\begin{aligned} & \text { MAG_COUNT_ } \\ & \text { VALID } \end{aligned}$	MAG_COUNT_VALID   Count of valid (above threshold and not saturated) MAG vectors between start of *previous* packet and start of this packet.   Note: This saturates at 255 . e.g if there is a 600 s accumulation period, and the MAG vector is given every 2 -seconds, then that's 300 counts. If all are valid then that 300 will be expressed as 255 , however MAG COUNT INVALID would still be zero.
12366	0	8	MAG_COUNT_I NVALID	MAG_COUNT_INVALID   Count of invalid (below threshold or saturated) MAG vectors between start of *previous* packet and start of this packet.   Note: This saturates at 255 . e.g if there is a 600 s accumulation period, and the MAG vector is given every 2 -seconds, then that's 300 counts. If all are invalid then that 300 will be expressed as 255 , however MAG_COUNT_VALID would still be zero.
12367	0	96	MAG_VECTOR	Last received MAG vector in nT before   data collection start: 3 components [X, Y, Z]   MAG range is $+/-16 \mathrm{G}$, hence limits.   The coordinate system is spacecraft based, with:   +X is between E060 and E300, along the 0 degree mark where E060 anode 0 starts   +Y is 90 degrees, between E060 anodes 11 and 12,   +Z is the spin axis.   Note: these are signed integers.   A Mag vector of $\left[\begin{array}{lll}0 & 0\end{array}\right]$ has four meanings:   [Meanings 1 and 2 require   MAG_TIMESTAMP_WHOLE $=0$. The   MAG_COUNT_VALID and MAG_COUNT_INVALID   objects can help distinguish meaning 1 from 2.]   1) JADE never received a mag vector at all.   (So initialized to 0s.)   e.g. MAG_COUNT_VALID $=0$ for this record.   2) A 25 s timeout has expired without JADE receiving a MAG vector over a threshold magnitude.   [Meanings 3 and 4 require   MAG_TIMESTAMP_WHOLE > 0   3) The threshold parameter was set to 0 nT . (Some early HVCO1 check-out data may have this.)   4) The broadcast message was corrupted and the magnitude and components mismatched.


Byte	Bit	Length   (bits)	Name	Description
12379	0	32	BACKGROUND   COUNTS	Background counts (NOT a background rate).   The background counter for this record's electron   sensor (see ESENSOR object to know which sensor).
This is a total count, not a rate.				

### 6.2.8.2 Ion Species Data

The JADE ion sensor has 12 anodes, as shown in the following figure.


Figure 8: JADE-I Anodes.

### 6.2.8.2.1 JAD_L20_HRS_ION_ANY_*

The ion species products for high rate science cover PACKETIDs $0 x 80-0 x 87$. Each ion species has its own packet; therefore several packets of different species may have the same time stamp. The DATA object is 2-D, 32 energies $\times 12$ anodes, and is described in Table 44.

Table 44: Format of Level 2 data records for JAD_L20_HRS_ION_ANY *

Byte	Bit	Length   (bits)	Name	
See Level 2 binary header from Table 35 and Table 36 for bytes 1 to 70.				
71	0	6144	DATA	DATA: Counts   32 Energies x 12 Anodes

### 6.2.8.2.2 JAD_L20_HVE_ION_ALL_*

The ion species product for high voltage engineering is PACKETID $0 \times 18$.
The DATA object is 2-D, 8 ion species x 12 anodes (over 1 energy), and is described in Table 45. [The one energy is really 32 energy steps where all 32 -steps are at the same fixed energy.]

Table 45: Format of Level 2 data records for JAD_L20_HVE_ION_ALL_*

Byte	Bit	Length (bits)	Name	Description
See Level 2 binary header from Table 35 and Table 36 for bytes 1 to 70.				
71	0	3072	DATA	DATA: Counts   8 Species x 12 anodes (x1 Energy)   Species is $0-7$, ion anodes $0-11$.   (16-bit counter, summed over 32 identical energy steps over accumulation period.)

### 6.2.8.2.3 JAD_L20_LRS_ION_ANY_* and JAD_L20_CAL_ION_ANY_*

The ion species products for low rate science (PACKETID 0x60-0x67) and calibration modes (PACKETID 0x70-0x77) are identical. Each ion species has its own packet; therefore several packets of different species may have the same time stamp.
The DATA object is 2-D, 32 energies x 78 ion spin phase sectors (note that ion spin phase sectors in FSW4 are different to those described in the original JADE instrument paper that was for FSW3). Ion spin phase sectors [0-77] are a factor of ion anode and the spin phase at the start of the record. The ion spin phase sector mapping is shown in Figure 9 and also within Table 46 in the description of the DATA object (where a range of $0-12$ means $0<=$ range $<12$ ); it is different to the electron spin phase sectors.

Spin phase of Juno's +x axis is the angle from the last ECLIPJ2000 +z ('north') crossing, which increases over time and is shown in light red on the bottom of Figure 9. Juno reports in JADE operations SHK files the angle to next crossing, a decreasing number; hence this spin phase is 360 degrees minus that. The actual spin phase of JADE-I is shown in the dark red on the top of Figure 9, and is always 195 degrees greater than the equivalent spin phase of Juno's +x axis.

													ase of	JADE-1	I instr	umen	(Deg	ees)												
	195	207	219	231	243	255	267	279	291	303	315	327	339	351	3	15	27.	39	51	63	75	87	99	111	123	135	147	159	171	183
Anode 0																														
Anode 1	Anodes 0-3 not reported as part of LRS Species map																													
Anode 2																														
Anode 3																														
Anode 4	0										1										2									
Anode 5	3						4				5						6				7   18						8			
Anode 6	9		10		11		12		13		1		15		16		17		18		19		20		21		22		23	
Anode 7	24		25		26		27		28		29		30		31		32		33		34		35		36		37		38	
Anode 8	39		40		41		42		43		4		45		46		47		48		49		50		51		52		53	
Anode 9	54		55		56		57		58		59		60		61		62		63		64		65		66		67		68	
Anode 10	69				70						71				72						73				74					
Anode 11	75										76										77									
	0	12	24	36	48	60	72	84	96	108	120	132	144	156	168	180	192	204	216	228	240	252	264	276	288	300	312	324	336	348

Figure 9: The Ion Spin Phase Sector mapping to ion anode and spin phase (start angles).
Be careful with this product when ACCUMULATION_TIME $=30$ for a record. There are the 78 ion spin phase sectors, however for a 30 second accumulation it is possible that not all 78 spin phase sectors will be observed. This is because Juno's spin period may be 29.2 to 30.8 seconds,
and at time of writing has always been over 30 seconds. If the spin period was exactly 30.0 seconds, then all spin-phase sectors for anodes 6 to 9 would be observed once in a 30 second accumulation. If the spin period is less than 30 seconds, it's possible for 4 or 8 sectors to be skipped. E.g. if spin phase sector 9 is skipped, then so is spin phase sector 24,39 and 54 as they are all at the same spin phase. Or if the spin period is greater than 30 seconds and the spin started on exactly zero spin-phase, then the accumulation period may simply end before spin phase sector 23 (and 38, 53, 68 as all the same spin phase) is reached. Identifying which spin phase sectors may be missed or unobserved is tricky as it depends on both the spin period and exact spin-phase at the start of the accumulation period, neither of which is known for a level 2 product.

This means that 4 or 8 spin-phase sectors may not be observed in a record with an ACCUMULATION_TIME of 30 seconds, and is usually just 4. The assumption is that LRS or CAL ion species data covers the full sky of $4 \pi$ steradians, however this is not true when some spin-phase sectors are missing. If the accumulation time is greater than 30 (that is $60,120,150$, 300 or 600) seconds then all spin phase sectors are viewed at least once during the accumulation, therefore none are unobserved.

If a spin phase sector is unobserved then a value of zero counts/view is returned. Unfortunately, this is indistinguishable from an observed spin-phase sector that simply did not measure any ions. Hence there is potential confusion when presented with zero counts/view (or counts per second for Level 3 files), was this spin phase sector measured but counted no ions, or was it not measured at all.

If it is known that some spin phase sectors are missing, one could use the values from the equivalent spin phase sectors on the next record. However, the LRS and CAL ion species data has many measured zero counts/view, making it impossible to identify which are unobserved when in the solar wind or in a low count region. In high count regions where there are naturally some counts (even if they are background counts) in most spin phase sectors then it is easy to pick out the 4 or 8 elements of a record that are zero because there are no other zeros. In such case, if 4 zeros, they should be in spin phase sector numbers that are 15 apart, e.g. the same spin phase like spin phase sectors $14,29,44$ and 59 . If 8 zeros, then there should be two sets of numbers 15 apart. Also, for a given time stamp there will be multiple records with different ion species numbers, e.g. PACKET_SPECIES of 3, 4 and 5. For the same time stamp, all species should be missing the same spin phase sector numbers.

Table 46: Format of Level 2 data records for JAD_L20_LRS_ION_ANY* and $J A D$ L20_CAL_ION_ANY_*

Byte	Bit	Length (bits)	Name	Description							
See Level 2 binary header from Table 35 and Table 36 for bytes 1 to 70.											
71	0	79872	DATA	DATA: Counts per view   32 Energies x 78 Ion Spin Phase Sectors   The formula for mapping anodes into spin-phase sectors is described in the PDS JADE SIS and as follows:   Each Spin Phase Sector has contributions from multiple spin phases, but always the same anode.   The spin phase is calculated from the start of the record. Only anodes 4-11 are used, 0-3 are not reported.   There are 78 Spin Phase sectors [0-77] over the eight anodes and thirty 12 -degree wide sectors, with spin phase sectors given in the following table of anode by start spin phase:   [The onboard software triggers on the spin phase of the s/c +X axis, but JADE-I is 195 degrees further around, so the Ion Start Spin Phase starts at 195.]   The meaning of each species is described in the JADE instrument paper.   Note the data units are rates (counts per views), are floats rather than integers, and are fractions of $1 / 512$.   Note 2: Rate is independent of accumulation time.							

### 6.2.8.3 Ion Time of Flight Data

### 6.2.8.3.1 JAD_L20_HLC_ION_TOF_*

The ion time of flight products for high rate science, low rate science and calibration mode are all of the same format and in the same file; covering PACKETID 0x69, 0x79 and 0x89.
[Technically, the high rate science data product is of 2-byte values, whereas low rate/calibration data are 4-byte values, however the high rate data is up-cast to 4-bytes to make them identical.] The DATA object is 2-D, 32 energies x 96 TOF channels, and is described in Table 47.

Table 47: Format of Level 2 data records for JAD_L20_HLC_ION_TOF *

Byte	Bit	Length   (bits)	Name	Description
See Level 2 binary header from Table 35 and Table 36 for bytes 1 to 70.				
71	0	98304	DATA	DATA: Time of Flight Counts 32 Energies x 96 TOF channels. The last 3 channels have special meanings. The 128 TOF channels are counters are:   [ 0]: TOF channels 0-1   [ 1]: TOF channel 2   [ 2]: TOF channel 3   [3]: TOF channel 4   [59]: TOF channel 60   [60]: TOF channel 61   [61]: TOF channels 62-63   [62]: TOF channels 64-65   ...   [70]: TOF channels $80-81$   [71]: TOF channels $82-83$   [72]: TOF channel 84   [73]: TOF channel 85   [74]: TOF channel 86   [75]: TOF channel 87   [76]: TOF channel 88   [77]: TOF channels 89-90   [78]: TOF channels 91-92   [89]: TOF channels 113-114   [90]: TOF channels 115-116   [91]: TOF channels 117-118   [92]: TOF channels 119-124   [93]: TOF with Start overload.   [94]: TOF value below minimum resolution. [95]: TOF too long.

### 6.2.8.3.2 JAD_L20_HVE_ION_TOF_*

The ion time of flight product for high voltage engineering is PACKETID $0 \times 19$.
The DATA object is 1-D, 128 TOF channels (over 1 energy), and is described in Table 48.
[The one energy is really 32 energy steps where all 32 -steps are at the same fixed energy.]

Table 48: Format of Level 2 data records for JAD_L20_HVE_ION_TOF *

Byte	Bit	Length (bits)	Name	Description
See Level 2 binary header from Table 35 and Table 36 for bytes 1 to 70.				
71	0	4096	DATA	DATA: Time of Flight Counts   128 TOF channels (x 1 Energy)   The last 3 channels have special meanings.   The 128 TOF channels are counters are:   [ 0]: TOF channel 0   [ 1]: TOF channel 1   [123]: TOF channel 123   [124]: TOF channel 124   [125]: TOF with Start overload.   [126]: TOF value below minimum resolution.   [127]: TOF too long.   (16-bit counter, summed over 32 identical energy steps over accumulation period.)

### 6.2.8.4 Ion Logicals Data

### 6.2.8.4.1 JAD_L20_HLC_ION_LOG_*

The ion logicals products for high rate science, low rate science and calibration mode are all of the same format and in the same file; covering PACKETID $0 \times 6 \mathrm{C}, 0 \times 7 \mathrm{C}$ and $0 \times 8 \mathrm{C}$.
[Technically, the high rate science data product is of 2-byte values, whereas low rate/calibration data are 4-byte values, however the high rate data is upcast to 4-bytes to make them identical.]
The DATA object is 2-D, 32 energies x 25 logicals, and is described in Table 49, which runs over 2 pages despite only being for the DATA object.

The 25 logical counters here are the same for JAD_L20_HVE_ION_LOG_*.

Table 49: Format of Level 2 data records for JAD_L20_HLC_ION_LOG_*

Byte	Bit	Length   (bits)	Name	Description
See Level 2 binary header from Table 35 and Table 36 for bytes 1 to 70.				
71	0	25600	DATA	DATA: Counts   32 Energies x 25 Logical counters.   The 25 Logical counters are:   [ 0]: Anode 0 Events   [1]: Anode 1 Events   [2]: Anode 2 Events   ...   [10]: Anode 10 Events   [11]: Anode 11 Events   [12]: Background Events   The above 13 logicals are raw count hits, independent of whether a TOF Event has begun. Adjacent and NonAdjacent hits will be counted in both anodes. As such, anode counts can exceed All Stops [15] counts.   The Background anode [12] is not included in Adjacent and Non-Adjacent calculations.   [13]: Start Overload   Start signal exceeds threshold level.   [14]: All Starts   Independent of whether a TOF Event has begun, usually starts a TOF Event.   [15]: All Stops   Independent of whether a TOF Event has begun, usually ends a TOF Event.   If an event is seen on multiple anodes this counter is still only incremented once, therefore this is usually less than the sum of anodes 0 to 11 .   The Background anode is not included in All Stops, just anodes 0 to 11.   [16]: Non-Adjacent Anodes   This is either two non-neighbor anodes (anodes 0-11 only), or more than 2 anodes.   Continues on next page.


Byte	Bit	Length (bits)	Name	Description
				Continues from previous page.   [17]: Adjacent Anodes   A count hit was measured in neighboring anodes; other products (e.g. Ion Species) will assign this to just the lower anode.   [18]: Stop without Start   A stop signal was received before a TOF Event was initiated by a start.   [19]: Dual Start   A TOF Event had started but one or more other start signals were received before a stop signal or the TOF Event overflowed.   [20]: Start in Process Time   The number of TOF Events started, can be less than All Starts [14].   [21]: TOF Underflow   Received a stop event before 1 tap, that is 1.6 ns , the base unit of TOF times.   [22]: TOF Overflow   No stop signal arrived within timeout of 330ns.   [23]: Invalid TOF Event   If the TOF Event is measured in 1 anode (anodes 0-11 only) or two neighboring anodes (anodes 0-11 only) it is valid. Otherwise it is invalid, unless it was an underflow in which case the Underflow [21] counter is increased instead of this counter (i.e. an Underflow event is considered valid).   Therefore, if the event is not an Underflow event, it will be invalid if one of these three situations is met:   - hit in more than two anodes, or   - hit in two non-neighbor anodes, or   - no anodes hit at all.   The latter is different to overflow events [22] which are considered valid.   The Background anode is not considered in any of these calculations.   [24]: Event Strobe   The number of TOF Events completed, by a stop signal or over/underflow, usually the same as Start in Process Time [20].   For the above, a TOF Event is a start signal followed by either a stop signal or timeout.   Note: This file can contain data from Low Rate Science, MCP Calibration or High Rate Science modes. High Rate Science have a maximum counts of 65535 per accumulation unlike the others with a maximum of 117963000.

### 6.2.8.4.2 JAD_L20_HVE_ION_LOG_*

The ion logicals product for high voltage engineering is PACKETID 0x1C.
The DATA object is 1-D, 25 logicals (over 1 energy), and is described in Table 50.
[The one energy is really 32 energy steps where all 32 -steps are at the same fixed energy.]
The 25 logical counters here are the same for JAD_L20_HLC_ION_LOG_*.

Table 50: Format of Level 2 data records for JAD L20_HVE ION_LOG*

Byte	Bit	Length (bits)	Name	Description
See Level 2 binary header from Table 35 and Table 36 for bytes 1 to 70.				
71	0	800	DATA	DATA: Counts
				1 Energy x 25 Logical counters.
				The 25 Logical counters are:
				[0]: Anode 0
				[ 1]: Anode 1
				[ 2]: Anode 2
				[3]: Anode 3
				[ 4]: Anode 4
				[5]: Anode 5
				[ 6]: Anode 6
				[7]: Anode 7
				[ 8]: Anode 8
				[ 9]: Anode 9
				[10]: Anode 10
				[11]: Anode 11
				[12]: Background
				[13]: Start Overload
				[14]: All Starts
				[15]: All Stops
				[16]: Non-Adjacent Anodes
				[17]: Adjacent Anodes
				[18]: Stop without Start
				[19]: Dual Start
				[20]: Start in Process Time
				[21]: TOF Underflow
				[22]: TOF Overflow   [23]: Invalid TOF Event
				[24]: Event Strobe
				(16-bit counter, summed over 32 identical energy steps over accumulation period.)
				See the DESCRIPTION of DATA in
				JAD_L20_HLC_ION_LOG files for a better description of the 25 logicals.

### 6.2.8.5 Ion Direct Events Data

The ion direct events products for high rate science, low rate science, calibration mode and high voltage engineering are all of the same format and in the same file; covering PACKETID $0 \times 1 \mathrm{~F}$, $0 x 6 F, 0 x 7 F$ and $0 x 8 F$.

Direct Event (DE) data records the full resolution data on an event-by-event basis, as opposed to the other data products which are collapsed based on product type over an accumulation period. Whereas JAD_L20_HLC_ION_TOF_* data will collect the number of incident ions at each energy step falling within each TOF bin over an accumulation period, Direct Event data record the anode, TOF bin, and ESA step on an event by event basis. Because of this the data volume of Direct Events is too large to provide a continuous record and only a subset is returned. Direct Events will be of most use in performing spot validation of the other data products.

### 6.2.8.5.1 JAD_L20_ALL_ION_DER_*

The DE-Words contained in the JAD_L20_ALL_ION_DER_* data require decoding, and have been decoded in the JAD_L20_ALL_ION_DES_* file, see Table 53, which we expect science users to use in preference.

Table 51: Format of Level 2 data records for $J A D_{-} L 20_{-} A L L_{-} I O N_{-} D E R_{-}$*

Byte	Bit	Length (bits)	Name	Description
See Level 2 binary header from Table 35 and Table 36 for bytes 1 to 70.				
71	0	16	DE_COL_SUB   SEQ_COUNT	Direct Events Collection sub-sequence count. Resets to 0 at the start of the playback of a new collection cycle. Increments for each produced packet, before data policing, thus acting as an indicator for data policing loss. Maximum value is 19,999 unless the data is taken from High Rate Science (HRS), when the maximum is 3599 . See PACKET_MODE or PACKETID objects to see if in HRS.
73	0	34656	DATA	DATA: Direct Event Two-Byte Words   Array of 16 -bit raw direct events.   A Direct Event is information about each specific particle that hit the Ion sensor.   [See PDS JADE SIS document for JAD_L20_ALL_ION_DES for a table on how to decode this 2-byte word.] Note, not all 2166 bytes are used, see DE_SIZE Object, and this object has to be padded to size.
4405	0	16	DE_SIZE	Array size of Direct Events to use. The above data array can vary in size, but PDS records must be a fixed size, so the end is padded with fill values. This value tells you how many values should be used (starting from the beginning).

### 6.2.8.5.2 JAD_L20_ALL_ION_DES_*

This is the same data as for the JAD_L20_ALL_ION_DER_* products (from the same JADE packet IDs), except the DATA object's data is split out in to its many meanings. Table 52 describes how the two-byte word can either be an event word, a boundary word, a sweep marker word or a fill value (occasionally required for padding the DER DATA to a fixed size), and then how to split up the bit pattern for each. Each JAD_L20_ALL_ION_DER_* DATA word then becomes an entire JAD_L20_ALL_ION_DES_* record. As such, one JAD_L20_ALL_ION_DER_* record can become (up to) 2,166 JAD_L20_ALL_ION_DES_* records. If the DER DATA word was fill then no JAD_L20_ALL_ION_DES record is written. Technically the Sweep Number is a 14-bit long value, however it has a limit of 1800 , which results in bits 13 to 11 always being zero. Direct Events will be of most use in performing spot validation of the other data products.

Since FSW 4.00 the ion deflectors are turned off during HRS, such that 'DFL Step' is always zero, hence the 'Boundary Word' is now essentially identical format for all telemetry modes. This following table is still valid, and is also true for earlier FSW versions (e.g. FSW 3).

Table 52: Description of DATA two-byte words for JAD_L20_ALL_ION_DER_* files to show how it is split out for the JAD_L20_ALL_ION_DES_* files.


The format of the JAD_L20_ALL_ION_DES_* data records is given on the next page, Table 53, and extends over 2 pages.

Table 53: Format of Level 2 data records for $J A D_{-}$L20_ALL_ION_DES_*

Byte	Bit	$\begin{gathered} \text { Length } \\ \text { (hits) } \end{gathered}$	Name	Description
See Level 2 binary header from Table 35 and Table 36 for bytes 1 to 70.				
71	0	16	DE_COL_SUB_ SEQ_COUNT	Direct Events Collection sub-sequence count. Resets to 0 at the start of the playback of a new collection cycle. Increments for each produced packet, before data policing, thus acting as an indicator for data policing loss. Maximum value is 19,999 unless the data is taken from High Rate Science (HRS), when the maximum is 3599. See PACKET_MODE or PACKETID objects to see if in HRS.
73	0	8	DE_BAD	Bad Direct Event Two-Byte Word   $=0$ is good, Direct Event word is valid.   $=1$ is bad, Direct Event word is invalid.   The two-byte DE Words found in JAD_L20_ALL_ION_DER * files are split out bit by bit in JAD_L20_ALL_ION_DES_* files, however only certain combinations are valid. If a non-valid bit combination is found, all objects for that record in this file are set to their MISSING_CONSTANT value.   [Possible reason for invalid words are SEUs (single event upsets) where a bit is altered in memory. While very rare, we believe such a SEU occurred in Direct Event data at SCLK 494493538 (2015-245). SEUs may occur in other JADE products too, but the bit structure of direct events make their identification easier.]
74	0	8	DE EVENT0 B OUNDARY1_M ARKER2	Direct Event, or Boundary, or Sweep Marker, Word.   $0=$ Direct Event Word   1 = Boundary Word   2 = Sweep Marker Word   255 = Fill Value - all other DE_* objects should   also be their MISSING_CONSTANT VALUE   To decode the original bit pattern of a DE_WORD:   0 if bit $15=0$   1 if bit $15=1$ and bit $14=0$   2 if bit $15=1$ and bit $14=1$
75	0	16	DE_SWEEP_NU MBER	Direct Event Sweep Number. (bits 13-0) Value is only given when DE_EVENT0_BOUNDARY1_MARKER2 is 2, otherwise equals MISSING_CONSTANT.
77	0	8	DE_ESA_STEP	Direct Event ESA Step. (bits 7-3)   Value is only given when DE_EVENT0_BOUNDARY1_MARKER2 is 1, otherwise equals MISSING_CONSTANT.
78	0	8	DE_DFL_STEP	Direct Event DFL Step. (bits 2-0)   Value is only given when   DE_EVENT0_BOUNDARY1_MARKER2   is 1 , otherwise equals MISSING_CONSTANT.


Byte	Bit	Length (bits)	Name	Description
79	0	16	DE_TOF	Direct Event TOF value. (bits 14-7)   $0-252$ : Valid TOF measurement (min_TOF to 330 ns ).   253 : TOF with Start overload.   254 : TOF value below minimum resolution.   255 : TOF too long.   65535: Fill value $=$ MISSING_CONSTANT   (Value in telemetry is 1 byte $(0-255)$ only, but upcast to 2 bytes here to allow a MISSING_CONSTANT value to be added.)   Value is only given when   DE_EVENT0_BOUNDARY1_MARKER2   is 0 , otherwise equals MISSING CONSTANT.
81	0	8	DE_ANODE_ID	Direct Event Anode ID. (bits 6-3)   0-11: Valid Anode ID, 0-11.   12-13: Reserved (should never be seen).   14 : No Anode ID between Start and Stop.   15 : Two non-adjacent Anodes IDs between Start and Stop.   Value is only given when   DE_EVENT0_BOUNDARY1_MARKER2   is 0 , otherwise equals MISSING CONSTANT.
82	0	8	DE_QUALITY FLAG_2	Direct Event Quality Flag 2: (bit 2)   Two Adjacent Anode IDs between Start and Stop.   $0=$ Flag not triggered,   1 = Flag triggered.   Value is only given when   DE_EVENT0_BOUNDARY1_MARKER2   is 0 , otherwise equals MISSING CONSTANT.
83	0	8	DE_QUALITY FLAG_1	Direct Event Quality Flag 1: (bit 1)   Reserved - should be 0 .   Value is only given when   DE_EVENT0_BOUNDARY1_MARKER2   is 0 , otherwise equals MISSING_CONSTANT.
84	0	8	DE_QUALITY FLAG_0	Direct Event Quality Flag 0: (bit 0)   Additional Start(s) between Start and Stop.   $0=$ Flag not triggered,   1 = Flag triggered.   Value is only given when   DE_EVENT0_BOUNDARY1_MARKER2   is 0 , otherwise equals MISSING_CONSTANT.

### 6.2.9 Level 3 data files

The Level 3 data files are binary and have files ending in the extension .DAT. Accompanying them in the same directory are the label files with the same filename but the extension .LBL.
For example, the PDS file pairs will have the following paths in the Volume:

> ROOT/DATA/yyyy/yyyyddd/subdir/JAD_L30_aaa_bbb_ccc_uuu_yyyyddd_Vnn.DAT ROOT/DATA/yyyy/yyyyddd/subdir/JAD_L30_aaa_bbb_ccc_uuu_yyyyddd_Vnn.LBL

The format file (same filename minus the date part, but including the version number, with the extension .FMT) accompanying (and already listed within) the LBL files are usually found in the LABEL directory at the root of the volume - however it was decided to exclude this LABEL directory (and therefore exclude FMT files) as they are redundant and may be copy/pasted out of the LBL files. [FMT files are made locally for JADE file production, but do not get to the PDS.]

See section 3.1 for the explanation of JAD_L30_aaa_bbb_ccc_uuu_yyyyddd_Vnn, and subdir is the subdirectory name given in Table 17.

There are currently 6 different Level 3 product types, but they are similar and they all have the same 16 objects as a header. To save space in this document, Table 56 gives the 34 -object header for the binary files for Level 3 products, which is then used throughout. This is the same for all, except the PACKETID (which can change within a product type for Level 3 data) that gives a different description for each packet, shown in blue, and the last 4 objects that have the same names but different sizes. The rest of the data product is the same format (floats) but may have different sizes. The UTC entries are not side by side due to PDS rules requiring multi-byte words to start on even byte boundaries, so are spaced by 1-byte words.

Efforts were made to keep the objects as similar as possible (both in name and dimensions), as shown in Figure 10. Some may consider this redundant but this is deliberately done so that the same code may be used on different datasets. For example a 64 by 48 object may only contain 64 unique values that change with the $1^{\text {st }}$ dimension during low rate science files, however during high rate science files both the $1^{\text {st }}$ and $2^{\text {nd }}$ dimension values change - since these objects are the same dimension the same code may then be used to analyze both high and low rate science files.
In order to have fewer products than level 2 had, like ones were grouped together to give just 6 products per unit, with the unit of counts per second being the base file, that files with other units are to be created from. Data from high voltage engineering and calibration modes are excluded from level 3 data, as they are not designed for science use (possibly with highly variable MCPs voltages for MCP tests).

Level 3 data should be scientifically useful data, however there is still an object called ISSUES. This is for occasions where the data is scientifically valid, but may not be similar to its neighbors. For instance, the data may be accumulating records over 30 second accumulation times, but the last record was during a mode change so there's only 13 seconds. The data for
those 13 seconds are valid, but for consistency the end user may wish to disregard and only use the full 30 second data that's available. This ISSUES object allows such occurrences to be flagged easily.

If a level 2 high rate or low rates science record is unsuitable for science work, a level 3 record will still be created, however the DATA object will be replaced with MISSING_CONSTANT fill values. This is to allow a user to know that high or low rate data was deliberately excluded, but does exist in level 2 data. However when calibration mode data is excluded (as not for science), no equivalent record of fill values will exist in the level 3 data.

Table 55 lists the Level 3 products and which Level 2 products were used to get them. There are no high voltage engineering data in level 3 (no JAD_L20_HVE*), nor ion direct events (no JAD_aaa_ION_DER nor JAD_aaa_ION_DES).

As ion species 2 files go in the same level 3 products, it is possible to have consecutive records with the same time stamp. The difference will be in the PACKETID that tells you which particular ion species that record is for. Likewise JAD_L30_LRS_ELC_ANY_CNT may contain records from any of the 3 electron sensors, however a given time will only ever have a record from one sensor record.

Note that the LBL/FMT files describe DATA, DATA_SIGMA, BACKGROUND, BACKGROUND_SIGMA, DIM1_*, DIM2_* and transformation matrices DESPUN_SC_TO_J2000 and J2000_TO_RTP as 2D or 3D containers (containers in containers than hold a scalar). If you read the object in as a 1 D vector then it should be reformed by the user to a 2 D or 3 D array. The 1 D ordering is based on c , in that the last dimension changes fastest, i.e. if a 1 D array is $\mathrm{x}=[1,2,3,4,5,6]$ and that should be a $3 x 2$ array $y$, then:

$$
\mathrm{y}[0][0]=1 ; \quad \mathrm{y}[0][1]=2 ; \quad \mathrm{y}[1][0]=3 ; \quad \mathrm{y}[1][1]=4 ; \quad \mathrm{y}[2][0]=5 ; \quad \mathrm{y}[2][1]=6 ;
$$

Table 54: Size of a record of each Level 3 product.

Product		
JAD_L30_HLS_ION_LOG_CNT_V01	Bytes per record	Objects per record
JAD_L30_HLS_ION_TOF_CNT_V01	83488	47
JAD_L30_HRS_ELC_ALL_CNT_V01	100476	56
JAD_L30_HRS_ELC_TWO_CNT_V01	160042	48
JAD_L30_HRS_ION_ANY_CNT_V01	106790	48
JAD_L30_LRS_ELC_ANY_CNT_V01	40224	47
JAD_L30_LRS_ION_ANY_CNT_V01	160036	49

Table 55: Mapping Level 2 data files to Level 3 data files

Level 2 Data Product	Path	Level 3 Data Product
		JAD_L30_HRS_ELC_ALL_CNT
JAD_L20_HRS_ELC_ALL	--->	JAD_L30_HRS_ELC_TWO_CNT
JAD_L20_LRS_ELC_ANY	----------->	JAD_L30_LRS_ELC_ANY_CNT
JAD_L20_HLC_ION_LOG	Remove CAL data	JAD_L30_HLS_ION_LOG_CNT
JAD_L20_HRS_ION_ANY	----------->	JAD_L30_HRS_ION_ANY_CNT
JAD_L20_LRS_ION_ANY	-------->	JAD_L30_LRS_ION_ANY_CNT
JAD_L20_HLC_ION_TOF	Remove CAL data	JAD_L30_HLS_ION_TOF_CNT



Figure 10: Breaking out the JADE Level 3 products in to the different PDS Objects to allow similarities to be drawn.
Grey columns represent calibration files for JADE operations use that will not go to the PDS. Blue text values do not need to be in level 3 files, but aids cross comparison with level 2 data, and red text are extra values that may be useful. $m=n$ for all but TOF products, where $m=1$ because of the $3^{\text {rd }}$ TOF dimension.

The following table (over 7 pages) describes the header that is identical for all the following data products (and is based on Level 3 Version 01 FMT files). The names and word type (int/float/etc.) for all level 2 data is also summarized in Figure 6. Any text in red italics is a note that is not in the FMT file, while any text in blue boldface may change depending on the product (usually just the product ID or species number). This color system will apply for format tables throughout the rest of section 6.2.

Table 56: Format of Level 3 data record header

Byte	$\underset{\text { (bytes) }}{\text { Length }}$	Name	Fmt*	Units	Description
1	21	DIM0_UTC	$\begin{aligned} & \hline \text { UTC } \\ & \text { string } \end{aligned}$	Time	UTC timestamp at center (not start) of record.   Format is yyyy-dddTHH:MM:SS.sss where yyyy = year, ddd = day of year, $\mathrm{HH}=$ hour, $\mathrm{MM}=$ minute, SS.sss $=$ decimal seconds to millisecond resolution.   Note: Duration of record can be found in S.I. seconds by DIM0_UTC_UPPER -   DIM0_UTC_LOWER. Do not confuse this with the ACCUMULATION_TIME object, which is the number of spacecraft clock ticks for accumulation.   While 1 tick is approximately 1 second, it is not identical.
22	1	PACKETID	uint8	None	Packet ID (DPID), Data Product Identifier Low Rate Science - Electron   One electron sensor per record:   Sensor E060 is PACKETID = 104 ( $0 \times 68$ )   Sensor E180 is PACKETID = $106(0 \times 6 A)$   Sensor E300 is PACKETID $=107(0 \times 6 B)$   [There is no PACKETID = 105]   Note: A value of 255 indicates Unknown,   which can be used for higher order products that use a mix of packets.
23	21	$\begin{aligned} & \text { DIM0_UTC_UP } \\ & \text { PER } \end{aligned}$	$\begin{aligned} & \text { UTC } \\ & \text { string } \end{aligned}$	Time	0th Dimension of DATA: Time - upper limit. See DIM0_UTC for description.


Byte	Length (bytes)	Name	Fmt*	Units	Description
44	1	PACKET_MOD E	int8	None	Packet Mode, describes type of data telemetry.   $-2=$ HSK / Housekeeping Engineering (Level 2 only)   $-1=$ HVE / High Voltage Engineering (Level 2 only)   $0=$ CAL $/$ MCP Calibration Science (Level 2 only)   $1=$ LRS / Low Rate Science   $2=$ HRS / High Rate Science   $3=$ DRS $/$ DeRived Science from LRS and/or HRS   $127=$ Unknown   254 = Wrong - but HSK, see below.   (Level 2 only)   255 = Wrong - but HVE, see below.   (Level 2 only)   (Note, this could also be calculated via   PACKETID.)   If you have 254 or 255 then your code is incorrect, check you read a signed byte, rather than unsigned.
45	21	$\begin{aligned} & \text { DIM0_UTC_LO } \\ & \text { WER } \end{aligned}$	$\begin{aligned} & \hline \text { UTC } \\ & \text { string } \end{aligned}$	Time	0th Dimension of DATA: Time - lower limit. See DIM0_UTC for description.
66	1	PACKET_SPEC IES	int8	None	Packet Species, describes type of plasma data.   $-1=$ electrons   $0=$ ion species 0, SP0   $1=$ ion species 1, SP1   $2=$ ion species $2, \mathrm{SP} 2$   $3=$ ion species 3, SP3   $4=$ ion species 4, SP4   $5=$ ion species 5, SP5   $6=$ ion species 6, SP6   $7=$ ion species 7, SP7   $8=$ Sum of SP3, SP4 and SP5   $9=$ All ions /* or any ion, e.g. TOF and LOG */   $10=$ Single ion species derived from TOF data   $127=$ Unknown   $255=$ Wrong - but electrons, see below.   If you have 255 then your code is incorrect, check you read a signed byte, rather than unsigned.


Byte	Length (bytes)	Name	Fmt*	Units	Description
67	2	ACCUMULATI ON_TIME	uint16	SCLK ticks	Accumulation Time.   Number of seconds over which the data in this product was collected (Science Program).   Note: Duration of record can be found in S.I. seconds by DIM0_UTC_UPPER -   DIMO_UTC_LOWER. Do not confuse this with the ACCUMULATION_TIME object, which is the number of spacecraft clock ticks for accumulation.   While 1 tick is approximately 1 second, it is not identical.   ACCUMULATION_TIME is left in spacecraft clock ticks to both aid matching with the level 2 data and to help filtering for data taken in a particular mode.
69	1	DATA_UNITS	uint8	None	Data units correspond to:   $0=$ All counts in the accumulation period   $1=$ All counts divided by number of views /* 0 and 1 are for Level 2 data only - but keeping the numbering convention */   2 = Counts per second   /* S.I. science units: */   3 = Differential Energy Flux [1/( m2 sr s)]   4 = Differential Number Flux $\left.\left[\begin{array}{ll}1 /(\mathrm{m} 2 \mathrm{sr} \mathrm{s} & \mathrm{J}\end{array}\right)\right]$   $5=$ Phase Space Density [ m-6 s3 ]   /* Convenient (non-S.I.) science units: */   6 = Differential Energy Flux [1/(cm2 sr s)]   7 = Differential Number Flux   [1/(cm2 sr s keV)]   $8=$ Phase Space Density [ $\left.\begin{array}{lll}\mathrm{cm}-6 & \mathrm{~s} 3\end{array}\right]$   /* As new products are developed this list will increase */   /* If a number is not listed,   /* try a LBL/FMT file from a recent date. */ 255 = Unknown.
70	1	SOURCE_BAC KGROUND	uint8	None	Source of Background values (see BACKGROUND object) that have been removed from the DATA object.   $0=$ None: No background has been removed   1 = Background anode (electron sensors only)   /* As new background removal methods are developed this list will increase */ $255=$ Unknown .


Byte	$\begin{aligned} & \text { Length } \\ & \text { (bytes) } \end{aligned}$	Name	Fmt*	Units	Description
71	1	$\begin{aligned} & \text { SOURCE_DEA } \\ & \text { D_TIME } \end{aligned}$	uint8	None	Source of Dead Time Correction Method $0=$ None: Data has not been Dead Time corrected. $255 \text { = Unknown. }$
72	1	SOURCE_MAG	uint8	None	Source of MAG data Except case 0 and 1, PAYLOAD (pl) coordinate MAG files were used at 1 s (or 2s if no 1s) resolution.   $0=$ None: No MAG data in this product. $1=$ From Juno JADE's Level 2 files. (From spacecraft and therefore uncalibrated.) This is independent to JADE Level 2 version number as it does not change with versions. [Note MAG data in JADE files may be affected by the Juno time stutter.] $3 \mathrm{n}=$ Juno's MAG's Level 3 version n calibrated files, e.g. 34 means version 4, so: $30=$ From Juno MAG's Level 3 version 00 quicklook payload files. (These are temporary files not in PDS.)   31 = From Juno MAG's Level 3 version 01 calibrated payload files.   32 = From Juno MAG's Level 3 version 02 calibrated payload files.   Likewise 33 to 39 being Level 3 version 3 to 9 . $255 \text { = Unknown. }$   If you see a number not listed above, there may be later versions of MAG data - find the latest available LBL file for this product and see what that has listed.


Byte	$\begin{array}{l}\text { Length } \\ \text { (bytes) }\end{array}$	Name	Fmt*	Units
73	2	$\begin{array}{l}\text { SOURCE_JAD } \\ \text { E_METAKERN } \\ \text { EL }\end{array}$	int16	None
75				$\begin{array}{l}\text { The JADE SPICE metakernel used to get the } \\ \text { time, position, velocity, orientation and } \\ \text { transformation objects in this file. The } \\ \text { metakernel lists the many individual spice } \\ \text { kernels used, which are archived by NAIF } \\ \text { and not in this PDS volume. } \\ \text { The JADE SPICE metakernel may be found } \\ \text { in the CALIB directory of this PDS volumne, } \\ \text { with filenames of: } \\ \text { JAD_L30_SPICE_METAKERNEL_nnnnn.TXT } \\ \text { where } n n n n n ~ i s ~ t h e ~\end{array}$
SOURCE_JADE_METAKERNEL object				
number (with leading zeros and positive).				
If any of the kernels within the metakernel				
are not reconstucted (but reference or				
predicted) for the time in question, this value				
will be negative. Within the JADE PDS				
archive this value should always be positive.				


Byte	Length   (bytes)	Name	Fmt*	Units
81	4	SC_POS_R	f	R


Byte	Length   (bytes)	Name	Fmt*	Units	Description
157	36	$\begin{aligned} & \text { DESPUN_SC_T } \\ & \text { O_J2000 } \end{aligned}$	f	None	Rotation matrix from despun spacecraft coordinates to J2000.   This is a $3 \times 3$ matrix, but if read in as a $1 \times 9$ stream then the 1D stream is $[a, b, c, d, e, f$, $\mathrm{g}, \mathrm{h}, \mathrm{i}]$ and the 2D matrix would be [a,b,c d,e,f $\mathrm{g}, \mathrm{h}, \mathrm{i}]$
193	36	$\begin{aligned} & \text { J2000_TO_JSS } \\ & \text { XYZ } \end{aligned}$	f	None	Rotation matrix from J2000 co-ordinates to JSS xyz (JSS = Jupiter-De-Spun-Sun, see SIS for details).   This is a $3 \times 3$ matrix, but if read in as a $1 \times 9$ stream then the 1D stream is $[\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$, $\mathrm{g}, \mathrm{h}, \mathrm{i}]$ and the 2D matrix would be [a,b,c d,e,f $\mathrm{g}, \mathrm{h}, \mathrm{i}]$
229	36	$\begin{aligned} & \text { J2000_TO_JSS } \\ & \text { RTP } \end{aligned}$	f	None	Rotation matrix from J2000 co-ordinates to JSS RTP, where RTP is Jupiter centered right handed R-Theta-Phi.   (JSS = Jupiter-De-Spun-Sun, see SIS for details.)   This is a $3 \times 3$ matrix, but if read in as a $1 \times 9$ stream then the 1D stream is $[a, b, c, d, e, f$, $\mathrm{g}, \mathrm{h}, \mathrm{i}]$ and the 2D matrix would be [a,b,c d,e,f $\mathrm{g}, \mathrm{h}, \mathrm{i}]$
265		$\begin{aligned} & \text { MCP_VOLTAG } \\ & \text { E } \end{aligned}$			The last 4 objects of this header all start at byte 265 and have the same names, but three different sizes depending on the JADE product.   For the ion products go to Table 57. For the HRS electrons (all) go to Table 58, or Table 59 for HRS electrons (two). For the LRS electrons go to Table 60.
		ISSUES			
		TIMESTAMP_ WHOLE			
		$\begin{aligned} & \text { TIMESTAMP_ } \\ & \text { SUB } \end{aligned}$			

Fmt* is shortened for the table and is decoded in PDS format as: $\mathrm{f}=$ PC_REAL (float), uint8/uint16/uint32 are $=$ one/two/four-byte LSB_UNSIGNED_INTEGER and int8/int16/int32 = one/two/four byte LSB_INTEGER.

Table 57: Format of Level 3 data record subheader for Level 3 ion products.

Byte	Length   (bytes)	Name	Fmt* $^{\text {U }}$	Units	Description
265	4	MCP_VOLTAG   E	f	Volts	MCP Voltage on sensor.
269	8	ISSUES	uint32	None	Issues or potential issues in this data record.   [Two values for ions as this is the ISSUES   object from both the ping and pong level 2   packets used to create this record.]...   The rest is a direct copy of the Level 2   ISSUES object, see Table 38 for description.
277	8	TIMESTAMP_   WHOLE	uint32	Ticks	Timestamps (Whole Second) of JADE Level   2 packets used to make this Level 3 record.   (Both the ping and pong level 2 packets.)
285	4	TIMESTAMP_   SUB	uint16	Subticks	Timestamps (Subsecond) of JADE Level 2   packets used to make this Level 3 record.   (Both the ping and pong level 2 packets.)

Table 58: Format of Level 3 data record subheader for JAD_L30_HRS_ELC_ALL_*

Byte	Length   (bytes)	Name	Fmt*	Units	Description
265	12	MCP_VOLTAG   E	f	Volts	MCP Voltages on the three electron sensors,   E060, E180 and E300 respectively.
277	4	ISSUES	uint32	None	Issues or potential issues in this data record.   $\ldots$ The rest is a direct copy of the Level 2   ISSUES object, see Table 38 for description.
281	4	TIMESTAMP_   WHOLE	uint32	Ticks	Timestamp (Whole Second) of JADE Level   2 packet used to make this Level 3 record.
285	2	TIMESTAMP_   SUB	uint16	Subticks	Timestamp (Subsecond) of JADE Level 2   packet used to make this Level 3 record.

Table 59: Format of Level 3 data record subheader for JAD_L30_HRS_ELC_TWO_*

Byte	Length   (bytes)	Name	Fmt*	Units	Description
265	8	MCP_VOLTAG   E	f	Volts	MCP Voltages on the two electron sensors in   this product, E060 and E180 respectively.
273	4	ISSUES	uint32	None	Issues or potential issues in this data record.   $\ldots$ The rest is a direct copy of the Level 2   ISSUES object, see Table 38 for description.
277	4	TIMESTAMP_   WHOLE	uint32	Ticks	Timestamp (Whole Second) of JADE Level   2 packet used to make this Level 3 record.
281	2	TIMESTAMP_   SUB	uint16	Subticks	Timestamp (Subsecond) of JADE Level 2   packet used to make this Level 3 record.

Table 60: Format of Level 3 data record subheader for JAD_L30_LRS_ELC_ANY_*

Byte	Length   (bytes)	Name	Fmt* $^{\prime}$	Units	Description
265	4	MCP_VOLTAG   E	f	Volts	MCP Voltage on sensor.
269	4	ISSUES	uint32	None	Issues or potential issues in this data record.   $\ldots$ The rest is a direct copy of the Level 2   ISSUES object, see Table 38 for description.
273	4	TIMESTAMP_   WHOLE	uint32	Ticks	Timestamp (Whole Second) of JADE Level   2 packet used to make this Level 3 record.
277	2	TIMESTAMP_-   SUB	uint16	Subticks	Timestamp (Subsecond) of JADE Level 2   packet used to make this Level 3 record.

In general, the rest of the format for the different products have the same object names (see Figure 10 ), however their size (byte length) and start bytes will differ. The descriptions are also much the same when they have the same object name, with only DATA really changing (text that may alter between products is shown in blue boldface).

### 6.2.9.1 Electron Data

### 6.2.9.1.1 JAD_L30_HRS_ELC_ALL_CNT_*

The electron product for high rate science is PACKETID 0x8E and includes data from all three electron sensors.
The DATA object is 2-D, 64 energies x 48 look directions, and is described in Table 61, and continues over the next 4 pages.

This product is a combination of look directions from all 3 JADE-E sensors, but E300 was turned off in 2016, hence those anodes that would have been from E300 are populated with the MISSING_CONSTANT (-1) value.

Table 61: Format of Level 3 data records for JAD_L30_HRS_ELC_ALL_CNT

Byte	$\begin{aligned} & \text { Length } \\ & \text { (bytes) } \\ & \hline \end{aligned}$	Name	Fmt*	Units	Description
See Level 2 binary header from Table 56 and Table 58 for bytes 1 to 286.					
287	12288	DATA	f	Counts/s	DATA: Counts/Second 64 Energy x 48 Look Directions. [Note: E300 was turned off in 2016, so the last 16 look directions (32-47) are usually populated with the MISSING_CONSTANT value of -1.]
12575	12288	$\begin{aligned} & \text { DATA_SIGM } \\ & \text { A } \end{aligned}$	f	Counts/s	DATA_SIGMA   1-sigma uncertainties on values in object DATA, such that true value $=$ DATA $+/-$ DATA_SIGMA. See DATA entry above for size information.
24863	12288	BACKGROUN   D	f	Counts/s	Background value removed from DATA. No further background removal is required. If you wish to do your own background removal, add this object to DATA then you can remove a background via your own method.   The background values here were found from either a background anode or JADE's own ground method.
37151	12288	BACKGROUN D_SIGMA	f	Counts/s	BACKGROUND_SIGMA   1-sigma uncertainties on values in object BACKGROUND, such that true value $=$ BACKGROUND +/-   BACKGROUND_SIGMA. See BACKGROUND entry above for size information.


Byte	Length (bytes)	Name	Fmt*	Units	Description
49439	12288	DIM1_E	f	eV/q	1st Dimension of DATA: Energy - center $\mathrm{eV} / \mathrm{q}$ value. Upper and lower limits are given by the objects DIM1_E_UPPER and DIM1_E_LOWER.
61727	12288	$\begin{aligned} & \text { DIM1_E_UPP } \\ & \text { ER } \end{aligned}$	f	eV/q	1st Dimension of DATA: Energy - upper eV/q limit.   See DIM1_E for description.
74015	12288	$\begin{aligned} & \text { DIM1_E_LOW } \\ & \text { ER } \end{aligned}$	f	eV/q	1st Dimension of DATA: Energy - lower eV/q limit.   See DIM1_E for description.
86303	12288	$\begin{aligned} & \text { DIM2_ELEVA } \\ & \text { TION } \end{aligned}$	f	Degrees	2nd Dimension of DATA: Spacecraft elevation - center value. Spacecraft elevation (degs) is analogous to latitude on a sphere. In spacecraft xyz co-ords:   $+z$ is equivalent to elevation $=+90$ degs $-z$ is equivalent to elevation $=-90$ degs $($ The communication dish is directed along $+z$ ) $x y$-plane at $\mathrm{z}=0$ is equivalent to elevation $=0$.   Note, 2nd dimension is really look direction which has an elevation and azimuth; hence two objects describe this:   DIM2_ELEVATION and DIM2_AZIMUTH DESPUN.
98591	12288	DIM2 ELEVA TION_UPPER	f	Degrees	2nd Dimension of DATA: S/C elevation upper limit.   See DIM2_ELEVATION for description.
110879	12288	DIM2_ELEVA TION_LOWE R	f	Degrees	2nd Dimension of DATA: S/C elevation lower limit.   See DIM2_ELEVATION for description.


Byte	Length (bytes)	Name	Fmt*	Units	Description
123167	12288	DIM2 AZIMU   TH_DESPUN	f	Degrees	2nd Dimension of DATA: Despun S/C azimuth - center value. Spacecraft azimuth (degs) is analogous to longitude on a sphere. In spacecraft xyz co-ords:   +x is equivalent to azimuth $=0$ degs   $+y$ is equivalent to azimuth $=90$ degs   -x is equivalent to azimuth $=180$ degs   $-y$ is equivalent to azimuth $=270$ degs   +x is equivalent to azimuth $=360$ degs   +y is equivalent to azimuth $=450$ degs   The 'Despun' azimuth angle varies because Juno spins, where azimuth $=0$ is defined as +x when spin phase equals zero (e.g. despun $\mathrm{x}-\mathrm{z}$ plane contains the ECLIPJ2000 north).   The relationship between despun azimuth and spin phase (which decreases during a spin) is simply:   Despun Azimuth $=360$ degrees - Spin Phase   Because a lower to upper limit could occur over a 360 degree boundary, the   VALID_MINIMUM and VALID_MAXIMUM go from 0 to +720 degrees:   e.g. [lower, center, upper] $=[-10,5,20]$ would be given instead as $=[350,365,380]$   Note, 2nd dimension is really look direction which has an elevation and azimuth; hence two objects describe this:   DIM2_ELEVATION and DIM2 AZIMUTH DESPUN.
135455	12288	DIM2_AZIMU TH DESPUN UPPER	f	Degrees	2nd Dimension of DATA: Despun S/C azimuth - upper limit. See DIM2_AZIMUTH_DESPUN for description.
147743	12288	DIM2 AZIMU TH_DESPUN LOWER	f	Degrees	2nd Dimension of DATA: Despun S/C azimuth - lower limit. See DIM2_AZIMUTH_DESPUN for description.


Byte	Length   (bytes)	Name	Fmt*	Units	Description
160031	12	$\begin{aligned} & \text { MAG_VECTO } \\ & \text { R } \end{aligned}$	f	nT	MAG vector in nT, 3 components [X, Y, Z] MAG range is $+/-16 \mathrm{G}$, hence limits. This xyz coordinate system is despun spacecraft; see the definitions of DIM2_ELEVATION and DIM2_AZIMUTH:   +X is when [azimuth, elevation] $=[0,0]$ degrees,   +Y is when [azimuth, elevation] $=[90,0]$ degrees,   $+Z$ is when elevation $=90$ degrees.

### 6.2.9.1.2 JAD_L30_HRS_ELC_TWO_CNT_*

This is a repeat of the JAD_L30_HRS_ELC_ALL_CNT * file, but with E300 data removed to provide a smaller (but still large) file, thus only contains E060 and E180 data. This product was introduced when it was decided not to use sensor E300 in flight operations, however the HRS electron data packet would still return zeros for E300.
The DATA object is 2-D, 64 energies x 32 look directions (rather than 48 look directions), and is described in Table 62.

Table 62: Format of Level 3 data records for JAD_L30_HRS_ELC_TWO_CNT

Byte	Length   (bytes)	Name		Fmt*	Units	Description
See Level 2 binary header from Table 56 and Table 58 for bytes 1 to 286.						

### 6.2.9.1.3 JAD_L30_LRS_ELC_ANY_CNT_*

The electron products for low rate science are PACKETIDs $0 \times 68,0 \times 6 \mathrm{~A}$ and 0 x 6 B , and includes data from one electron sensor per record (only one sensor is on at any given time).
The DATA object is 2-D, 64 energies x 48 look directions, and is described in Table 63.
Practically there are only two differences between this and the
JAD_L30_HRS_ELC_ALL_CNT_* file:

1) The MCP_VOLTAGE object is a singular value here (for the one sensor) as opposed to 3 values for the HRS case (one for each of the sensors). This in turn makes the start byte of all following objects 8 bytes earlier in the LRS product compared to the HRS product. The description of MCP_VOLTAGE in the FMT file is slightly different to reflect this.
2) This product has an extra object at the end; called ESENSOR that states which of the three sensors is in use ( 60,180 or 300 ). This does not exist in the HRS product as the data array always includes all three sensors.
So the only difference between tables Table 61 and Table 63 are the first column byte values are offset by 8 (as indicated in the first red row), and Table 63 has the ESENSOR product at the end.

If using FSW4.00 (April 2015 only) data for this product (cruise solar wind only, no Jupiter science use) all DIM2_AZIMUTH_DESPUN values are replaced with the fill value 65535 due to the reverse anode mapping bug (see section 6.2.8.1.4).

Table 63: Format of Level 3 data records for $J A D_{-} L 30_{-} L R S S_{-} E L C_{-} A N Y_{-} C N T$

| Byte | Length <br> (bytes | Name | Fmt* | Units | Description |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| See Level 2 binary header from Table 56 and Table 60 for bytes 1 to 278. |  |  |  |  |  |

### 6.2.9.2 Ion Species Data

### 6.2.9.2.1 JAD_L30_HRS_ION_ANY_CNT_*

The ion species products for high rate science cover PACKETIDs $0 x 80-0 x 87$. Each ion species has its own packet; therefore several packets of different species may have the same time stamp. The DATA object is 2-D, 64 energies x 12 look directions, and is described in Table 64, and continues over the next 3 pages.

Table 64: Format of Level 3 data records for JAD L30 HRS ION ANY CNT

Byte	Length   (bytes	Name		Fmt*		Units


Byte	Length   (bytes)	Name	Fmt*	Units	Description
21793	3072	DIM2_ELEVA   TION	f	Degrees	2nd Dimension of DATA: Spacecraft   elevation - center value. Spacecraft elevation   (degs) is analogous to latitude on a sphere. In   spacecraft xyz co-ords:   +z is equivalent to elevation = +90 degs   -z is equivalent to elevation = -90 degs (The   communication dish is directed along +z)   xy-plane at z = 0 is equivalent to elevation   =0.   Note, 2nd dimension is really look direction   which has an elevation and azimuth; hence   two objects describe this:   DIM2_ELEVATION and   DIM2_AZIMUTH_DESPUN.
24865	3072	DIM2_ELEVA   TION_UPPER	f	Degrees	2nd Dimension of DATA: S/C elevation -   upper limit.   See DIM2_ELEVATION for description.
27937	3072	DIM2_ELEVA   TION_LOWE   R	f	Degrees	2nd Dimension of DATA: S/C elevation -   lower limit.   See DIM2_ELEVATION for description.


| Byte | Length <br> (bytes) | Name | Fmt* | Units | Description |
| :---: | :---: | :---: | :---: | :---: | :--- |$|$| 31009 | 3072 |
| :--- | :--- |
|  |  |

### 6.2.9.2.2 JAD_L30_LRS_ION_ANY_CNT_*

The ion species products for low rate science (PACKETID 0x60-0x67). Each ion species has its own packet; therefore several packets of different species may have the same time stamp. The DATA object is 2-D, 64 energies x 78 look directions, and is described in Table 65.
The basic format of this file is identical to the HRS counterpart, except there are 78 look directions here instead of 12 . As such the start byte and lengths change, but the object names and descriptions are the same (except for the description of the DATA object).

Table 65: Format of Level 3 data records for JAD_L30_LRS_ION_ANY_CNT

| Byte | Length <br> (bytes) | Name | Fmt* | Units | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| See Level 2 binary header from Table 56 and Table 57 for bytes l to 288. |  |  |  |  |  |

### 6.2.9.3 Ion Time of Flight Data

### 6.2.9.3.1 JAD_L30_HLS_ION_TOF_CNT_*

The ion time of flight products for high and low rate science, covering PACKETIDs $0 \times 69$ and $0 x 89$.
The DATA object is 3-D, 64 energies x 1 look direction x 93 TOF channels, and is described in Table 66 (over 3 pages). This product usually has 96 TOF channels with the last 3 having special meanings, but for level 3 data the last 3 channels have been removed and given their own objects within this file.

This product is usually considered to be a 2 dimensional array of energy by TOF channel. However all other JADE data is Energy by look direction, so to keep things similar, this product is a 3 dimensional array of 64 energies by 1 look direction by 93 TOF channels. There is only 1 look direction, but given the ion instrument covers 270 degrees field of view in elevation over the 12 anodes, and this product sums all 12 anodes, this leads to some interesting azimuth and elevation numbers. The DIM2_AZIMUTH objects will use the respective azimuth of anodes 411 (anodes 0-3 azimuths would normally be 180 degrees from those). However DIM2_ELEVATION will range from -90 to +180 degrees (spanning 270 degrees) with a center value of +45 degrees. As such, elevation of +90 to +180 is being used to describe the contribution of anodes $3,2,1$ and 0 that are technically covering elevations of +90 down to 0 degrees but with an azimuth 180 degrees different.

The object names (and descriptions, DATA description excepted) are identical to the other level 3 ion products, but with 6 TOF only objects on the end.

Table 66: Format of Level 3 data records for JAD_L30_HLS_ION_TOF_CNT

Byte	Length (bytes)	Name	Fmt*	Units	Description
See Level 2 binary header from Table 56 and Table 57 for bytes 1 to 288.					
289	23808	DATA	f	Counts/s	DATA: Counts/Second 64 Energy x 1 Look Direction x 93 Channels.   The 93 elements collapse the orignal 128 TOF channels as:   [ 0]: TOF channels $0-1$   [ 1]: TOF channel 2   [ 2]: TOF channel 3   [3]: TOF channel 4   [59]: TOF channel 60   [60]: TOF channel 61   [61]: TOF channels $62-63$   [62]: TOF channels $64-65$   [70]: TOF channels $80-81$   [71]: TOF channels $82-83$   [72]: TOF channel 84   [73]: TOF channel 85   [74]: TOF channel 86   [75]: TOF channel 87   [76]: TOF channel 88   [77]: TOF channels 89 - 90   [78]: TOF channels 91-92   [89]: TOF channels 113 - 114   [90]: TOF channels $115-116$   [91]: TOF channels $117-118$   [92]: TOF channels 119 - 124   These channels are expressed as a duration in seconds in object DIM3_TOF.   Original TOF channels $\overline{125}, 126$ and 127 are now objects   TOF_WITH_START_OVERLOAD, TOF_TOO_S S HORT $\overline{\text { and }}$ TOF_TOO_LONG respectively.
24097	23808	$\begin{aligned} & \hline \text { DATA_SIGM } \\ & \text { A } \\ & \hline \end{aligned}$	f	Counts/s	Same description as from Table 64 for JAD L30 HRS ION ANY CNT.
47905	23808	BACKGROUN D	f	Counts/s	Same description as from Table 64 for JAD L30 HRS ION ANY CNT.
71713	23808	BACKGROUN   D_SIGMA	f	Counts/s	Same description as from Table 64 for JAD_L30_HRS_ION_ANY_CNT.
95521	256	DIM1_E	f	eV/q	Same description as from Table 64 for JAD_L30_HRS_ION_ANY_CNT.


Byte	Length (bytes)	Name	Fmt*	Units	Description
95777	256	$\begin{aligned} & \hline \text { DIM1_E_UPP } \\ & \text { ER } \end{aligned}$	f	eV/q	Same description as from Table 64 for JAD L30 HRS ION ANY CNT.
96033	256	$\begin{aligned} & \text { DIM1_E_LOW } \\ & \text { ER } \end{aligned}$	f	eV/q	Same description as from Table 64 for JAD L30_HRS_ION_ANY_CNT.
96289	256	$\begin{aligned} & \text { DIM2_ELEVA } \\ & \text { TION } \end{aligned}$	f	Degrees	Same description as from Table 64 for JAD_L30_HRS_ION_ANY_CNT.
96545	256	$\begin{aligned} & \text { DIM2_ELEVA } \\ & \text { TION_UPPER } \end{aligned}$	f	Degrees	Same description as from Table 64 for JAD_L30_HRS_ION_ANY_CNT.
96801	256	$\begin{aligned} & \text { DIM2_ELEVA } \\ & \text { TION_LOWE } \\ & \text { R } \end{aligned}$	f	Degrees	Same description as from Table 64 for JAD_L30_HRS_ION_ANY_CNT.
97057	256	DIM2_AZIMU TH DESPUN	f	Degrees	Same description as from Table 64 for JAD_L30_HRS_ION_ANY_CNT.
97313	256	DIM2 AZIMU TH DESPUN UPPER	f	Degrees	Same description as from Table 64 for JAD_L30_HRS_ION_ANY_CNT.
97569	256	DIM2 AZIMU TH DESPUN LOWER	f	Degrees	Same description as from Table 64 for JAD_L30_HRS_ION_ANY_CNT.
97825	372	DIM3_TOF	f	Seconds	3rd Dimension of DATA: Time Of Flight center value. (Seconds)
98197	372	$\begin{aligned} & \text { DIM3_TOF_U } \\ & \text { PPER } \end{aligned}$	f	Seconds	3rd Dimension of DATA: Time Of Flight upper limit.   See DIM3_TOF for description.
98569	372	$\begin{aligned} & \text { DIM3_TOF_L } \\ & \text { OWER } \end{aligned}$	f	Seconds	3rd Dimension of DATA: Time Of Flight lower limit.   See DIM3_TOF for description.
98941	256	TOF WITH S TART OVER LOAD	f	Counts/s	TOF with start overload: Counts/Second A signal pulse that is too strong (above a threshold) in the electronics. Multiple startoverloads that occur within a 330 ns event window are counted each time in the Logicals Start Overload, but only once here.
99197	256	TOF WITH S TART OVER LOAD_SIGM A	f	Counts/s	TOF with start overload uncertainty:   Counts/Second   1 -sigma uncertainties on values in object TOF_WITH_START_OVERLOAD such that true value $=$   TOF_WITH_START_OVERLOAD +/-   TOF_WITH_START_OVERLOAD_SIGM   A.   See TOF_WITH_START_OVERLOAD   entry above for size information.


Byte	$\begin{array}{l}\text { Length } \\ \text { (bytes) }\end{array}$	Name	Fmt*	Units	Description
99453	256	$\begin{array}{l}\text { TOF_TOO_SH } \\ \text { ORT }\end{array}$	f	Counts/s	$\begin{array}{l}\text { TOF too short: Counts/Second } \\ \text { TOF underflow: Count of TOF } \\ \text { measurements that did not timeout, but } \\ \text { resulted in a measurement smaller than the } \\ \text { sensor could measure. }\end{array}$
99709	256	$\begin{array}{l}\text { TOF_TOO_SH } \\ \text { ORT_SIGMA }\end{array}$	f	Counts/s	$\begin{array}{l}\text { TOF too short uncertainty: Counts/Second } \\ \text { 1-sigma uncertainties on values in object } \\ \text { TOF_TOO_SHORT such that true value }= \\ \text { TOF_TOO_SHORT +/-_ } \\ \text { TOF_TOO_SHORT_SIGMA. }\end{array}$
See_TOF_TOO_SHORT entry above for size					
information.					

### 6.2.9.4 Ion Logicals Data

### 6.2.9.4.1 JAD_L30_HLS_ION_LOG_CNT_*

The ion logicals products for high and low rate science, covering PACKETID 0x6C and 0x8C. The DATA object is 2-D, 64 energies x 25 logicals (each with variable look directions), and is described in Table 67 (over 3 pages).

Given the ion instrument covers 270 degrees field of view in elevation, this leads to some interesting azimuth and elevation numbers, as elevation can range from -90 to +180 degrees; see the descriptions below. e.g. if Azimuth is 200 degrees and elevation is 100 degrees, that's equivalent to an azimuth of 20 (200-180) degrees and an elevation of 80 (180-100) degrees. That is anode 0 will have an azimuth 180 degrees from anode's 7 , which is described in the DIM2 objects, however the logicals that combine all individual anodes the DIM2 values will use the azimuth from anodes $4-11$ for all, but the elevations range will be -90 to +180 degrees.

The 25 logical counters here are the same as for level 2 data.

Table 67: Format of Level 3 data records for JAD_L30_HLS_ION_LOG_CNT

Byte	Length   (bytes)	Name	Fmt*	Units	Description
See Level 2 binary header from Table 56 and Table 57 for bytes 1 to 288.					
289	6400	DATA	f	Counts/s	DATA: Counts/Second 64 Energy x 25 Logicals.   The 25 Logical counters are:   [ 0]: Anode 0 Events   [ 1]: Anode 1 Events   [ 2]: Anode 2 Events   [10]: Anode 10 Events   [11]: Anode 11 Events   [12]: Background Events   The above 13 logicals are raw count hits, independent of whether a TOF Event has begun. Adjacent and Non-Adjacent hits will be counted in both anodes. As such, anode counts can exceed All Stops [15] counts.   The Background anode [12] is not included in Adjacent and Non-Adjacent calculations.   [13]: Start Overload   Start signal exceeds threshold level.   [14]: All Starts   Independent of whether a TOF Event has begun, usually starts a TOF Event.   [15]: All Stops   Independent of whether a TOF Event has begun, usually ends a TOF Event.   If an event is seen on multiple anodes this counter is still only incremented once, therefore this is usually less than the sum of anodes 0 to 11 .   The Background anode is not included in All Stops, just anodes 0 to 11.   [16]: Non-Adjacent Anodes   This is either two non-neighbor anodes (anodes 0-11 only), or more than 2 anodes.   [17]: Adjacent Anodes   A count hit was measured in neighboring anodes; other products (e.g. Ion Species) will assign this to just the lower anode.   [18]: Stop without Start   A stop signal was received before a TOF Event was initiated by a start.   Continues on next page.


Byte	Length (bytes)	Name	Fmt*	Units	Description
					Continues from previous page.   [19]: Dual Start   A TOF Event had started but one or more other start signals were received before a stop signal or the TOF Event overflowed.   [20]: Start in Process Time   The number of TOF Events started, can be less than All Starts [14].   [21]: TOF Underflow   Received a stop event before 1 tap, that is 1.6 ns , the base unit of TOF times.   [22]: TOF Overflow   No stop signal arrived within timeout of 330ns.   [23]: Invalid TOF Event   If the TOF Event is measured in 1 anode (anodes 0-11 only) or two neighboring anodes (anodes 0-11 only) it is valid. Otherwise it is invalid, unless it was an underflow in which case the Underflow [21] counter is increased instead of this counter (i.e. an Underflow event is considered valid).   Therefore, if the event is not an Underflow event, it will be invalid if one of these three situations is met:   - hit in more than two anodes, or   - hit in two non-neighbor anodes, or   - no anodes hit at all.   The latter is different to overflow events [22] which are considered valid.   The Background anode is not considered in any of these calculations.   [24]: Event Strobe   The number of TOF Events completed, by a stop signal or over/underflow, usually the same as Start in Process Time [20].   Note that the look directions of logicals 1224 cover the combined look directions of logicals 0-11.   Anodes 0-3 will have an azimuth 180 degrees greater than anodes 4-11. For logicals 12-24 that cover all 12 anodes, the azimuth of anodes 4-11 will be used, but elevation will be -90 to +180 degrees, centered at +45 degrees (between anodes 5 and 6).
6689	6400	$\begin{aligned} & \text { DATA_SIGM } \\ & \text { A } \end{aligned}$	f	Counts/s	Same description as from Table 64 for JAD_L30_HRS_ION_ANY_CNT.


Byte	Length   (bytes)	Name	Fmt*	Units	Description
13089	6400	BACKGROUN   D	f	Counts/s	Same description as from Table 64 for   JAD_L30_HRS_ION_ANY_CNT.
19489	6400	BACKGROUN   D_SIGMA	f	Counts/s	Same description as from Table 64 for   JAD_L30_HRS_ION_ANY_CNT.
25889	6400	DIM1_E	f	$\mathrm{eV} / \mathrm{q}$	Same description as from Table 64 for   JAD_L30_HRS_ION_ANY_CNT.
32289	6400	DIM1_E_UPP   ER	f	$\mathrm{eV} / \mathrm{q}$	Same description as from Table 64 for   JAD_L30_HRS_ION_ANY_CNT.
38689	6400	DIM1_E_LOW   ER	f	$\mathrm{eV} / \mathrm{q}$	Same description as from Table 64 for   JAD_L30_HRS_ION_ANY_CNT.
45089	6400	DIM2_ELEVA   TION	f	Degrees	Same description as from Table 64 for   JAD_L30_HRS_ION_ANY_CNT.
51489	6400	DIM2_ELEVA   TION_UPPER	f	Degrees	Same description as from Table 64 for   JAD_L30_HRS_ION_ANY_CNT.
57889	6400	DIM2_ELEVA   TION_LOWE   R	f	Degrees	Same description as_ from Table 64 for   JAD_L30_HRS_ION_ANY_CNT.
64289	6400	DIM2_AZIMU   TH_DESPUN	f	Degrees	Same description as from Table 64 for   JAD_L30_HRS_ION_ANY_CNT.
70689	6400	DIM2_AZIMU   TH_DESPUN   _UPPER	f	Degrees	Same description as_ from Table 64 for   JAD_L30_HRS_ION_ANY_CNT.
77089	6400	DIM2_AZIMU   TH_DESPUN   LOWER	f	Degrees	Same description as from Table 64 for   JAD_L30_HRS_ION_ANY_CNT.

### 6.2.9.5 Level 3 conversion of data

This section summarizes the equations used to convert from level 2 to level 3 data, in the order each is encountered in the production code used by the JADE team for level 3 version 01 files. Specific calibration values are listed in the CALIB directory of the Level 3 PDS volume in the JAD_L30_CALIB_LIST_nnnnn.TXT file, where the value for nnnnn is given the in level 3 SOURCE_JADE_CALIB object for each record. This text file may point to other files in the CALIB directory.

Note that MISSING_CONSTANT (also known as fill) values may be present in the DATA object or any other level 2 or level 3 object, and all the codes have to check for these and react accordingly. For instance, if a DATA element is a MISSING_CONSTANT value, then the level 3 DATA element in counts per second (and DATA_SIGMA too) will also be set to the appropriate MISSING_CONSTANT value. This greatly complicates the coding, but is safer to propagate MISSING_CONSTANT values in DATA, energy or look directions when necessary.
6.2.9.5.1 Remove any records where the level 2 MCP_COMMANDED_VALUE object is zero This may be just a few records as JADE is turning on, or during cruise it may be all values that day for some electron files (where essentially the electron sensor was 'off'). If no records are left, then do not make a level 3 file at all.

### 6.2.9.5.2 Correct timestamps affected by the Juno time stutter

Check the ISSUES object (bit 10) of each record to see if it was affected by the Juno time stutter. If so, remove 1 tick from the TIMESTAMP_WHOLE value (leave TIMESTAMP_SUB as is) and calculate the new UTC time. Set bit 10 of the ISSUES object to 0 (False) for that record, and set bit 5 to 1 (True) (to note that the time has been corrected).

### 6.2.9.5.3 Check for FSW 4.00 LRS/CAL ion species bug (early 2015 data only)

If the LRS/CAL ion species bug is present then all accumulation times are fill values, and the reported start time is actually the end time of the record (see ISSUES description). The level 3 data has been corrected for this; now reporting the correct start time (at least to within 1 ms ) and accumulation time.

### 6.2.9.5.4 If ion data, merge ping and pong records to put all 64 energies in one record

In level 2 data a full sweep of energies for ion data must be split over two telemetry packets (and therefore two level 2 records) for transmission. Here we recombine them and re-order in increasing energy. There are four possible sweep tables for ion data, 0 to 3 , with either $0 \& 1$ or $2 \& 3$ used, e.g. sweep tables will flip $0,1,0,1,0,1,0,1, \ldots$ When JADE turns to a new telemetry mode (e.g. HRS to LRS) it may do so on any second even if a pair of sweep tables is not complete. Generally the first one it hits is called the ping, the second the pong, however that first one may be either an odd or even sweep table number. HRS data is the exception, where the ping is always a 0 or 2 , and a pong always a 1 or 3 (this is so that HRS products can be compared
on the same time boundaries). Not all pings may have a corresponding pong, nor all pongs a corresponding ping, either due to a data gap or a pair not being complete due to a mode change.

For HRS data, each ping or pong takes 1 spacecraft tick (ACCUMULATION_TIME $=1$ ), so when merged ACCUMULATION_TIME of those records is set to 2 . For LRS or CAL data ACCUMULATION_TIME is unchanged as those already assume you're using both ping and pong. This is important for the conversion to counts/second later.

### 6.2.9.5.5 Remap energy steps in to ascending $\mathrm{eV} / \mathrm{q}$ order

The Level 2 data records list energy steps in the order they were taken (e.g. every $2^{\text {nd }}$ step up, then back down with every $2^{\text {nd }}$ step of the ones that were missed going up, such that they interleave over a whole record). This step order is re-ordered in to one of increased eV/q. (See the LUT_m_nn_ENERGY_Vvv.CSV files for the eV/q values of the Level 2 files, which allows one to work out how to remap them to be increasing in $\mathrm{eV} / \mathrm{q}$.)

### 6.2.9.5.6 Convert MCP_COMMANDED_VALUE to units of volts

The Level 2 data has object MCP_COMMANDED_VALUE which is a digital value that needs to be converted to a Level 3 object MCP_VOLTAGE (in volts).
The equations to use are listed in the JAD_L30_CALIB_LIST_nnnnn.TXT file.
Note that if MCP_COMMANDED_VALUE $=0$ then MCP_VOLTAGE $=0 \mathrm{~V}$, but for non-zero values use the equations in the above file.

### 6.2.9.5.7 Use SPICE to calculate auxiliary information

Use the latest (at time of processing) version metakernel file from the CALIB directory to find position, orientation, velocities, spin period and co-ordinate transformation matrices, as well as the start/center/stop spin-phase values for each record. (Metakernel files are named JAD_L30_SPICE_METAKERNEL_nnnnn.TXT where each level 3 files has an object named SOURCE_JADE_METAKERNEL that contains the nnnnn value of the metakernel used to create that particular record.)
6.2.9.5.8 Apply any dead time correction or cross-talk corrections.

If applicable, correct for dead time and/or cross-talk. Currently there is no known reason to correct for either. [Not yet implemented - as so far nothing to do.]
6.2.9.5.9 Convert level 2 counts to a more representative value and work out uncertainties

Level 2 DATA are all integers, which required some rounding, whereas Level 3 DATA are floats, so here we swap out the integers for the floats they would have been (using the lossy LUT compression tables) and calculate an uncertainty for each value to populate DATA_SIGMA. This is a much more complex procedure than you would like; hence we do it for you. It is explained in great detail in the CALIB directory file DATA_UNCERTAINTY_EQNS_Vnn.PDF (See JAD_L30_CALIB_LIST_nnnnn.TXT file for which Vnn you should use for each record.)
6.2.9.5.10 Convert Data and uncertainties to counts per second.

At this point the DATA (and DATA_SIGMA) objects are in units of counts per accumulation or counts per view, both need converting to counts per second.
It should be noted that during each spacecraft clock tick (assumed to be 1 S.I. second, although technically not true, but extremely close) the electron sensors sweep 64 energy steps per tick, while the ion sensor sweeps 32 energy steps (such that the ion sensor requires 2 seconds to measure all 64 energy steps). For both electron and ion sensors, the first 2 ms at each step is a settling period where no data is recorded while the voltage stabilizes. Hence the ( $1 / 64-0.002$ ) and (1/32-0.002) terms in the following equations.
So while these conversion are quoted as to counts/second, they are technically counts per spacecraft clock tick. During flight so far, 1 spacecraft clock tick is within $0.0002 \%$ of 1 S.I. second, so assuming 1 tick equal 1 second is suitable (see the SPICE SCLKSCET kernel for variations in ticks compared to S.I. seconds).

For counts per accumulation products (where the level 2 object is total counts measured over a time period) the conversion to counts per second is as follows:

For electron HRS and electron CAL data:

$$
\begin{equation*}
C / s e c=\frac{C}{\text { ACCUMULATION_TIME }\left(\frac{1}{64}-0.002\right)} \tag{Eqn.l}
\end{equation*}
$$

Note that for HRS electron data, ACCUMULATION_TIME $=1$, so this simplifies to:

$$
\begin{equation*}
C / \sec =\frac{C}{\frac{1}{64}-0.002} \tag{Eqn.2}
\end{equation*}
$$

For merged ping-pong ion data (a record with 64 energy steps) for all TOF and LOG data, and HRS ion species:

$$
\begin{equation*}
C / \mathrm{sec}=\frac{2 C}{\text { ACCUMULATION_TIME }\left(\frac{1}{32}-0.002\right)} \tag{Eqn.3}
\end{equation*}
$$

Note that for HRS merged ping-pong ion species data, ACCUMULATION_TIME $=2$, so this simplifies to:

$$
\begin{equation*}
C / \sec =\frac{C}{\frac{1}{32}-0.002} \tag{Eqn.4}
\end{equation*}
$$

The uncertainty (DATA_SIGMA) of the DATA is calculated with similar equations to give the uncertainty counts per second.

For rate products the level 2 data returns a 'per view' average value so that the conversion of data is simpler, but the uncertainty is much more complex.
For electron LRS data:

$$
\begin{equation*}
C / \text { sec }=\frac{C / \text { View }}{\left(\frac{1}{64}-0.002\right)} \tag{Eqn.5}
\end{equation*}
$$

For ion species data (merged ping-pong or not) for both LRS and CAL data:

$$
C / \text { sec }=\frac{C / \text { View }}{\left(\frac{1}{32}-0.002\right)}
$$

(Eqn. 6)

Similar calculations are done for any level 2 background anodes used for a background later, although beware that some rate products have a background object that is total counts (and may be compressed differently to its corresponding DATA object), so must be converted accordingly. However the Level 3 TOF products TOF_WITH_START_OVERLOAD, TOF_TOO_SHORT and TOF_TOO_LONG and their uncertainties are calculated as above for TOF data.

### 6.2.9.5.11 Remove non-DATA elements from DATA arrays

For high rate and calibration electron data the DATA array is size $64 \times 51$, where $64 \times 48$ is the actual data, and $64 \times 3$ are the background anodes. The level 3 DATA object is just the $64 \times 48$ array, and the background data are discarded (unless used later as an input to the BACKGROUND object).
Likewise the level 2 ion TOF DATA object is size 64 x 1 x 96 where the actual data is 64 x 1 x 93 , and the last 3 have special meaning. The Level 3 TOF DATA object is size $64 x 1 \times 93$, and the others are given their own objects in the TOF record: TOF_WITH_START_OVERLOAD, TOF_TOO_SHORT and TOF_TOO_LONG - each of size 64.
6.2.9.5.12 Remove an appropriate background to 'clean' the dataset.

Remove a background and/or clean the data (e.g. remove false co-incidences ("ghost peaks" of other ion species) from ion species products), and remove that from the level 3 data object. Calculate the uncertainty on that background, and propagate that uncertainty with the data uncertainty to replace DATA_SIGMA.

For initial version 00 and version 01 files we are not removing a background nor 'cleaning' the data, hence the BACKGROUND object is zeros (and likewise BACKGROUND_SIGMA is zeros).

### 6.2.9.5.13 Assign correct energy table to the data

Using the reported Look Up Table in Level 2 files (TABLES_VERSION object) and sweep table number (SWEEP_TABLE object), apply the corrected ground calibrated energy table to the data to fill DIM1_E objects. Version 00 files may use a temporary estimated energy table, but Version 01 onwards files will have the specific energy table used at their time. The energy tables are in the CALIB/LUT_m_nn_ENERGY_Vvv.CSV files, with the particular one used listed in the JAD_L30_CALIB_LIST_nnnnn.TXT (each level 3 record lists nnnnn in the object SOURCE_JADE_CALIB).
6.2.9.5.14 Populate azimuth and elevations angles in a despun frame.

For each look direction populate the DIM2_* azimuth and elevation angles, and upper and lower limits. This is despun so requires using SPICE to find the spin phase (from earlier) and adjust accordingly.

Check here for FSW3 or FSW 4.00 data (2015-Jan and before only), and if so, set the LRS electron data azimuths to fill values. This was because prior to FSW 4.10 (August 2015) the anode mapping to electron spin-phase sector was incorrectly reversed in flight software and cannot be reversed. See the ISSUES object for more information. This will not apply to any data at Jupiter (2016+).

Azimuth and elevation information is provided in the CALIB directory files: ANODE_LOOK_ELC_DEFL_NONE_V $v v$ and ANODE_LOOK_ION_DEFL_NONE_V $v v$. (Version 01 DAT files use $v v=02, v v=01$ is skipped.) When necessary for the product they are despun using spin phase. For HRS products, the values are given per energy step, accounting for the earlier 2 ms settling time and smear introduced by the spacecraft spinning during each energy step. There may be a further correction to the elevation angle, which is dealt with later.

Ensure all azimuth angles (degrees) are positive, with the lower values being smaller than the center value, which itself is smaller than the upper value. It is possible some angles may be more than 360 degrees greater than the last, but in practice in $\sin$ or $\cos$ statements that has no effect.

### 6.2.9.5.15 If TOF data, Populate DIM3 * objects

Convert ground channel numbers 0-92 (HRS, LRS or CAL) to a real time range in seconds. Onboard there are really 256 channels that are mapped down to the 96 (ground) bins of level 2 files, and these bins can have different widths.
The last three (onboard channels 253, 254 and 255 which map to ground channels 93, 94 and 95) have special meanings, and are separated out as their own objects in level 3 files. Note that onboard channels 248-252 inclusive are not mentioned; these are uses as padding onboard, so are always zero and never included in ground data.

See the CALIB file TOF_CHANNEL_TO_SECONDS_HLC_Vvv.CSV for the final values in seconds, and see JAD_L30_CALIB_LIST_nnnnn.TXT for the conversion equations.
(For HVE TOF data (with 125 ground values ( $128-3$ of special meaning) instead of 93 values) the situation is much the same, but use file TOF_CHANNEL_TO_SECONDS_HVE_Vvv.CSV.)

### 6.2.9.5.16 If Electron data, despin MAG vector to same despun frame as the azimuths.

JADE Level 2 electron files have a MAG vector within them in spacecraft co-ordinates, ion data do not, so ion data do not have an included MAG_VECTOR object. For electron data, use the MAG_TIMESTAMP_WHOLE:MAG_TIMESTAMP_SUB spacecraft clock timestamp from Level 2 files to find the spin phase (sp) at that instant, and rotate MAG_VECTOR $x$ and $y$ components accordingly (z component does not change). If using SPICE to convert this MAG timestamp in to ephemeris time, be sure to use Juno's high precision clock code (NAIF_SPACECRAFT_ID = -61999) since MAG_TIMESTAMP_SUB is a two-byte value. Unfortunately, our Level 3 version 01 code for LRS electrons used the standard precision clock (one-byte value) which caused errors, and this was fixed in Level 3 version 02 files - see the CALIB directory for more information in file:

JADE_LEVEL3_V02_COMPARED_TO_V01_DESCRIPTION_V01.PDF
[Note that MAG_TIMESTAMP_WHOLE:MAG_TIMESTAMP_SUB if taken from JADE Level 2 files may be affected by the Juno time stutter, we do not attempt any correction for that.]

If the magnetic field is less than a commanded threshold (threshold was originally 200 nT , later changed to 25 nT , and could be altered in future) then the MAG_VECTOR is not provided (just zeros in Level 2, and in Level 3 is set to MISSING_CONSTANT), so MAG_VECTOR is only populated at low radial distances such as perijove passes.

For HRS Level 2 files there is no MAG_TIMESTAMP_SUB object, so it is assumed to be 00000 in Level 3 version 01 files, meaning the spin phase angle can be off by up to $\sim 12$ degrees (based on a 30s spin period). For Level 3 version 02 files, MAG_TIMESTAMP_SUB is assumed to be 32768 (= half a MAG_TIMESTAMP_WHOLE) so that the spin phase angle can be off by up to $\pm 6$ degrees (rather than +12 and -0 degrees of version 01 ). [More explanation is provided in the CALIB file JADE_LEVEL3_V02_COMPARED_TO_V01_DESCRIPTION_V01.PDF ]

The equations used to despin the MAG vector are simply:

```
L3.MAG_VECTOR_X = L2.MAG_VECTOR_X*COS(sp) - L2.MAG_VECTOR_Y*SIN(sp)
L3.MAG_VECTOR_Y = L2.MAG_VECTOR_X*SIN(sp) + L2.MAG_VECTOR_Y*COS(sp)
L3.MAG_VECTOR_Z = L2.MAG_VECTOR_Z
```

6.2.9.5.17 If HRS electron data at Jupiter, adjust the earlier elevation angles for the deflectors

The electron sensors have deflectors that are only active for HRS when the magnitude of the MAG_VECTOR is greater than a threshold magnitude, that was originally set to 200 nT (and later change to 25 nT , and could be altered again in future). As such this was first used during PJ1 (2016-240) and never used during cruise (as the magnetic field was far below the ( 200 nT ) threshold magnitude in the solar wind and magnetosphere). The deflectors adjust the elevation angle to track the magnetic field vector. This correction to DIM2_ELEVATION values (including upper and lower) needs to be done. The calibration equations used for this correction are given in the CALIB directory file ANODE_LOOK_ELC_DEFL_EQNS_Vvv.PDF. (See file JAD_L30_CALIB_LIST_nnnnn.TXT for which Vvv.) For all other times and modes (LRS/CAL or HRS with magnetic field magnitude under the threshold magnitude) the electron deflectors are off and the ANODE_LOOK_ELC_DEFL_NONE_Vvv elevation angles are used.
[JADE-I does also have deflectors, however it was decided they would never be used.]
6.2.9.5.18 Level 2 records that do not get converted to Level 3

Now remove any records that are not worthy of becoming Level 3 files. Any Level 2 record with ACCUM_TRUNCATION $=1$, or MCP_COMMANDED_VALUE $=0$, or MCP_NOT_AT_COMMANDED = 1 or TABLES_VERSION = -99.99
(=MISSING_CONSTANT) is excluded from becoming a Level 3 record and is removed. Records that have any MISSING_CONSTANT values in the DATA object are still converted.

HRS/CAL/HVE electron products are unique in that they use three sensors per record, rather than just one sensor per record for JADE-I or LRS electrons. For HRS electron Level 3 version 01 files, if any one of the three sensors had MCP_NOT_AT_COMMANDED = 1 then the entire record is excluded from level 3. However, it was realized that during certain situations (e.g. changing from LRS to HRS, or MCP dipping) it was possibly for an electron sensor to have MCP_NOT_AT_COMMANDED at 0 and the other sensors to be at 1 . For HRS Level 3 version 02 files, if at least one of the three electron sensors had MCP_NOT_AT_COMMANDED $=0$ then that record is kept for level 3 to keep the good data from that sensor(s), but the data for the other sensor(s) (with MCP_NOT_AT_COMMANDED = 1) are set to fill values. For such cases, this is marked in the ISSUES object of the record as "Bit 21 ". If all three electron sensors have MCP_NOT_AT_COMMANDED $=0$ then the whole record is still excluded from Level 3 version 02 files. For more information see the ISSUES object description and the CALIB file: JADE_LEVEL3_V02_COMPARED_TO_V01_DESCRIPTION_V01.PDF [In the PDS this only applies to HRS electron data; however for the JADE operations team, the CAL electron files are filtered similarly.]

For Level 3 records of JAD_L30_LRS_ELC_ANY and JAD_L30_LRS_ION_ANY (and JAD_L30_CAL_ION_ANY, not in PDS) if the ACCUMULATION_TIME of the record is less than the SC_SPIN_PERIOD (rounded to whole number) then remove it (as less than a whole spin for a spin product).

For Level 3 records of JAD_L30_HLS_ION_LOG (and JAD_L30_CAL_ION_LOG, not in PDS) if the ACCUMULATION_TIME of the record is an odd number then remove it (as missing a ping or a pong).

What records remain are written to a level 3 PDS compliant DAT file, if no records remain then no file is written.
6.2.9.5.19 The Jupiter De-Spun-Sun (JUNO_JSS) co-ordinate System

The Juno Jupiter De-Spun-Sun system is the primary Jovian co-ordinate system the JADE team uses (Figure 11) and is known as JUNO_JSS in the Juno SPICE frame kernel (file: fk/juno_v09.tf or latest version of this file). It is Jupiter-centered, with the Z-axis aligned with the Jovian spin axis but does not spin with the planet. The X -axis is in the plane containing the spin axis and the Jupiter-Sun vector, where the Sun position has be aberration corrected.

If:

$$
\begin{array}{ll}
\mathrm{JOmega}= & \text { unit vector of Jupiter spin axis } \\
\mathrm{R}_{\mathrm{JS}}= & \text { unit vector of Jupiter to Sun line }
\end{array}
$$

Then:

$$
\begin{aligned}
& \mathrm{Z}=\mathrm{J}_{\text {Omega }} \\
& \mathrm{Y}=\mathrm{Z} \times \mathrm{R}_{\mathrm{JS}} \\
& \mathrm{X}=\mathrm{Y} \times \mathrm{Z}
\end{aligned}
$$

If using SPICE, do not aberration correct (use abcorr = 'none' in SPICE commands such as spkezr or spkpos).

The R, Latitude and Local Time (LT) system is based on JUNO_JSS where R is the magnitude of the $[\mathrm{x}, \mathrm{y}, \mathrm{z}]$ vector (in planetary radii, $\mathrm{R}_{\mathrm{J}}$ ), Latitude is the inverse sine of $\mathrm{z} / \mathrm{R}$ (degrees) and Local Time ( $0-24$ hours, where 12 hours is along +X and 18 hours LT along +Y ) is a different way of expressing longitude (degrees from +X , positive in the direction towards +Y ), where:

Local time $=\left[\left(\right.\right.$ longitude $\left.\left.+180^{\circ}\right) * 24 / 360\right]$ MOD $24=[(\operatorname{atan}(\mathrm{y}, \mathrm{x})+\pi) * 12 / \pi]$ MOD 24
("atan" is the four quadrant inverse tangent of $y$ and $x$ expressed in radians.)
To calculate LT using SPICE, the command et2lst with type $=$ 'PLANETOCENTRIC' will provide Local (solar) Time values, which is aberration corrected (abcorr $={ }^{\prime} \mathrm{LT}+\mathrm{S}^{\prime}$ ) unlike the above JUNO_JSS longitude way. At Jupiter the difference between the methods is $<0.6 \mathrm{~s}$ LT, and since et2lst returns whole seconds only, both methods are equivalent in practice.


Figure 11: The Jupiter De-Spun-Sun (JUNO_JSS) co-ordinate system.

### 6.2.10 Level 4 data files

There are no CODMAC Level 4 JADE products, as this is a level more designed for cameras than particle data (see Table 5). As such JADE goes from Level 3 to level 5 directly.

### 6.2.11 Level 5 data files

Table 68: Format of Level 5 primary science data file records

Byte	Length   (bytes)	Name	Fmt*	Units	
		$[T B D]$			

## Appendix A Support staff and cognizant persons

## Table 69: Archive collection support staff

JADE team			
Name	Address	Phone	Email
Dr Rob Wilson JADE ground data processing / Archivist	LASP, Space Science Building, University of Colorado Boulder 3665 Discovery Drive Boulder, CO 80303-7813	$\begin{aligned} & +001303 \\ & 4925476 \end{aligned}$	Rob.Wilson@ lasp.colorado.edu
Dr Frédéric Allegrini JADE Lead and JADE Electron Instrument Scientist	Southwest Research Institute 6220 Culebra Road San Antonio, TX 78238-5166		fallegrini@swri.edu
Dr Robert W. Ebert JADE Ion Instrument Scientist	Southwest Research Institute 6220 Culebra Road San Antonio, TX 78238-5166		rebert@swri.edu
Mr Chad Loeffler JADE Flight Software	Southwest Research Institute 6220 Culebra Road San Antonio, TX 78238-5166		cloeffler@swri.edu


UCLA			
Name	Address	Phone	Email
Dr. Steven Joy   PPI Operations Manager	IGPP, University of California   405 Hilgard Avenue	+001310	sjoy@igpp.ucla.edu
Los Angeles, CA 90095-1567	8253506		
	USA		
Mr. Joseph Mafi   PPI Data Engineer	IGPP, University of California   405 Hilgard Avenue   Los Angeles, CA 90095-1567   USA	+001310	jmafi@igpp.ucla.edu

JADE has had a turn-over in lead staff since launch.

- Build, pre-launch, launch to 2016-May-24:

Dr David J. McComas was JADE Lead.
Dr Philip Valek was the JADE Ion Instrument Scientist.
Dr Frédéric Allegrini was the JADE Electron Instrument Scientist.

- 2016-May-24 to 2018-May-21:

Dr Philip Valek was the JADE Lead and JADE Ion Instrument Scientist.
Dr Frédéric Allegrini was the JADE Electron Instrument Scientist.

- 2018-May-21 onwards:

Dr Frédéric Allegrini is the JADE Lead and JADE Electron Instrument Scientist.
Dr Robert W. Ebert is the JADE Ion Instrument Scientist.

## Appendix B PDS label files

All JADE instrument data files are accompanied by PDS label files, possessing the same names are the files they describe, but with the extension LBL. The basic content for these label files is as follows, where the NOTE field is reserved for product-specific comments:

Font below is Courier New (to equally space characters) and size 9 in order to get 78 characters to a line. This matches the PDS files that are 80 characters to a line, but the last two are $\operatorname{rr} \mathrm{n}$.

## B. 1 Sample LBL file for JAD_L20_LRS_ELC_ANY_*

```
PDS_VERSION_ID = PDS3
DATA
/* Input file : JAD L20 LRS ELC ANY 2015090 V01.DAT */
/* File written: 201\overline{7}/05\overline{/04 2}3:0\overline{1}:39-
STANDARD_DATA_PRODUCT_ID = "JAD_L20_LRS_ELC_ANY"
PRODUCT_ID - - = "JAD_L20_LLRS_ELC_ANY_2015090"
PRODUCT_VERSION_ID = "01"
PRODUCT TYPE = "DATA"
PRODUCT_CREATION_TIME = 2017-125T05:01:39 /* UTC 2017-05-05 */
PROCESSING LEVEL_ID = "2"
RECORD_TYPE = FIXED_LENGTH
RECORD BYTES = 12384
FILE R\overline{ECORDS = 2}
```

START TIME $=2015-090 T 00: 35: 45.001 / * 2015-03-31$ */
STOP_TIME $=2015-090 T 00: 43: 16.004 / * 2015-03-31$ */
SPACECRAFT_CLOCK_START_COUNT = "481034275.64325" /* WHOLE.SUB (SUB 0-65535)*/
SPACECRAFT_CLOCK_STOP_COUNT $=4481034727.00000 "$ /* Rounded nearest */
/* JADE records have start time SPACECRAFT CLOCK, so to get end time */
/* of last record, I've added the Accumulation time value to both */
/* UTC seconds and SPACECRAFT CLOCK, - although those are not equal. */
/* Hence the SPACECRAFT_CLOCK_STOP_COUNT is rounded for now. */
INSTRUMENT HOST NAME = "JUNO"
INSTRUMENT_HOST_ID = "JNO"
TARGET_NAME - $=$ \{"JUPITER"
INSTRUMENT_NAME $=$ "JOVIAN AURORAL PLASMA DISTRIBUTIONS EXPERIMENT"
INSTRUMENT_ID = "JAD" /* JADE */
DESCRIPTION $=$ "This is the required LBL file to accompany DAT files of the
data product JAD_L20_LRS_ELC_ANY."
MD5_CHECKSUM = "44e5efb1590fd55882dae9c00123d699"
NOTE = "See the PDS JADE SIS Document for more details on the formats."
^TABLE = "JAD_L20_LRS_ELC_ANY_2015090_V01.DAT"
OBJECT $=$ TABL $\bar{E}$
INTERCHANGE FORMAT = "BINARY"
ROWS $=2$
COLUMNS $=32$
ROW BYTES = 12384
DESCRIPTION $=$ "Describes the structure and content of the data file."
/* FMT file contents start here. */
/* Filename: Version01/JAD_L20_LRS_ELC_ANY_V01.FMT */

```
/* File written: 2017/05/02 15:42:00 */
/* Will code useful Python based letters to describe each object */
/* see http://docs.python.org/library/struct.html for codes */
/* formats will comma separated beginning with "RJW," as key then */
/* {NAME}, {FORMAT}, {Number of dims}, {Size Dim 1}, {Size Dim 2}, ... */
/* where {FORMAT} is the Python code for the type, i.e. I for uint32 */
/* and there are as many Size Dim's as number of dimensions. */
/* Remember to remove the comment markers at either end */
/* RJW, BYTES_PER_RECORD, 12384 */
/* RJW, OBJECTS_PER_RECORD, 32 */
OBJECT = COLUMN
 NAME = SYNC
 DATA TYPE = LSB UNSIGNED_INTEGER
 START_BYTE = 1
 BYTES = 4
 VALID_MINIMUM = 4210242563
 VALID MAXIMUM = 4210242563
 MISSING CONSTANT = 0 /* If no Sync pattern there is no record */
 DESCRIPTION = "JADE Sync Pattern for IDP packets.
 Hex value = 0xFAF33403, Decimal = 4210242563"
/* RJW, SYNC, I, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = DPID_COUNT
 DATA TYPE = LSB UNSIGNED_INTEGER
 START_BYTE = 5
 BYTES = 1
 VALID MINIMUM = 0
 VALID_MAXIMUM = 255
 DESCRIPTION = "DPID Count (Source Sequence Count)
 Count of the number of times this product has been
 generated since the startup (or reset) of the
 generating application (Boot Program or Science
 Program). This count resets to 0 upon entry to
 the modes of BOOT, LVENG, HVENG, LOW_RATE_SCI,
 MCP CAL SCI, HI RATE SCI, LOW RATE S\overline{CI2,}
 MCP_CAL_SCI2, HI_RATE_SCI2.
 Note: starts with 0, increments by 1, eventually
 rolls over at 255."
/* RJW, DPID_COUNT, B, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = COMPRESSION
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START_BYTE = 6
 BYTES = 1
 VALID_MINIMUM = 0
 VALID MAXIMUM = 1
 MISSI\overline{NG_CONSTANT = 255}
 DESCRIPTION = "Lossless Compression Status.
 Indicates whether the data (non-header) segment of
 the IDP packet (IDP Data) was lossless compressed.
 0 = Not Compressed
 1 = Compressed"
/* RJW, COMPRESSION, B, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = IDPLENGTH
```

```
 DATA TYPE = LSB UNSIGNED INTEGER
 START_BYTE = 7
 BYTES = 2
 VALID_MINIMUM = 60 /* Depends on onboard compression, if any. */
 VALID_MAXIMUM = 3128
 MISSING_CONSTANT = 65535
 DESCRIPTION = "IDP Length,
 Byte Length of the IDP packet.
 Uncompressed size for this product should be 3128."
/* RJW, IDPLENGTH, H, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = PACKETID
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START_BYTE = 9
 BYTES = 1
 VALID_MINIMUM = 1 /* 0x01 - Range covers all JADE packets, */
 VALID_MAXIMUM = 163 /* 0xA3 - Even those not in the PDS. */
 MISSIN̄G_CONSTANT = 255
 DESCRIP\overline{T}ION = "Packet ID (DPID), Data Product Identifier
 Low Rate Science - Electron Histogram
 Only one Sensor per packet: Either E060, E180 or E300.
 Each packet is one of the following:
 E060 only, PACKETID = 104 /* 0x68 */
 E180 only, PACKETID = 106 /* 0x6A */
 E300 only, PACKETID = 107 /* 0x6B */"
/* RJW, PACKETID, B, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = FLIGHT_OR_STL
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START BYTE = 10
 BYTES }=
 VALID_MINIMUM = 0
 VALID_MAXIMUM = 2
 MISSING_CONSTANT = 255
 DESCRIPTION
 = "In Flight data, or STL (ground EM tests):
 0 = In flight, from JADE on Juno (via FEI)
 1 = On ground, from STL tests (via FEI)
 2 = On ground, from SwRI tests (not FEI)
 255 = Unknown"
/* RJW, FLIGHT_OR_STL, B, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = PACKET MODE
 DATA_TYPE = LSB_INTEGER
 START BYTE = 11
 BYTES }\mp@subsup{}{}{-}=
 VALID MINIMUM = -2
 VALID-MAXIMUM = 2
 MISSING_CONSTANT = 127
 DESCRIP\overline{T}ION = "Packet Mode, describes type of data telemetry.
 -2 = HSK / Housekeeping Engineering
 -1 = HVE / High Voltage Engineering
 0 = CAL / MCP Calibration Science
 1 = LRS / Low Rate Science
 2 = HRS / High Rate Science
 127 = Unknown
 254 = Wrong - but HSK, see below.
 255 = Wrong - but HVE, see below.
```

```
 (Note, this could also be calculated via PACKETID.)
 If you have 254 or 255 then your code is incorrect,
 check you read a signed byte, rather than unsigned."
/* RJW, PACKET MODE, b, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = PACKET_SPECIES
 DATA TYPE = LSB INTEGER
 START_BYTE = 12
 BYTES = 1
 VALID_MINIMUM = -1
 VALID_MAXIMUM = 9
 MISSING_CONSTANT = 127
 DESCRIPTION = "Packet Species, describes type of plasma data.
 -1 = electrons
 0 = ion species 0, SPO
 1 = ion species 1, SP1
 2 = ion species 2, SP2
 3 = ion species 3, SP3
 4 = ion species 4, SP4
 5 = ion species 5, SP5
 6 = ion species 6, SP6
 7 = ion species 7, SP7
 8 = Not Used
 9 = All ions
 127 = Unknown
 255 = Wrong - but electrons, see below.
 If you have 255 then your code is incorrect,
 check you read a signed byte, rather than unsigned."
/* RJW, PACKET SPECIES, b, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = TIMESTAMP_WHOLE
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START_BYTE = 13
 BYTES = 4
 VALID MINIMUM = 365774402 /* 2011-Aug-05: Juno Launch */
 VALID MAXIMUM = 599573000 /* ~ 2019-Jan-01 */
 MISSING_CONSTANT = 0
 DESCRIP\overline{TION = "Timestamp (Whole Second).}
 Timestamp (whole second) of the data for this packet
 when collection began.
 This is sometimes referred to as Mission Elapsed Time
 (MET) and is Referenced from 2000-001T12:00:00.000 UTC,
 but 1 tick is not exactly 1 S.I. second.
 See UTC object for corrected converted time.
 Note: Spacecraft Clock = TIMESTAMP_WHOLE:TIMESTAMP_SUB"
/* RJW, TIMESTAMP WHOLE, I, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = TIMESTAMP_SUB
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START BYTE = 17
 BYTES - = 2
 VALID_MINIMUM = 0
 VALID_MAXIMUM = 65535
 MISSING_CONSTANT = 0
 DESCRIPTION = "Timestamp (Subsecond).
 Timestamp subsecond of the data for this packet
 when collection began.
```

```
 Unit: Microseconds scaled to 16 bits.
 Note: Spacecraft Clock = TIMESTAMP_WHOLE:TIMESTAMP_SUB"
/* RJW, TIMESTAMP_SUB, H, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = ACCUMULATION_TIME
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START BYTE = 19
 BYTES }=
 VALID MINIMUM = 1
 VALID MAXIMUM = 1800
 MISSING_CONSTANT = 65535
 UNIT = "SECONDS"
 DESCRIPTION = "Accumulation Time.
 Number of seconds over which the data in this product
 was collected (Science Program)."
/* RJW, ACCUMULATION_TIME, H, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = TABLES_VERSION
 DATA_TYPE = PC_REA\overline{L}
 START_BYTE = 21
 BYTES = 4
 VALID_MINIMUM = 0.00
 VALID_MAXIMUM = 99.99
 MISSING_CONSTANT = -99.99
 DESCRIPTION = "Look Up Tables (LUT) version used onboard.
 All tables are combined (compression, sweeping,
 macros, etc.) onboard in to a large image.
 This is the image number, or table version.
 Number should be to 2 decimal places."
/* RJW, TABLES VERSION, f, 1, 1 */
END_OBJECT - = COLUMN
OBJECT = COLUMN
 NAME = FSW_VERSION
 DATA TYPE = PC \overline{REAL}
 STAR\overline{T}_BYTE = 25
 BYTES = 4
 VALID MINIMUM = 0.00
 VALID_MAXIMUM = 9.99
 MISSING_CONSTANT = -99.99
 DESCRIPT̄ION = "Flight Software version used.
 Number should be to 2 decimal places."
/* RJW, FSW VERSION, f, 1, 1 */
END_OBJECT - = COLUMN
OBJECT = COLUMN
 NAME = ACCUM_TRUNCATION
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START BYTE = 29
 BYTES }=
 VALID_MINIMUM = 0
 VALID MAXIMUM = 1
 MISSING_CONSTANT = 255
 DESCRIPTION = "Accumulation Truncation,
 Whether commanded accumulation time ended early.
 0 = Nominal
 1 = Early
 255 = Unknown"
/* RJW, ACCUM_TRUNCATION, B, 1, 1 */
```

```
END OBJECT = COLUMN
OBJECT = COLUMN
 NAME = DATA UNITS /* Science Data Units only, not HSK */
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START BYTE = 30
 BYTES = = 1
 VALID_MINIMUM = 0
 VALID MAXIMUM = 1
 MISSIN̄G_CONSTANT = 255
 DESCRIPTION = "Science Data could be total counts (per accumulation)
 or a rate, normalized to counts per view.
 0 = All counts in the accumulation period (int)
 1 = All counts divided by number of views (float)
 2 = Counts per second (float)
 255 = Not appropriate for this dataset, or Unknown."
/* RJW, DATA_UNITS, B, 1, 1 */
END_OBJECT - = COLUMN
OBJECT = COLUMN
 NAME = COMPRESSION_RATIO
 DATA TYPE = PC REAL /* i.e. a float in little endian format */
 START BYTE = 31
 BYTES = 4
 VALID MINIMUM = 1
 VALID-MAXIMUM = 10
 MISSING_CONSTANT = -1
 DESCRIP\overline{TION = "Data compression ratio of data blob when it was}
 transmitted to Earth:
 Ratio = {Uncompressed size}/{Compressed size}
 This is the compression due to the lossless
 scheme, and does not include any lossy compression
 which may have occurred prior to it, such as the
 32-bit to 8-bit or 16-bit to 8-bit look up tables
 that are often used prior to the lossy compression.
 A value of 1 means there was no lossless data
 compression, i.e. it was turned off, and object
 COMPRESSION should equal 1."
/* RJW, COMPRESSION RATIO, f, 1, 1 */
END_OBJECT - = COLUMN
OBJECT = COLUMN
 NAME = UTC
 DATA TYPE = DATE /* ASCII character string */
 START_BYTE = 35
 BYTES = 21
 VALID MINIMUM = 2011-217T00:00:00.001
 /* SC Clock 365774402:0, JUNO Launch */
 VALID_MAXIMUM = 2019-001T00:00:00.000 /* Expect mission end in 2018 */
 MISSING CONSTANT = 0001-001T00:00:00.000
 DESCRIP\overline{TION = "UTC timestamp, of format yYyy-dddTHH:MM:SS.sSS}
 where yyyy = year, ddd = day of year,
 HH = hour, MM = minute,
 SS.sss = decimal seconds to millisecond resolution.
 Value calculated via SPICE from spacecraft clock time,
 {TIMESTAMP_WHOLE}:{TIMESTAMP_SUB}"
/* RJW, UTC, C, 1, 21 */
END OBJECT = COLUMN
OBJECT = COLUMN
 NAME = LEAP SECOND VERSION
 DATA_TYPE = LSB_ŪNSIGNED_I_INTEGER
 START_BYTE = 56
```

```
 BYTES = 1
 VALID_MINIMUM = 1
 VALID_MAXIMUM = 22 /* Unpredictable, but no more than 2 a year */
 MISSI\overline{NG CONSTANT = 255}
 DESCRIPTION = "The NAIF SPICE kernel for lsk used to generate UTC.
 The lsk (leap second kernels) files are used in time
 conversions and have filenames naifnnnn.tls, where
 is the lsk version number (with leading zeros)."
/* RJW, LEAP_SECOND_VERSION, B, 1, 1 */
END_OBJECT - - = COLUMN
OBJECT = COLUMN
 NAME = SCLKSCET_VERSION
 DATA_TYPE = LSB_INTEGER
 START_BYTE = 57
 BYTES = 2
 VALID MINIMUM = -32767
 VALID_MAXIMUM = 32767
 MISSING_CONSTANT = -32768
 DESCRIPTION = "The NAIF SPICE kernel for sclk used to generate UTC.
 The JUNO sclk files are used to convert the spacecraft
 clock timestamps to UTC time, and all have filenames
 JNO_SCLKSCET.nnnnn.tsc, where nnnnn is the SCLKSCET
 version number (with leading zeros and positive).
 Each kernel has a reconstructed and predicted part for
 it's values, typically any time after the last row of
 the SCLK01_COEFFICIENTS_61999 table is predicted.
 If TIMESTAMP_WHOLE:TIMESTAMP_SUB is in the predicted
```



```
 absolute value would be the version number. If a later
 SCLKSCET kernel version is used the UTC time will
 likely be different.
 If TIMESTAMP_WHOLE:TIMESTAMP_SUB is in the
 reconstructe\overline{d}}\mathrm{ region the number will be positive
 (equal to the version number) and will not vary with
 later kernels.
 e.g. If SCLKSCET_VERSION = -17 then kernel
 JNO_SCLKSCET.00017.tsc was used to convert to UTC, but
 it's a predicted UTC time.
 If SCLKSCET_VERSION = 18 then kernel
 JNO_SCLKSCET.00018.tsc was used to convert to UTC, and
 it'\overline{s}}\mathrm{ a reconstructed UTC time that will not change with
 later SCLKSCET kernel versions.
 Within the PDS archive this value should always be
 positive."
/* RJW, SCLKSCET_VERSION, h, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = ISSUES
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START_BYTE = 59
 BYTES }\mp@subsup{}{}{-}=
 VALID_MINIMUM = 0
 VALID_MAXIMUM = 4294967294
 MISSIN̄G_CONSTANT = 4294967295
 DESCRIPTION = "Issues or potential issues in this data record.
 These are issues that can be identified within the JADE
 packet of data itself without any external information.
 e.g. timing issues due to the MAG time stutter, or any
 voltage pulsing, would not be included as there are no
 indicators to them within this JADE packet.
 [For a more comprehensive list of potential issues
```

```
from internal and external sources please see the
Level 3 data.]
Level 2 issues of this JADE packet are flagged by
individual bits, and several may be hit. If no issues
are flagged then this 4-byte unsigned integer is zero.
A value of 4294967295 is the MISSING CONSTANT and means
that the issue status is currently unknown.
All bits at O implies all is okay as seen by this
packet. If a bit is set to 1 then that bit is flagged,
otherwise it is set to zero and unflagged.
The bits are set as followed, grouped in to seriousness:
Not very serious issues for doing science:
Bit 0 = UTC time is predicted, yet to be finalized.
Bit 1 = Position/Orientation values predicted, yet to
 be finalized. Level 3 (and above) data only.
Bit 2 = TABLES VERSION object was altered on the
 ground to accurately reflect a 'commanded
 parameter update' outside the initial
 per-orbit commands JADE is returning.
 [If changed, the original downlinked
 TABLES_VERSION value can be found by cross-
 referen
 JAD_L20_HSK_ALL_SHK files. Note here the
 PARAM_TA\overline{ABLE_VER value is given as a unsigned}
 integēr of \overline{Hex Major-Middle-Minor, such that}
 a value of }770\mathrm{ decimal is in hex 0x302,
 meaning Table Version 3.02]
Bit 3 = FSW_VERSION 4.00 LRS/CAL Ion Species bug
 fixed on the ground by adjusting
 TIMESTAMP WHOLE, TIMESTAMP SUB, and
 ACCUMULATION_TIME based on cross-referencing
 JADE commanding.
Bit 4 = LRS/CAL Ion Species record with unobserved
 look directions (views) populated using views
 from neighboring record. See Bit 12 for
 uncorrected/unpopulated description.
 (Only possible if ACCUMULATION_TIME = 30.)
Bit 5 = TIMESTAMP WHOLE/SUB adjusted on the ground
 to mitigate any Juno time stutter affects.
 [Other TIMESTAMPs are susceptible to the
 onboard time stutter too, but only the JADE
 packet TIMESTAMP_WHOLE/SUB is tracked here.]
Bit 6 = Currently unused.
Bit 7 = Warning, a leap second occurs during the
 accumulation period.
Data slightly different than expected, but can be used
for science with a little extra coding:
Bit 8 = ACCUM TRUNCATION object flagged.
Bit 9 = Electron (HRS/LRS/CAL) MAG objects are not
 tracked, are either zeros or MISSING_CONSTANT.
 [LRS and CAL did not have MAG obje\overline{cts prior}
 to FSW_VERSION 4.10, therefore those MAG
 object's here are set to MISSING CONSTANT
 when FSW VERSION < 4.10.]
Bit 10 = TIMESTAMP_WHOLE/SUB affected by a Juno
 onboard time stutter, JADE reported timestamp
 is likely 1 whole tick too large.
 [Other TIMESTAMPs are susceptible to the
```

onboard time stutter too, but only the JADE packet TIMESTAMP_WHOLE/SUB is tracked here.]
Bit $11=$ Currently unused.
Bit $12=\mathrm{LRS} / C A L$ Ion Species record potentially has unobserved look directions (spin phase sectors or views) present in the data, meaning the record may not contain data for a full 4pi steradians field-of-view. Unobserved look directions have zero counts per view (or counts per second) in the data, although an observed look direction may also have zero counts if no ions were measured. Therefore there is a potential confusion over zero measured counts or simply unmeasured. e.g. if the spin period is 30.7 seconds, then not all of the 78 spin phase sectors will be sampled in 30 seconds. (Unobserved views are only possible if ACCUMULATION_TIME = 30.) See the JADE SIS for more information.
Bit 13 = At least one anode is blanked. See SIS document for further information.
Bit $14=$ FSW_VERSION 4.00 LRS/CAL Ion Species bug warning:

Not fixed as yet - when fixed it will become bit 3 of ISSUES instead.

Level 2 data only when FSW_VERSION $=4.00$, ACCUMULTION_TIME object is MISSING_CONSTANT. Also, TIMESTAMP_WHOLE:TIMESTAMP_SUB is the end of the packet rāther than the usual start, see TIMESTAMP_WHOLE object for more details. [Only affects data from 2015-089 to 2015-115.]
Bit $15=$ Electron Anodes Reversed.
Level 2 data only when FSW_VERSION < 4.10 and only electron packets. Electron anodes are reversed in order and need to be remapped, however electron Spin Phase data (LRS data) cannot be remapped. See the SIS document for more information about this. [Affects all electron data 2011 to 2015-115.]

Data very different than expected, may not be suitable for science - use with extreme caution.
Bit $16=$ Data is not from flight instrument on Juno, see FLIGHT_OR_STL object.
Bit $17=\mathrm{MCP}$ NOT_AT_COMMĀNDED object flagged. Electr̄on $\mathrm{HRS} / \mathrm{CAL} / \mathrm{HVE}$ packets use all three electron sensors and therefore have three MCP_NOT_AT_COMMANDED values per packet. Setting this flag means at least one of those three mcps is not at its commanded value.
Bit $18=$ Data includes some JADE-E300 sensor data. (Only flagged for HRS, LRS, CAL and HVE data.) E300 has a high voltage power supply issue and reported energy steps may be incorrect. If E 300 is off but still reported in the data product, it may be zeros of fill values.
Bit 19 = Ion packet abruptly truncated.
This packet should not be used. It had an ACCUMULATION_TIME $=1$, ACCUM_TRUNCATION $=1$ and the DATA object is all zeros, with a timestamp that matches an earlier valid packet that was not truncated and has non-zero DATA. e.g. TOF and LOG example in level 2 data at

```
 TIMESTAMP WHOLE of 495879710 (UTC 2015-261).
 Bit 20= Currently unused.
 Bit 21 = Currently unused.
 Bit 22 = Currently unused.
 Bit 23= Currently unused.
 Bit 24= Currently unused.
 Bit 25 = Currently unused.
 Bit 26 = Currently unused.
 Bit 27 = Currently unused.
 Bit 28= Currently unused.
 Bit 29 = Currently unused.
 Bit 30= Currently unused.
 Bit 31 = Reserved for MISSING_CONSTANT use.
 Each bit has a decimal value of 2^{bit number}, and the
 Issues flag is the sum of 2^{flagged bit numbers}.
 For instance, if this ISSUES flag = 131329, then in
 binary that value is 00000000000000100000000100000001
 showing bits 17, 8 and 0 are flagged.
 [If a currently unused bit is set, please check the
 latest LBL file for this product that you can find to
 see if it now has a definition.]"
 OBJECT = BIT_COLUMN
 NAME = ISSUES_BITS
 BIT DATA TYPE = BOOLEAN
 STA\overline{RT_BIT}=1
 BITS = 32
 ITEMS = 32
 ITEM_BITS = 1
 MINIMUM =0
 MAXIMUM = 1
 DESCRIPTION = "See ISSUES column object for description of bits."
 END OBJECT = BIT COLUMN
/* RJW, ISSUES, I, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = MIN_SUBTRACTED_VALUE
 DATA TYPE = PC \overline{REAL /* i.e- a float in little endian format */}
 START BYTE = 63
 BYTES = 4
 VALID_MINIMUM = 0
 VALID_MAXIMUM = 65535
 MISSING_CONSTANT = 4294967295
 UNIT - = "COUNTS/VIEW"
 DESCRIPTION = "Minimum Subtracted Value.
 Minimum value subtracted from every element in
 the array data blob for transmission to Earth.
 (This has already been added back to the DATA.)
 Note: the units are rates (counts per views),
 are floats rather than integers, and are fractions
 of 1/512."
/* RJW, MIN_SUBTRACTED_VALUE, f, 1, 1 */
END_OBJECT = = COLUMN
OBJECT = COLUMN
 NAME = MCP_NOT_AT_COMMANDED
 DATA_TYPE = LSB_UNSİGNEDD_INTEGER
 START_BYTE = 67
 ITEMS = 1
```

```
 ITEM BYTES = 1
 BYTES =}=
 VALID MINIMUM = 0
 VALID MAXIMUM = 1
 MISSING_CONSTANT = 255
 DESCRIPTION = "MCP not at Commanded flag. This denotes whether
 the MCP voltage was reduced during the data collection.
 O = Nominal
 1 = Reduced
 255 = Unknown"
/* RJW, MCP_NOT_AT_COMMANDED, B, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SWEEP TABLE
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START BYTE = 68
 ITEMS = 1
 ITEM BYTES = 1
 BYTES
 VALID_MINIMUM = 0
 VALID MAXIMUM = 2
 MISSI\overline{NG}CONSTANT = 255
 DESCRIPTION = "Which sweep table does the electron sensor have, 0-2.
 (See PACKETID or ESENSOR object for which sensor.)"
/* RJW, SWEEP TABLE, B, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = MCP_COMMANDED_VALUE
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START BYTE = 69
 ITEMS = 1
 ITEM BYTES = 2
 BYTES =
 VALID MINIMUM = 0
 VALID MAXIMUM = 4095 /* 12-bits */
 MISSING_CONSTANT = 65535
 DESCRIP\overline{TION = "Electron MCP Commanded raw DAC value.}
 (See PACKETID or ESENSOR object for which sensor.)"
/* RJW, MCP COMMANDED VALUE, H, 1, 1 */
END_OBJECT = COLUMN
/* The following object could be treated as a 1-dimensional column of data, */
/* however we will treat it using PDS containers that allows for 1-, 2-, or */
/* 3-dimensional data. The *.DAT file is the same for both, so we give the */
/* 1-dimension non-container description here (in comments) in case it is */
/* useful to others for comparison. */
/* */
/*OBJECT = COLUMN */
/* NAME = DATA */
/* DATA_TYPE = PC_REAL */
 /* i.e. a float in little endian format */
/* START_BYTE = 71 */
/* ITEMS = 3072 */
/* ITEM BYTES = 4 */
/* BYTES = 12288 */
/* VALID MINIMUM = 0 */
/* VALID_MAXIMUM = 65535 */
/* MISSING CONSTANT = 4294967295 */
/* UNIT = "COUNTS/VIEW" * /
/* DESCRIPTION = "DATA: Counts */
/* 64 Energies x 48 Electron Spin Phase Sectors. */
```



```
where:
 SP_sector (electron spin phase sector) is 0 to
 4}7\mathrm{ (rounded down to an integer).
 s_phase is spin phase, 0 to 360 degrees.
 s_id is the sensor in question, either 60, 180,
 or 300.
 a_id is one of the 16 anodes of the given sensor,
 0-15. (This is anode, not the look direction.)
 7.5 degrees is the width of one anode.
 Note the data units are rates (counts per views),
 are floats rather than integers, and are fractions
 of 1/512.
 Note 2: Rate is independent of accumulation time.
 Note 3: If the data is from FSW 4.00 (April 2015
 only, when anodes were reversed - see ISSUES
 object) then the SP_sector calculation was done
 incorrectly. If you must use this FSW4.00 data,
 sum over electron spin phase sector to reduce the
 data to energy by time and use that."
/* RJW, DATA, f, 2, 64, 48 */
 END OBJECT = COLUMN
 END_OBJECT = CONTAINER
END_OBJECT = CONTAINER
OBJECT = COLUMN
 NAME = MAG_TIMESTAMP_WHOLE
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START_BYTE = 12359
 BYTES = 4
 VALID_MINIMUM = 365774402 /* 2011-Aug-05: Juno Launch */
 VALID_MAXIMUM = 599573000 /* ~ 2019-Jan-01 */
 MISSIN}G_CONSTANT = 0
 DESCRIPTION = "MAG_TIMESTAMP_WHOLE
 Whole-second timestamp of last received MAG vector
 before data collection start.
 Referenced from 12:00UTC 2000/01/01.
 [May be affected by a Juno Time Stutter.]"
/* RJW, MAG_TIMESTAMP_WHOLE, I, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = MAG_TIMESTAMP_SUB
 DATA_TYPE = LSB_UNSIGNED_\overline{INTEGER}
 START_BYTE = 123杵
 BYTES = 2
 VALID_MINIMUM = 0
 VALID_MAXIMUM = 65535
 MISSINGGCONSTANT = 65535
 DESCRIPTION = "MAG_TIMESTAMP_SUB
 Sub-second timestamp of last received MAG vector
 before data collection start.
 A value of 65535 could be real or a MISSING_CONSTANT,
 however it is MISSING_CONSTANT only if
 MAG_TIMESTAMP WHOLE =- 0, e.g. WHOLE and SUB must both
 be real or both be MISSING_CONSTANT.
 Unit: Microseconds scaled to 16 bits.
 [May be affected by a Juno Time Stutter.]"
/* RJW, MAG_TIMESTAMP_SUB, H, 1, 1 */
END_OBJECT - = COLUMN
OBJECT = COLUMN
```



The MAG COUNT VALID and MAG COUNT INVALID objects can help distinguish meaning 1 from 2.]

1) JADE never received a mag vector at all. (So initialized to 0s.)
e.g. MAG_COUNT_VALID $=0$ for this record.
2) A 25 s timeout $\bar{h}$ as expired without JADE receiving a MAG vector over a threshold magnitude.
[Meanings 3 and 4 require MAG_TIMESTAMP_WHOLE > 0]
3) The threshold parameter was set to $0^{-}$nT. (Some early HVCO1 check-out data may have this.)
4) The broadcast message was corrupted and the magnitude and components mismatched."
/* RJW, MAG_VECTOR, i, 1, 3 */
END_OBJECT $=$ COLUMN
OBJECT $=$ COLUMN
NAME $\quad=$ BACKGROUND COUNTS
DATA_TYPE $=$ LSB_UNSIGNED_INTEGER
START_BYTE $=123 \overline{7} 9$
BYTES $=4$
VALID_MINIMUM $=0$
VALID MAXIMUM $=4294967294$
MISSING CONSTANT $=4294967295$ /* 4-byte limit, rolls over */
UNIT
= "COUNTS"
DESCRIPTION $\quad=\quad$ Background counts (NOT a background rate). The background counter for this record's electron sensor (see ESENSOR object to know which sensor).

This is a total count, not a rate.
This is a 16 -bit counter over 64 energies over the accumulation time (up to 1800 seconds), which means it could roll over the 4-byte word. i.e. $4294967296=0$ However this is unlikely, and even if so, should be obvious from the visible background in object DATA."
/* RJW, BACKGROUND_COUNTS, I, 1, 1 */
END_OBJECT $\quad-\quad$ COLUMN
OBJECT $=$ COLUMN
NAME $\quad=$ ESENSOR
DATA_TYPE = LSB_UNSIGNED_INTEGER
START BYTE $=123 \overline{8} 3$
BYTES $=2$
VALID_MINIMUM $=060$
VALID ${ }^{-}$MAXIMUM $=300$
MISSING_CONSTANT $=65535$
DESCRIPTION $=$ "ESENSOR - which one of the three electron sensors is this record for. Values can only be 60 , 180 or 300 for electron sensor E060, E180 or E300 respectively. Note: each sensor also has a different PACKETID."
/* RJW, ESENSOR, H, 1, 1 */
END OBJECT = COLUMN


END_OBJECT = TABLE
END ${ }^{-}$

## B. 2 Sample LBL file for JAD_L20_LRS_ION_ANY_*

```
PDS_VERSION_ID = PDS3
DATA}_SET_ID ' = "JNO-J/SW-JAD-2-UNCALIBRATED-V1.0"
/* Input file : JAD L20 LRS ION ANY 2015090 V01.DAT */
/* File written: 201\overline{7}/05/04 233:0\overline{3:56}
STANDARD_DATA_PRODUCT_ID = "JAD_L20_LRS_ION_ANY"
PRODUCT_ID - - "JAD_L20_LLRS_ION_ANY_2015090"
PRODUCT_VERSION_ID = "01"
PRODUCT TYPE = "DATA"
PRODUCT_CREATION_TIME = 2017-125T05:03:56 /* UTC 2017-05-05 */
PROCESSING_LEVEL_ID = "2"
RECORD_TYPE = FIXED_LENGTH
RECORD BYTES = 10054
FILE_R\overline{ECORDS = 6}
START TIME = 2015-090T00:40:45.004 /* 2015-03-31 */
STOP_\overline{TME = 2015-090T18:53:01.004 /* 2015-03-31 */}
SPACECRAFT_CLOCK_START_COUNT = "481034575.64547" /* WHOLE.SUB (SUB 0-65535)*/
SPACECRAFT_CLOCK_STOP_COUNT = "481100112.00000" /* Rounded nearest */
/* JADE rec̄ords h
/* of last record, I've added the Accumulation time value to both */
/* UTC seconds and SPACECRAFT CLOCK, - although those are not equal. */
/* Hence the SPACECRAFT_CLOCK_STOP_COUNT is rounded for now. */
INSTRUMENT HOST NAME = "JUNO"
INSTRUMENT_HOST_ID = "JNO"
TARGET NAME - = {"JUPITER"}
INSTRUMENT_NAME = "JOVIAN AURORAL PLASMA DISTRIBUTIONS EXPERIMENT"
INSTRUMENT_ID = "JAD" /* JADE */
DESCRIPTION = "This is the required LBL file to accompany DAT files of the
 data product JAD_L20_LRS_ION_ANY."
MD5_CHECKSUM = "ee29f7aab018fdbaeb3f9f13c3fe4d79"
NOTE = "See the PDS JADE SIS Document for more details on the formats."
^TABLE = "JAD_L20_LRS_ION_ANY_2015090_V01.DAT"
OBJECT = TABL\overline{E}
 INTERCHANGE_FORMAT = "BINARY"
 ROWS = 6
 COLUMNS = 25
 ROW_BYTES = 10054
 DES\overline{CRIPTION = "Describes the structure and content of the data file."}
/* FMT file contents start here. */
/* Filename: Version01/JAD_L20_LRS_ION_ANY_V01.FMT */
/* File written: 2017/05/02 15:42:00 */
/* Will code useful Python based letters to describe each object */
/* see http://docs.python.org/library/struct.html for codes */
/* formats will comma separated beginning with "RJW," as key then */
/* {NAME}, {FORMAT}, {Number of dims}, {Size Dim 1}, {Size Dim 2}, ... */
/* where {FORMAT} is the Python code for the type, i.e. I for uint32 */
/* and there are as many Size Dim's as number of dimensions. */
/* Remember to remove the comment markers at either end */
/* RJW, BYTES PER RECORD, 10054 */
/* RJW, OBJECTS_PER_RECORD, 25 */
```

```
OBJECT = COLUMN
 NAME = SYNC
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 STAR\overline{T}}\mathrm{ BYTE = 1
 BYTES = 4
 VALID MINIMUM = 4210242563
 VALID MAXIMUM = 4210242563
 MISSINGG_CONSTANT = 0 /* If no Sync pattern there is no record */
 DESCRIPTION = "JADE Sync Pattern for IDP packets.
 Hex value = 0xFAF33403, Decimal = 4210242563"
/* RJW, SYNC, I, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = DPID COUNT
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START BYTE = 5
 BYTES - = 1
 VALID MINIMUM = 0
 VALID MAXIMUM = 255
 DESCRIPTION = "DPID Count (Source Sequence Count)
 Count of the number of times this product has been
 generated since the startup (or reset) of the
 generating application (Boot Program or Science
 Program). This count resets to 0 upon entry to
 the modes of BOOT, LVENG, HVENG, LOW_RATE_SCI,
 MCP_CAL_SCI, HI_RATE_SCI, LOW_RATE_SCI2,
 MCP_CAL_SCI2, HI__RATE_SCI2.
 Not\overline{e: starts with}0, \overline{increments by 1, eventually}
 rolls over at 255."
/* RJW, DPID COUNT, B, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = COMPRESSION
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START_BYTE = 6
 BYTES = 1
 VALID MINIMUM = 0
 VALID_MAXIMUM = 1
 MISSING_CONSTANT = 255
 DESCRIP\overline{TION = "Lossless Compression Status.}
 Indicates whether the data (non-header) segment of
 the IDP packet (IDP Data) was lossless compressed.
 0 = Not Compressed
 1 = Compressed"
/* RJW, COMPRESSION, B, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = IDPLENGTH
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 STAR\overline{T}
 BYTES - = 2
 VALID_MINIMUM = 36 /* Depends on onboard compression, if any. */
 VALID MAXIMUM = 2528
 MISSING_CONSTANT = 65535
 DESCRIPTION = "IDP Length,
 Byte Length of the IDP packet.
 Uncompressed size for this product should be 2528."
/* RJW, IDPLENGTH, H, 1, 1 */
END OBJECT = COLUMN
```

```
OBJECT = COLUMN
 NAME = PACKETID
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 STAR\overline{T}BYTE = 9
 BYTES = 1
 VALID_MINIMUM = 1 /* 0x01 - Range covers all JADE packets, */
 VALID MAXIMUM = 163 /* 0xA3 - Even those not in the PDS. */
 MISSING_CONSTANT = 255
 DESCRIPTION = "Packet ID (DPID), Data Product Identifier
 Low Rate Science - Ion Species Histogram
 Each packet is one of the following ion species:
 SPO, species 0, PACKETID = 96 /* 0x60 */
 SP1, species 1, PACKETID = 97 /* 0x61 */
 SP2, species 2, PACKETID = 98 /* 0x62 */
 SP3, species 3, PACKETID = 99 /* 0x63 */
 SP4, species 4, PACKETID = 100 /* 0x64 */
 SP5, species 5, PACKETID = 101 /* 0x65 */
 SP6, species 6, PACKETID = 102 /* 0x66 */
 SP7, species 7, PACKETID = 103 /* 0x67 */"
/* RJW, PACKETID, B, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = FLIGHT_OR_STL
 DATA TYPE = LSB UNSIGNED_INTEGER
 START_BYTE = 10
 BYTES = 1
 VALID MINIMUM = 0
 VALID_MAXIMUM = 2
 MISSING_CONSTANT = 255
 DESCRIPTION = "In Flight data, or STL (ground EM tests):
 0 = In flight, from JADE on Juno (via FEI)
 1 = On ground, from STL tests (via FEI)
 2 = On ground, from SwRI tests (not FEI)
 255 = Unknown"
/* RJW, FLIGHT_OR_STL, B, 1, 1 * /
END_OBJECT - - = COLUMN
OBJECT = COLUMN
 NAME = PACKET_MODE
 DATA_TYPE = LSB_INTEGER
 STAR\overline{T}}\mathrm{ BYTE = 11
 BYTES = 1
 VALID MINIMUM = -2
 VALID MAXIMUM = 2
 MISSI\overline{NG_CONSTANT = 127}
 DESCRIPTION = "Packet Mode, describes type of data telemetry.
 -2 = HSK / Housekeeping Engineering
 -1 = HVE / High Voltage Engineering
 0 = CAL / MCP Calibration Science
 1 = LRS / Low Rate Science
 2 = HRS / High Rate Science
 127 = Unknown
 254 = Wrong - but HSK, see below.
 255 = Wrong - but HVE, see below.
 (Note, this could also be calculated via PACKETID.)
 If you have 254 or 255 then your code is incorrect,
 check you read a signed byte, rather than unsigned."
/* RJW, PACKET_MODE, b, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = PACKET_SPECIES
```

```
 DATA TYPE = LSB INTEGER
 START_BYTE = 12
 BYTES = = 1
 VALID MINIMUM = -1
 VALID_MAXIMUM = 9
 MISSING_CONSTANT = 127
 DESCRIP\overline{T}ION = "Packet Species, describes type of plasma data.
 -1 = electrons
 0 = ion species 0, SPO
 1 = ion species 1, SP1
 2 = ion species 2, SP2
 3 = ion species 3, SP3
 4 = ion species 4, SP4
 5 = ion species 5, SP5
 6 = ion species 6, SP6
 7 = ion species 7, SP7
 8 = Not Used
 9 = All ions
 127 = Unknown
 255 = Wrong - but electrons, see below.
 If you have 255 then your code is incorrect,
 check you read a signed byte, rather than unsigned."
/* RJW, PACKET SPECIES, b, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = TIMESTAMP_WHOLE
 DATA_TYPE = LSB_UNSIGNEED_INTEGER
 START_BYTE = 13
 BYTES = 4
 VALID_MINIMUM = 365774402 /* 2011-Aug-05: Juno Launch */
 VALID_MAXIMUM = 599573000 /* ~ 2019-Jan-01 */
 MISSIN̄G_CONSTANT = 0
 DESCRIP\overline{TION = "Timestamp (Whole Second).}
 Timestamp (whole second) of the data for this packet
 when collection began (for FSW 4.10 onwards).
 For FSW 4.00 (April 2015 only) this is the time the
 collection ended, rather than started, due to the LRS,
 Ion Species Bug which was fixed in FSW 4.10.
 This is sometimes referred to as Mission Elapsed Time
 (MET) and is Referenced from 2000-001T12:00:00.000 UTC,
 but l tick is not exactly 1 S.I. second.
 See UTC object for corrected converted time.
 Note: Spacecraft Clock = TIMESTAMP_WHOLE:TIMESTAMP_SUB"
/* RJW, TIMESTAMP WHOLE, I, 1, 1 */
END_OBJECT - = COLUMN
OBJECT = COLUMN
 NAME = TIMESTAMP_SUB
 DATA TYPE = LSB UNSIGNNED INTEGER
 START_BYTE = 17
 BYTES = 2
 VALID_MINIMUM = 0
 VALID_MAXIMUM = 65535
 MISSING_CONSTANT = 0
 DESCRIPTIION = "Timestamp (Subsecond).
 Timestamp subsecond of the data for this packet
 when collection began (for FSW 4.10 onwards).
 For FSW 4.00 (April 2015 only) this is the time the
 collection ended, rather than started, due to the LRS,
 Ion Species Bug which was fixed in FSW 4.10.
 Unit: Microseconds scaled to 16 bits.
 Note: Spacecraft Clock = TIMESTAMP_WHOLE:TIMESTAMP_SUB"
```

```
/* RJW, TIMESTAMP SUB, H, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = ACCUMULATION_TIME
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START BYTE = 19
 BYTES = 2
 VALID MINIMUM = 1
 VALID-MAXIMUM = 1800
 MISSING_CONSTANT = 65535
 UNIT
 = "SECONDS"
 DESCRIPTION = "Accumulation Time.
 Number of seconds over which the data in this product
 was collected (Science Program).
 For FSW 4.00 (April 2015 only), Low Rate Science Ion
 Species data had a bug where the value returned for
 accumulation time was not relevant, and has been
 replaced with a MISSING_CONSTANT value on the ground.
 Use difference between time stamps to estimate
 accumulation time."
/* RJW, ACCUMULATION TIME, H, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = TABLES_VERSION
 DATA_TYPE = PC_REAL
 START BYTE = 21
 BYTES - = 4
 VALID_MINIMUM = 0.00
 VALID_MAXIMUM = 99.99
 MISSIN
 DESCRIPTION = "Look Up Tables (LUT) version used onboard.
 All tables are combined (compression, sweeping,
 macros, etc.) onboard in to a large image.
 This is the image number, or table version.
 Number should be to 2 decimal places."
/* RJW, TABLES_VERSION, f, 1, 1 */
END OBJECT - = COLUMN
OBJECT = COLUMN
 NAME = FSW VERSION
 DATA_TYPE = PC_\overline{REAL}
 START_BYTE = 25
 BYTES - = 4
 VALID_MINIMUM = 0.00
 VALID MAXIMUM = 9.99
 MISSI\overline{NG_CONSTANT = -99.99}
 DESCRIPTION = "Flight Software version used.
 Number should be to 2 decimal places."
/* RJW, FSW_VERSION, f, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = ACCUM TRUNCATION
 DATA_TYPE = LSB_UNNSIGNED_INTEGER
 START_BYTE = 29
 BYTES = 1
 VALID_MINIMUM = 0
 VALID_MAXIMUM = 1
 MISSI\overline{N}G_CONSTANT = 255
 DESCRIPTION = "Accumulation Truncation,
 Whether commanded accumulation time ended early.
```

```
 0 = Nominal
 1 = Early
 255 = Unknown"
/* RJW, ACCUM_TRUNCATION, B, 1, 1 */
END_OBJECT
 = COLUMN
OBJECT = COLUMN
 NAME = DATA_UNITS /* Science Data Units only, not HSK */
 DATA_TYPE = LSB_UNNSIGNED_INTEGER
 START_BYTE = 30
 BYTES = 1
 VALID MINIMUM = 0
 VALID_MAXIMUM = 1
 MISSING_CONSTANT = 255
 DESCRIPTION = "Science Data could be total counts (per accumulation)
 or a rate, normalized to counts per view.
 0 = All counts in the accumulation period (int)
 1 = All counts divided by number of views (float)
 2 = Counts per second (float)
 255 = Not appropriate for this dataset, or Unknown."
/* RJW, DATA_UNITS, B, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = COMPRESSION RATIO
 DATA_TYPE = PC_REAL /* i}.e. a float in little endian format */
 START_BYTE = 31
 BYTES }
 VALID_MINIMUM = 1
 VALID_MAXIMUM = 10
 MISSIN̄G_CONSTANT = -1
 DESCRIP\overline{TION = "Data compression ratio of data blob when it was}
 transmitted to Earth:
 Ratio = {Uncompressed size}/{Compressed size}
 This is the compression due to the lossless
 scheme, and does not include any lossy compression
 which may have occurred prior to it, such as the
 32-bit to 8-bit or 16-bit to 8-bit look up tables
 that are often used prior to the lossy compression.
 A value of 1 means there was no lossless data
 compression, i.e. it was turned off, and object
 COMPRESSION should equal 1."
/* RJW, COMPRESSION_RATIO, f, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = UTC
 DATA_TYPE = DATE /* ASCII character string */
 START_BYTE = 35
 BYTES }\mp@subsup{}{}{-}=2
 VALID_MINIMUM = 2011-217T00:00:00.001
 /* SC Clock 365774402:0, JUNO Launch */
 VALID_MAXIMUM = 2019-001T00:00:00.000 /* Expect mission end in 2018 */
 MISSIN̄G_CONSTANT = 0001-001T00:00:00.000
 DESCRIP\overline{TION = "UTC timestamp, of format yYYy-dddTHH:MM:SS.sss}
 where yyyy = year, ddd = day of year,
 HH = hour, MM = minute,
 SS.sss = decimal seconds to millisecond resolution.
 Value calculated via SPICE from spacecraft clock time,
 {TIMESTAMP_WHOLE}:{TIMESTAMP_SUB}"
/* RJW, UTC, C, 1, 21 */
END_OBJECT = COLUMN
```


e.g. timing issues due to the MAG time stutter, or any voltage pulsing, would not be included as there are no indicators to them within this JADE packet.
[For a more comprehensive list of potential issues from internal and external sources please see the Level 3 data.]

Level 2 issues of this JADE packet are flagged by individual bits, and several may be hit. If no issues are flagged then this 4-byte unsigned integer is zero. A value of 4294967295 is the MISSING_CONSTANT and means that the issue status is currently unknown.

All bits at 0 implies all is okay as seen by this packet. If a bit is set to 1 then that bit is flagged, otherwise it is set to zero and unflagged.

The bits are set as followed, grouped in to seriousness:
Not very serious issues for doing science:
Bit $0=$ UTC time is predicted, yet to be finalized.
Bit 1 = Position/Orientation values predicted, yet to be finalized. Level 3 (and above) data only.
Bit $2=$ TABLES_VERSION object was altered on the ground to accurately reflect a 'commanded parameter update' outside the initial per-orbit commands JADE is returning.
[If changed, the original downlinked TABLES_VERSION value can be found by crossreferencing the PARAM_TABLE_VER object in the JAD_L20_HSK_ALL_SHK fīles. - Note here the PARAM_TĀBLE_VER value is given as a unsigned integer of Hex Major-Middle-Minor, such that a value of 770 decimal is in hex $0 x 302$, meaning Table Version 3.02 ]
Bit 3 = FSW_VERSION 4.00 LRS/CAL Ion Species bug fixè on the ground by adjusting TIMESTAMP_WHOLE, TIMESTAMP_SUB, and ACCUMULATİON TIME based on cross-referencing JADE commanding.
Bit $4=L R S / C A L$ Ion Species record with unobserved look directions (views) populated using views from neighboring record. See Bit 12 for uncorrected/unpopulated description. (Only possible if ACCUMULATION_TIME = 30.) Bit $5=$ TIMESTAMP_WHOLE/SUB adjusted on the ground to mitigate any Juno time stutter affects. [Other TIMESTAMPs are susceptible to the onboard time stutter too, but only the JADE packet TIMESTAMP_WHOLE/SUB is tracked here.]
Bit $\quad 6=$ Currently ūnused.
Bit 7 = Warning, a leap second occurs during the accumulation period.

Data slightly different than expected, but can be used for science with a little extra coding:
Bit $8=$ ACCUM_TRUNCATION object flagged. Bit $9=$ Electřron (HRS/LRS/CAL) MAG objects are not tracked, are either zeros or MISSING_CONSTANT. [LRS and CAL did not have MAG objē̄ts prior to FSW_VERSION 4.10, therefore those MAG objects here are set to MISSING_CONSTANT when FSW_VERSION < 4.10.]

```
Bit 10 = TIMESTAMP WHOLE/SUB affected by a Juno
 onboard time stutter, JADE reported timestamp
 is likely 1 whole tick too large.
 [Other TIMESTAMPs are susceptible to the
 onboard time stutter too, but only the JADE
 packet TIMESTAMP_WHOLE/SUB is tracked here.]
Bit 11 = Currently unused.
Bit 12 = LRS/CAL Ion Species record potentially has
 unobserved look directions (spin phase sectors
 or views) present in the data, meaning the
 record may not contain data for a full 4pi
 steradians field-of-view.
 Unobserved look directions have zero counts
 per view (or counts per second) in the data,
 although an observed look direction may also
 have zero counts if no ions were measured.
 Therefore there is a potential confusion over
 zero measured counts or simply unmeasured.
 e.g. if the spin period is 30.7 seconds, then
 not all of the 78 spin phase sectors will be
 sampled in 30 seconds. (Unobserved views are
 only possible if ACCUMULATION_TIME = 30.)
 See the JADE SIS for more information.
Bit 13 = At least one anode is blanked.
 See SIS document for further information.
Bit 14 = FSW_VERSION 4.00 LRS/CAL Ion Species bug
 warning:
 Not fixed as yet - when fixed it will
 become bit 3 of ISSUES instead.
 Level 2 data only when FSW_VERSION = 4.00,
 ACCUMULTION TIME object is MİSSING CONSTANT.
 Also, TIMEST}AMP_WHOLE:TIMESTAMP_SUB is the end
 of the packet rather than the usual start,
 see TIMESTAMP_WHOLE object for more details.
 [Only affects data from 2015-089 to 2015-115.]
Bit 15 = Electron Anodes Reversed.
 Level 2 data only when FSW_VERSION < 4.10
 and only electron packets. Electron anodes
 are reversed in order and need to be
 remapped, however electron Spin Phase data
 (LRS data) cannot be remapped. See the SIS
 document for more information about this.
 [Affects all electron data 2011 to 2015-115.]
 Data very different than expected, may not be suitable
 for science - use with extreme caution.
 Bit 16 = Data is not from flight instrument on Juno,
 see FLIGHT OR STL object.
 Bit 17 = MCP_NOT_AT_COMMMA
 Electron HRS/CAL/HVE packets use all three
 electron sensors and therefore have three
 MCP_NOT_AT_COMMANDED values per packet.
 Set\overline{t}ing}\mp@subsup{}{}{-}\mathrm{ thís flag means at least one of those
 three mcps is not at its commanded value.
Bit 18 = Data includes some JADE-E300 sensor data.
 (Only flagged for HRS, LRS, CAL and HVE data.)
 E300 has a high voltage power supply issue
 and reported energy steps may be incorrect.
 If E300 is off but still reported in the data
 product, it may be zeros of fill values.
Bit 19 = Ion packet abruptly truncated.
 This packet should not be used. It had an
 ACCUMULATION_TIME = 1, ACCUM_TRUNCATION = 1
```

```
 and the DATA object is all zeros, with a
 timestamp that matches an earlier valid packet
 that was not truncated and has non-zero DATA.
 e.g. TOF and LOG example in level 2 data at
 TIMESTAMP_WHOLE of 495879710 (UTC 2015-261).
 Bit 20= Currently unused.
 Bit 21 = Currently unused.
 Bit 22 = Currently unused.
 Bit 23 = Currently unused.
 Bit 24= Currently unused.
 Bit 25 = Currently unused.
 Bit 26 = Currently unused.
 Bit 27 = Currently unused.
 Bit 28= Currently unused.
 Bit 29= Currently unused.
 Bit 30 = Currently unused.
 Bit 31 = Reserved for MISSING_CONSTANT use.
 Each bit has a decimal value of 2^{bit number}, and the
 Issues flag is the sum of 2^{flagged bit numbers}.
 For instance, if this ISSUES flag = 131329, then in
 binary that value is 00000000000000100000000100000001
 showing bits 17, 8 and 0 are flagged.
 [If a currently unused bit is set, please check the
 latest LBL file for this product that you can find to
 see if it now has a definition.]"
 OBJECT = BIT_COLUMN
 NAME = ISSUES BITS
 BIT DATA TYPE = BOOLEAN
 START_BIT = 1
 BITS = 32
 ITEMS = 32
 ITEM BITS = 1
 MINIM}UM = 0
 MAXIMUM = 1
 DESCRIPTION = "See ISSUES column object for description of bits."
 END OBJECT = BIT COLUMN
/* RJW, ISSUES, I, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = MIN_SUBTRACTED VALUE
 DATA_TYPE = PC_REAL /* i.e. a float in little endian format */
 START BYTE = 63
 BYTES = 4
 VALID MINIMUM = 0
 VALID MAXIMUM = 65535
 MISSIN
 UNIT = "COUNTS/VIEW"
 DESCRIPTION = "Minimum Subtracted Value.
 Minimum value subtracted from every element in
 the array data blob for transmission to Earth.
 (This has already been added back to the DATA.)
 Note: the units are rates (counts per views),
 are floats rather than integers, and are fractions
 of 1/512."
/* RJW, MIN_SUBTRACTED_VALUE, f, 1, 1 */
END OBJECT = COLUMN
OBJECT = COLUMN
```

```
 NAME = MCP_NOT_AT_COMMANDED
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START_BYTE = 67
 ITEMS = 1
 ITEM_BYTES = 1
 BYTE\overline{S}}=
 VALID_MINIMUM = 0
 VALID MAXIMUM = 1
 MISSING_CONSTANT = 255
 DESCRIPTION = "MCP not at Commanded flag. This denotes whether
 the MCP voltage was reduced during the data collection.
 O = Nominal
 1 = Reduced
 255 = Unknown"
/* RJW, MCP_NOT_AT_COMMANDED, B, 1, 1 */
END_OBJECT - - - = COLUMN
OBJECT = COLUMN
 NAME = SWEEP_TABLE
 DATA TYPE = LSB_UNSIGNED INTEGER
 START BYTE = 68
 ITEMS = 1
 ITEM_BYTES = 1
 BYTES = 1
 VALID MINIMUM = 0
 VALID-MAXIMUM = 3
 MISSING_CONSTANT = 255
 DESCRIP\overline{TION = "Which sweep table does the ion sensor have, 0-3."}
/* RJW, SWEEP_TABLE, B, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = MCP_COMMANDED_VALUE
 DATA_TYPE = LSB_UNSIGNED_\overline{INTEGER}
 START_BYTE = 69
 ITEMS = 1
 ITEM BYTES = 2
 BYTES = 2
 VALID MINIMUM = 0
 VALID_MAXIMUM = 4095 /* 12-bits */
 MISSING_CONSTANT = 65535
 DESCRIPT̈ION = "Ion MCPs Commanded raw DAC value."
/* RJW, MCP_COMMANDED_VALUE, H, 1, 1 */
END_OBJECT = COLUMN
/* The following object could be treated as a 1-dimensional column of data, */
/* however we will treat it using PDS containers that allows for 1-, 2-, or */
/* 3-dimensional data. The *.DAT file is the same for both, so we give the */
/* 1-dimension non-container description here (in comments) in case it is */
/* useful to others for comparison. */
/* */
/*OBJECT = COLUMN */
/* NAME = DATA */
/* DATA_TYPE = PC_REAL */
/* i.e. a float in little endian format */
/* START_BYTE = 71 */
/* ITEMS }\mp@subsup{}{}{-}=2496 *
/* ITEM BYTES = 4 */
/* BYTE\overline{S = 9984 */}
/* VALID MINIMUM = 0 */
/* VALID MAXIMUM = 65535 */
/* MISSINGGCONSTANT = 4294967295 */
/* UNIT = "COUNTS/VIEW" */
```




003-015	1	5	16	31	46	61	72	76
015-027	1	5	16	31	46	61	72	76
027-039	1	6	17	32	47	62	72	76
039-051	1	6	17	32	47	62	72	76
051-063	1	6	18	33	48	63	72	76
063-075	1	6	18	33	48	63	72	76
075-087	2	7	19	34	49	64	73	77
087-099	2	7	19	34	49	64	73	77
099-111	2	7	20	35	50	65	73	77
111-123	2	7	20	35	50	65	73	77
123-135	2	7	21	36	51	66	74	77
135-147	2	7	21	36	51	66	74	77
147-159	2	8	22	37	52	67	74	77
159-171	2	8	22	37	52	67	74	77
171-183	2	8	23	38	53	68	74	77
183-195	2	8	23	38	53	68	74	77

[The onboard software triggers on the spin phase of the s/c +X axis, but JADE-I is 195 degrees further around, so the Ion Start Spin Phase starts at 195.]

The meaning of each species is described in the JADE instrument paper.
Note the data units are rates (counts per views), are floats rather than integers, and are fractions of 1/512.
Note 2: Rate is independent of accumulation time."
/* RJW, DATA, f, 2, 32, 78 */
END_OBJECT = COLUMN
END O $\bar{B} J E C T=$ CONTAINER
END OBBJECT = CONTAINER
/* FMT file contents end here. */
END_OBJECT = TABLE
END

## Appendix C Level 2 data record formats

This section describes the format of the Level 2 data files.
While Section 6.2.8 ("Level 2 data files") cover this to some level, the real description is within the FMT files for each product, which themselves are embedded within the LBL files.

For details of the (very long) FMT files, please refer to the previous section (Appendix B) about label files, and the FMT files are quoted in full between these two lines within those examples:

```
/* FMT file contents start here. */
[FMT file in here]
/* FMT file contents end here.
*/
```


## Appendix D Level 3 data record formats

This section describes the format of the Level 3 data files.

While Section 6.2.9 ("Level 3 data files") cover this to some level, the real description is within the FMT files for each product. Here are two examples in full, but see the FMT files in the LABEL directory for specifics.

Font below is Courier New (to equally space characters) and size 9 in order to get 78 characters to a line. This matches the PDS files that are 80 characters to a line, but the last two are $\operatorname{rr} \ln$.

## D. 1 Sample FMT file for JAD_L30_HRS_ELC_ALL_CNT_V02.FMT

```
/* Filename: Version02/JAD_L30_HRS ELC_ALL_CNT V02.FMT
/* File written: 2018/01/2\overline{4}}14\mathrm{ 1408:\}
/* Will code useful Python based letters to describe each object */
*/
/* see http://docs.python.org/library/struct.html for codes */
/* formats will comma separated beginning with "RJW," as key then */
/* {NAME}, {FORMAT}, {Number of dims}, {Size Dim 1}, {Size Dim 2}, ... */
/* where {FORMAT} is the Python code for the type, i.e. I for uint32 */
/* and there are as many Size Dim's as number of dimensions. */
/* Remember to remove the comment markers at either end */
/* RJW, BYTES PER RECORD, 160042 */
/* RJW, OBJECTTS_PERR_RECORD, 48 */
OBJECT = COLUMN
 NAME = DIMO_UTC
 DATA_TYPE = DATE /* ASCII character string */
 START BYTE = 1
 BYTES }\mp@subsup{}{}{-}=2
 VALID_MINIMUM = 2011-217T00:00:00.001
 /* SC Clock 365774402:0, JUNO Launch */
 VALID_MAXIMUM = 2019-001T00:00:00.000 /* Expect mission end in 2018 */
 MISSING_CONSTANT = 0001-001T00:00:00.000
 DESCRIPTION = "UTC timestamp at center (not start) of record.
 Format is YYYy-dddTHH:MM:SS.sss
 where yyyy = year, ddd = day of year,
 HH = hour, MM = minute,
 SS.sss = decimal seconds to millisecond resolution.
 Note: Duration of record can be found in S.I. seconds
 by DIMO UTC UPPER - DIMO UTC_LOWER. Do not confuse
 this with the ACCUMULATION_TIME object, which is the
 number of spacecraft clock ticks for accumulation.
 While 1 tick is approximately 1 second, it is not
 identical."
/* RJW, DIMO_UTC, C, 1, 21 */
END_OBJECT - = COLUMN
OBJECT = COLUMN
 NAME = PACKETID
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START_BYTE = 22
 BYTES = 1
 VALID_MINIMUM = 142 /* (0x8E) */
 VALID_MAXIMUM = 142 /* (0x8E) */
 MISSING_CONSTANT = 255 /* Unknown, or a mix of packets */
```

```
 DESCRIPTION = "Packet ID (DPID), Data Product Identifier
 High Rate Science - Electron
 All 3 Electron sensors per record: E060, E180, E300.
 PACKETID = 142 (0x8E)"
/* RJW, PACKETID, B, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMMN
 NAME = DIMO_UTC_UPPER
 DATA_TYPE = DATE
 START_BYTE = 23
 BYTES = 21
 VALID_MINIMUM = 2011-217T00:00:00.001
 VALID_MAXIMUM = 2019-001T00:00:00.000
 MISSIN\overline{NG_CONSTANT = 0001-001T00:00:00.000}
 DESCRIP\overline{TION = "Oth Dimension of DATA: Time - upper limit.}
 See DIMO_UTC for description."
/* RJW, DIMO_UTC_UPPER, c, 1, 21 `/
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = PACKET_MODE
 DATA TYPE = LSB INTEGER
 START_BYTE = 44
 BYTES = 1
 VALID_MINIMUM = 2
 VALID_MAXIMUM = 2
 MISSIN̄G_CONSTANT = 127
 DESCRIPTION = "Packet Mode, describes type of data telemetry.
 -2 = HSK / Housekeeping Engineering (Level 2 only)
 -1 = HVE / High Voltage Engineering (Level 2 only)
 0 = CAL / MCP Calibration Science (Level 2 only)
 1 = LRS / Low Rate Science
 2 = HRS / High Rate Science
 3 = DRS / DeRived Science from LRS and/or HRS
 127 = Unknown
 254 = Wrong - but HSK, see below. (Level 2 only)
 255 = Wrong - but HVE, see below. (Level 2 only)
 (Note, this could also be calculated via PACKETID.)
 If you have 254 or 255 then your code is incorrect,
 check you read a signed byte, rather than unsigned."
/* RJW, PACKET MODE, b, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = DIMO_UTC_LOWER
 DATA_TYPE = DATE /* ASCII character string */
 START_BYTE = 45
 BYTES = 21
 VALID_MINIMUM = 2011-217T00:00:00.001
 VALID-MAXIMUM = 2019-001T00:00:00.000
 MISSING_CONSTANT = 0001-001T00:00:00.000
 DESCRIP\overline{TION = "Oth Dimension of DATA: Time - lower limit.}
 See DIMO_UTC for description."
/* RJW, DIMO_UTC_LOWER, C, 1, 21 ₹/
END_OBJECT - - = COLUMN
OBJECT = COLUMN
 NAME = PACKET_SPECIES
 DATA_TYPE = LSB_INTEGER
 START BYTE = 66
 BYTES }\mp@subsup{}{}{-}=
 VALID_MINIMUM = -1
```

```
 VALID MAXIMUM = -1
 MISSING_CONSTANT = 127
 DESCRIPTION = "Packet Species, describes type of plasma data.
 -1 = electrons
 0 = ion species 0, SPO
 1 = ion species 1, SP1
 2 = ion species 2, SP2
 3 = ion species 3, SP3
 4 = ion species 4, SP4
 5 = ion species 5, SP5
 6 = ion species 6, SP6
 7 = ion species 7, SP7
 8 = Sum of SP3, SP4 and SP5
 9 = All ions /* or any ion, e.g. TOF and LOG */
 10 = Single ion species derived from TOF data
 127 = Unknown
 255 = Wrong - but electrons, see below.
 If you have 255 then your code is incorrect,
 check you read a signed byte, rather than unsigned."
/* RJW, PACKET SPECIES, b, 1, 1 */
END_OBJECT - = COLUMN
OBJECT = COLUMN
 NAME = ACCUMULATION_TIME
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START_BYTE = 67
 BYTES = 2
 VALID MINIMUM = 1
 VALID_MAXIMUM = 1
 MISSING_CONSTANT = 65535
 UNIT
 DESCRIPTION = "Accumulation Time.
 Number of seconds over which the data in this product
 was collected (Science Program).
 Note: Duration of record can be found in S.I. seconds
 by DIMO_UTC_UPPER - DIMO_UTC_LOWER. Do not confuse
 this wi\overline{th} t\overline{he ACCUMULATIO}N_T\overline{IM}M object, which is the
 number of spacecraft clock ticks for accumulation.
 While 1 tick is approximately 1 second, it is not
 identical.
 ACCUMULATION_TIME is left in spacecraft clock ticks to
 both aid mat\overline{ching with the level }2\mathrm{ data and to help}
 filtering for data taken in a particular mode."
/* RJW, ACCUMULATION_TIME, H, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = DATA_UNITS
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START BYTE = 69
 BYTES = 1
 VALID_MINIMUM = 2
 VALID-MAXIMUM = 2
 MISSING_CONSTANT = 255
 DESCRIPTION = "Data units correspond to:
 0 = All counts in the accumulation period
 1 = All counts divided by number of views
 2 = Counts per second
 /* S.I. science units: */
 3 = Differential Energy Flux [1/(m^2 sr s)]
 4 = Differential Number Flux [1/(m^2 sr s J)]
 5 = Phase Space Density [m^-6 s^3]
 /* Convenient (non-S.I.) science units: */
```

```
 6 = Differential Energy Flux [1/(cm^2 sr s)]
 7 = Differential Number Flux [1/(cm^2 sr s keV)]
 8 = Phase Space Density [cm^-6 s^3]
 /* As new products are developed this list will increase */
 /* If a number is not listed, */
 /* try a LBL/FMT file from a recent date. */
 255 = Unknown."
/* RJW, DATA_UNITS, B, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SOURCE BACKGROUND
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START BYTE = 70
 BYTES = 1
 VALID MINIMUM = 0
 VALID MAXIMUM = 1
 MISSIN}G_CONSTANT = 255
 DESCRIP\overline{TION = "Source of Background values (see BACKGROUND object)}
 that have been removed from the DATA object.
 0 N None: No background has been removed
 1 = Background anode (electron sensors only)
 /* As new background removal methods are developed this list will increase */
 255 = Unknown."
/* RJW, SOURCE BACKGROUND, B, 1, 1 */
END_OBJECT - = COLUMN
OBJECT = COLUMN
 NAME = SOURCE_DEAD_TIME
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START BYTE = 71
 BYTES - = 1
 VALID MINIMUM = 0
 VALID MAXIMUM = 0
 MISSING_CONSTANT = 255
 DESCRIP\overline{TION = "Source of Dead Time Correction Method}
 0 None: Data has not been Dead Time corrected.
 255 = Unknown."
/* RJW, SOURCE DEAD TIME, B, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SOURCE MAG
 DATA TYPE = LSB UNSIGNED INTEGER
 START BYTE = 72
 BYTES = 1
 VALID MINIMUM = 0
 VALID_MAXIMUM = 39
 MISSING_CONSTANT = 255
 DESCRIPTION = "Source of MAG data
 Except case 0 and 1, PAYLOAD (pl) co-ordinate MAG files
 were used at 1s (or 2s if no 1s) resolution.
 0 = None: No MAG data in this product.
 1 = From Juno JADE's Level 2 files.
 (From spacecraft and therefore uncalibrated.)
 This is independent to JADE Level 2 version
 number as it does not change with versions.
 [Note MAG data in JADE files may be affected
 by the Juno time stutter.]
 3n = Juno's MAG's Level 3 version n calibrated
 files, e.g. }34\mathrm{ means version 4, so:
 30 = From Juno MAG's Level 3 version 00 quicklook
 payload files.
```

```
 (These are temporary files not in PDS.)
 3 1 ~ = ~ F r o m ~ J u n o ~ M A G ' s ~ L e v e l ~ 3 ~ v e r s i o n ~ 0 1 ~ c a l i b r a t e d
 payload files.
 32 = From Juno MAG's Level 3 version 02 calibrated
 payload files.
 Likewise 33 to 39 being Level 3 version 3 to 9.
255 = Unknown.
 If you see a number not listed above, there may be
 later versions of MAG data - find the latest
 available LBL file for this product and see what that
 has listed."
/* RJW, SOURCE_MAG, B, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SOURCE JADE METAKERNEL
 DATA_TYPE = LSB_INTEGGER
 START_BYTE = 73
 BYTES = 2
 VALID_MINIMUM = -32767
 VALID MAXIMUM = 32767
 MISSI\overline{NG CONSTANT = -32768}
 DESCRIPTION = "The JADE SPICE metakernel used to get the time,
 position, velocity, orientation and transformation
 objects in this file. The metakernel lists the
 many individual spice kernels used, which are
 archived by NAIF and not in this PDS volume.
 The JADE SPICE metakernel may be found in the CALIB
 directory of this PDS volume, with filenames of:
 JAD L30 SPICE METAKERNEL nnnnn.TXT
 where nnnn̄n is the \overline{SOURCE_JADE_METAKERNEL object}
 number (with leading zeros and positive).
 If any of the kernels within the metakernel are not
 reconstructed (but reference or predicted) for the
 time in question, this value will be negative.
 Within the JADE PDS archive this value should always
 be positive."
/* RJW, SOURCE JADE METAKERNEL, h, 1, 1 */
END_OBJECT - - = COLUMN
OBJECT = COLUMN
 NAME = SOURCE_JADE_CALIB
 DATA_TYPE = LSB_INTEGER
 START_BYTE = 75
 BYTES - = 2
 VALID MINIMUM = -32767
 VALID_MAXIMUM = 32767
 MISSING_CONSTANT = -32768
 DESCRIPTION = "The JADE calibration files list used to convert the
 engineering units of Level 2 data to the scientific
 units in this file. Similar to the SPICE metakernel
 list, this lists the many individual calibration files
 used, each of which may be found in the CALIB
 directory on this PDS volume.
 This list may be found in the CALIB directory of this
 PDS volume, with filenames of:
 JAD L30 CALIB LIST nnnnn.TXT
 where nnnnn is the SOURCE__JADE_CALIB object
 number (with leading zeros and positive).
 If any of the calibration files listed are not final
 at the time in question, this value will be negative.
```

```
 (Newer calibration files will have a higher version and
 simply be listed in a newer SOURCE_JADE_CALIB file.)
 Within the JADE PDS archive this value should always
 be positive. However a version 00 file (for team use
 or uploaded to JSOC, not PDS) may have negative values
 with predicted positions/orientations/transformations.
 /* Rob Note: ensure this file says which version of
 Level 2 JADE files were used to make this L3 file. */"
/* RJW, SOURCE_JADE_CALIB, h, 1, 1 * /
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = FSW VERSION
 DATA TYPE = PC \overline{REAL}
 START BYTE = 77
 BYTES = 4
 VALID_MINIMUM = 0.00
 VALID MAXIMUM = 9.99
 MISSING CONSTANT = -99.99
 DESCRIPTION = "Flight Software version used.
 Number should be to 2 decimal places, with rounding.
 e.g. 4.00, 4.10, 4.20."
/* RJW, FSW_VERSION, f, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME =SC POS R
 DATA_TYPE = PC_REA\overline{L}
 START BYTE = 81
 BYTES = 4
 VALID MINIMUM = 0.000
 VALID MAXIMUM = 140.000 /* Excluding Cruise, can refine later */
 MISSI\overline{N}G CONSTANT = 65535.000
 UNIT - = "Jupiter Radii"
 DESCRIPTION = "Juno radial distance from Jupiter.
 (1 Rj = 71492.0 km)
 [Values may be greater than VALID_MAXIMUM
 during cruise to Jupiter before primary mission.]"
/* RJW, SC_POS_R, f, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SC_POS_R_UPPER
 DATA TYPE = PC REA\overline{L}
 START BYTE = 85
 BYTES = 4
 VALID MINIMUM = 0.000
 VALID_MAXIMUM = 140.000 /* Excluding Cruise, can refine later */
 MISSING CONSTANT = 65535.000
 UNIT = "Jupiter Radii"
 DESCRIPTION = "Juno radial distance from Jupiter - upper limit.
 See SC POS R for description."
/* RJW, SC_POS_R_UPPER, f, 1, 1 * /
END OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SC POS R LOWER
 DATA_TYPE = PC-
 START_BYTE = 89
 BYTES = 4
 VALID MINIMUM = 0.000
 VALID_MAXIMUM = 140.000 /* Excluding Cruise, can refine later */
```

```
 MISSING_CONSTANT = 65535.000
 UNIT = "Jupiter Radii"
 DESCRIPTION = "Juno radial distance from Jupiter - lower limit.
 See SC POS R for description.'
/* RJW, SC_POS_R_LOWER, f, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SC_POS_LAT
 DATA_TYPE = PC_REA\overline{L}
 START_BYTE = 93
 BYTES = 4
 VALID_MINIMUM = -90.000
 VALID MAXIMUM = 90.000
 MISSINGG_CONSTANT = 65535.000
 UNIT = "Degrees"
 DESCRIPTION = "Juno Latitude above Jupiter.
 (0 = Equatorial)"
/* RJW, SC_POS_LAT, f, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SC_POS_LAT_UPPER
 DATA_TYPE = PC_REA\overline{L}
 START BYTE = 97
 BYTES }\mp@subsup{}{}{-}=
 VALID_MINIMUM = -90.000
 VALID MAXIMUM = 90.000
 MISSINGGCONSTANT = 65535.000
 UNIT = "Degrees"
 DESCRIPTION = "Juno Latitude above Jupiter - upper limit.
 See SC_POS_LAT for description."
/* RJW, SC_POS_LAT_UPPER, f, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SC_POS_LAT_LOWER
 DATA_TYPE = PC_REAL
 STAR\overline{T}}\mathrm{ BYTE = 10}\overline{1
 BYTES }\mp@subsup{}{}{-}=
 VALID_MINIMUM = -90.000
 VALID_MAXIMUM = 90.000
 MISSING_CONSTANT = 65535.000
 UNIT = "Degrees"
 DESCRIPTION = "Juno Latitude above Jupiter - lower limit.
 See SC_POS_LAT for description."
/* RJW, SC_POS_LAT_LOWER, f, 1, - 1 */
END_OBJECT }\mp@subsup{}{}{-}\mp@subsup{}{}{-}=-= COLUM
OBJECT = COLUMN
 NAME = SC_POS_LOCAL_TIME
 DATA_TYPE = PC_REAL
 STAR\overline{T}_BYTE = 10
 BYTES = 4
 VALID MINIMUM = 0.000
 VALID_MAXIMUM = 24.000
 MISSING_CONSTANT = 65535.000
 UNIT = "Hours"
 DESCRIPTION = "Juno Local Time from Jupiter.
 0 0 ~ = ~ M i d n i g h t ~
 06 = Dawn
 12 = Noon
 18 = Dusk"
```

```
/* RJW, SC_POS_LOCAL_TIME, f, 1, 1 */
END_OBJECT - - = COLUMN
OBJECT = COLUMN
 NAME = SC_POS_LOCAL_TIME_UPPER
 DATA TYPE = PC REAL
 START_BYTE = 10产
 BYTES = 4
 VALID MINIMUM = 0.000
 VALID_MAXIMUM = 24.000
 MISSING_CONSTANT = 65535.000
 UNIT - = "Hours"
 DESCRIPTION = "Juno Local Time from Jupiter - upper limit.
 See SC_POS_LOCAL_TIME for description."
/* RJW, SC_POS_LOCAL_TIME_UPPER, £, 1, 1 `/
END_OBJECT - = COLUMMN
OBJECT = COLUMN
 NAME = SC_POS_LOCAL_TIME_LOWER
 DATA_TYPE = PC_REAL
 START_BYTE = 11衣
 BYTES = 4
 VALID_MINIMUM = 0.000
 VALID_MAXIMUM = 24.000
 MISSING_CONSTANT = 65535.000
 UNIT - = "Hours"
 DESCRIPTION = "Juno Local Time from Jupiter - lower limit.
 See SC_POS_LOCAL_TIME for description."
/* RJW, SC_POS_LOCAL_TIME_LOWER, f, - 1, 1 `/
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SC_POS_JUPITER_J2000XYZ
 DATA_TYPE = PC_REA\overline{L}
 START_BYTE = 11\overline{7}
 ITEMS = 3
 ITEM_BYTES = 4
 BYTE\overline{S}}=1
 VALID_MINIMUM = -10008880.0 /* ~ -140 Rj */
 VALID_MAXIMUM = 10008880.0 /* ~ +140 Rj */
 MISSING_CONSTANT = 65535.0 /* ~ +0.917 Rj */
 UNIT - = "km"
 DESCRIPTION = "Juno position from Jupiter in J2000 Cartesian
 co-ordinates [x,y,z] (units km).
 [Values may be outside of VALID_MIN/MAX range (~140Rj)
 during cruise to Jupiter before primary mission.]"
/* RJW, SC_POS_JUPITER_J2000XYZ, f, 1, 3 */
END_OBJECT }\mp@subsup{}{}{-}\quad-\quad=\overline{COLUMN
OBJECT = COLUMN
 NAME = SC_VEL_JUPITER_J2000XYZ
 DATA_TYPE = PC_REAL
 STAR\overline{T}
 ITEMS - = 3
 ITEM_BYTES = 4
 BYTES
 VALID_MINIMUM = -70.0 /* Need to refine with V_mag during JOI */
 VALID_MAXIMUM = 70.0 /* Need to refine with V_mag during JOI */
 MISSIN}\mp@subsup{\}{_}{CONSTANT = 65535.0
 UNIT = "km/s"
 DESCRIPTION = "Juno Velocity with respect to Jupiter in J2000
 Cartesian co-ordinates [Vx,Vy,Vz] (units km/s)."
/* RJW, SC_VEL_JUPITER_J2000XYZ, f, 1, 3 */
```

```
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SC_VEL_ANGULAR_J2000XYZ
 DATA_TYPE = PC_REAI
 START BYTE = 141
 ITEMS = 3
 ITEM_BYTES = 4
 BYTES =
 VALID_MINIMUM = -1.0 /* General limit */
 VALID MAXIMUM = 1.0 /* General limit */
 MISSING_CONSTANT = 65535.0
 UNIT = "radians/s"
 DESCRIPTION = "Juno Angular Velocity in Cartesian co-ordinates
 [AVx,AVy,AVz] (units radians/s).
 (This is calculated with the SPICE ckgpav command
 where ref=J2000. SPICE defines it as 'This is the
 axis about which the reference frame tied to the
 instrument is rotating in the right-handed sense.')"
/* RJW, SC VEL ANGULAR J2000XYZ, f, 1, 3 */
END_OBJECT }\mp@subsup{}{}{-}\quad-\quad=\overline{C}OLUM
OBJECT = COLUMN
 NAME = SC_SPIN_PERIOD
 DATA TYPE = PC REAL
 STAR\overline{T}
 BYTES = 4
 VALID MINIMUM = 0.0
 VALID_MAXIMUM = 100.0 /* May want to refine later */
 MISSING_CONSTANT = 65535.0
 UNIT = "SECONDS"
 DESCRIPTION = "Juno spin period (seconds).
 This is not useful during spacecraft maneuvers."
/* RJW, SC SPIN PERIOD, f, 1, 1 */
END_OBJECT - = COLUMN
OBJECT = CONTAINER
 NAME = DESPUN_SC_TO_J2000_DIM1
 START_BYTE = 157
 BYTES }=12/*=3 * 4-bytes */\
 REPETITIONS = 3
 DESCRIPTION = "DESPUN_SC_TO_J2000 DIM1,
 2D arr\overline{a}y \overline{Of d}\\ta, \overline{1st and 2nd Dimensions."}
 OBJECT = CONTAINER
 NAME = DESPUN_SC_TO_J2000_DIM2
 START_BYTE = 1
 BYTES }= =
 REPETITIONS = 3
 DESCRIPTION = "DESPUN SC TO J2000 DIM2,
 1D array of data, 2nd Dimension."
 OBJECT = COLUMN
 NAME = DESPUN_SC_TO_J2000
 DATA_TYPE = PC_REAL
 START BYTE = 1
 ITEMS = 1
 ITEM BYTES = 4
 BYTE}\overline{S}=
 VALID_MINIMUM = -1.0
 VALID MAXIMUM = 1.0
 MISSI\overline{NG_CONSTANT = 65535.0}
 DESCRIPTION = "Rotation matrix from despun spacecraft
```

```
co-ordinates to J2000.
This is a 3x3 matrix, but if read in as a 1x9
stream then the 1D stream is [a,b,c, d,e,f, g,h,i]
and the 2D matrix would be [a,b,c
 d,e,f
 g,h,i]"
/* RJW, DESPUN_SC_TO_J2000, f, 2, 3, 3 */
 END_OBJECT = COLUMN
 END OBJECT = CONTAINER
END_O\overline{B}JECT = CONTAINER
OBJECT = CONTAINER
 NAME = J2000_TO_JSSXYZ_DIM1
 START_BYTE = 193
 BYTES }=12/* = 3 * 4-bytes */
 REPETITIONS = 3
 DESCRIPTION = "J2000_TO_JSSXYZ_DIM1,
 2D array 'of dat\overline{a}, 1st and 2nd Dimensions."
 OBJECT = CONTAINER
 NAME = J2000_TO_JSSXYZ_DIM2
 START_BYTE = 1
 BYTES }\mp@subsup{}{}{-}=
 REPETITIONS = 3
 DESCRIPTION = "J2000_TO_JSSXYZ_DIM2,
 1D ar``ray of data
 OBJECT = COLUMN
 NAME = J2000_TO_JSSXYZ
 DATA_TYPE = PC_REA}
 STAR\overline{T}}\mathrm{ BYTE = 1
 ITEMS }\mp@subsup{}{}{-}=
 ITEM_BYTES = 4
 BYTE\overline{S}}=
 VALID_MINIMUM = -1.0
 VALID_MAXIMUM = 1.0
 MISSINGGCONSTANT = 65535.0
 DESCRIP\overline{TION = "Rotation matrix from J2000 co-ordinates to JSS xyz}
 (JSS = Jupiter-De-Spun-Sun, see SIS for details).
 This is a 3x3 matrix, but if read in as a 1x9
 stream then the 1D stream is [a,b,c, d,e,f, g,h,i]
 and the 2D matrix would be [a,b,c
 d,e,f
 g,h,i]"
/* RJW, J2000_TO_JSSXYZ, f, 2, 3, 3 */
 END_OBJECT - = COLUMN
 END O\overline{BJECT = CONTAINER}
END_OBJECT = CONTAINER
OBJECT = CONTAINER
 NAME = J2000_TO_JSSRTP_DIM1
 START_BYTE = 229
 BYTES }=12/*=3 * 4-bytes */
 REPETITIONS = 3
 DESCRIPTION = "J2000_TO_JSSRTP_DIM1,
 2D array
 OBJECT = CONTAINER
 NAME = J2000_TO_JSSRTP_DIM2
 START_BYTE = 1
 BYTES }
 REPETITIONS = 3
 DESCRIPTION = "J2000_TO_JSSRTP_DIM2,
```


indicators to them within this JADE packet.
[For a more comprehensive list of potential issues from internal and external sources please see the Level 3 data.]

Level 2 issues of this JADE packet are flagged by individual bits, and several may be hit. If no issues are flagged then this 4-byte unsigned integer is zero. A value of 4294967295 is the MISSING_CONSTANT and means that the issue status is currently unknown.

All bits at 0 implies all is okay as seen by this packet. If a bit is set to 1 then that bit is flagged, otherwise it is set to zero and unflagged.

The bits are set as followed, grouped in to seriousness:
Not very serious issues for doing science:
Bit $0=$ UTC time is predicted, yet to be finalized.
Bit 1 = Position/Orientation values predicted, yet to be finalized. Level 3 (and above) data only.
Bit 2 = TABLES_VERSION object was altered on the ground to accurately reflect a 'commanded parameter update' outside the initial per-orbit commands JADE is returning.
[If changed, the original downlinked TABLES_VERSION value can be found by crossreferencing the PARAM_TABLE_VER object in the JAD_L20_HSK_ALL_SHK fīles. - Note here the PARĀM_TABLE_VER value is given as a unsigned
 a value of 770 decimal is in hex $0 \times 302$, meaning Table Version 3.02 ]
Bit 3 = FSW_VERSION 4.00 LRS/CAL Ion Species bug fixed on the ground by adjusting TIMESTAMP_WHOLE, TIMESTAMP_SUB, and ACCUMULATION_TIME based on ${ }^{-}$cross-referencing JADE commanding.
Bit 4 = LRS/CAL Ion Species record with unobserved look directions (views) populated using views from neighboring record. See Bit 12 for uncorrected/unpopulated description. (Only possible if ACCUMULATION_TIME = 30.)
Bit 5 = TIMESTAMP_WHOLE/SUB adjusted on the ground to mitigā̄e any Juno time stutter affects. [Other TIMESTAMPs are susceptible to the onboard time stutter too, but only the JADE packet TIMESTAMP_WHOLE/SUB is tracked here.]
Bit $6=\quad$ Currently unused.
Bit 7 = Warning, a leap second occurs during the accumulation period.

Data slightly different than expected, but can be used
for science with a little extra coding:
Bit 8 = ACCUM_TRUNCATION object flagged.
 tracked, are either zeros or MISSING_CONSTANT.
[LRS and CAL did not have MAG objects prior to FSW_VERSION 4.10, therefore those MAG objects here are set to MISSING_CONSTANT when FSW VERSION < 4.10.]
Bit 10 = TIMESTAMP_WH̄OLE/SUB affected by a Juno onboard time stutter, JADE reported timestamp

```
 is likely 1 whole tick too large.
 [Other TIMESTAMPs are susceptible to the
 onboard time stutter too, but only the JADE
 packet TIMESTAMP_WHOLE/SUB is tracked here.]
Bit 11 =
Currently unused.
Bit 12 = LRS/CAL Ion Species record potentially has
 unobserved look directions (spin phase sectors
 or views) present in the data, meaning the
 record may not contain data for a full 4pi
 steradians field-of-view.
 Unobserved look directions have zero counts
 per view (or counts per second) in the data,
 although an observed look direction may also
 have zero counts if no ions were measured.
 Therefore there is a potential confusion over
 zero measured counts or simply unmeasured.
 e.g. if the spin period is 30.7 seconds, then
 not all of the }78\mathrm{ spin phase sectors will be
 sampled in 30 seconds. (Unobserved views are
 only possible if ACCUMULATION TIME = 30.)
 See the JADE SIS for more information.
Bit 13 = At least one anode is blanked.
 See SIS document for further information.
Bit 14 = FSW_VERSION 4.00 LRS/CAL Ion Species bug
 warning:
 Not fixed as yet - when fixed it will
 become bit 3 of ISSUES instead.
 Level 2 data only when FSW_VERSION = 4.00,
 ACCUMULTION_TIME object is MISSING_CONSTANT.
 Also, TIMESTAMP_WHOLE:TIMESTAMP_SUB is the end
 of the packet rather than the usual start,
 see TIMESTAMP_WHOLE object for more details.
 [Only affects data from 2015-089 to 2015-115.]
Bit 15 = Electron Anodes Reversed.
 Level 2 data only when FSW VERSION < 4.10
 and only electron packets. Electron anodes
 are reversed in order and need to be
 remapped, however electron Spin Phase data
 (LRS data) cannot be remapped. See the SIS
 document for more information about this.
 [Affects all electron data 2011 to 2015-115.]
Data very different than expected, may not be suitable
for science - use with extreme caution.
Bit 16 = Data is not from flight instrument on Juno,
see FLIGHT_OR_STL object.
Bit 17 = MCP NOT AT COMMANDED object flagged.
 Electron HRS/CAL/HVE packets use all three
 electron sensors and therefore have three
 MCP NOT AT COMMANDED values per packet.
 Setting this flag means at least one of those
 three mcps is not at its commanded value.
Bit 18 = Data includes some JADE-E300 sensor data.
 (Only flagged for HRS, LRS, CAL and HVE data.)
 E300 has a high voltage power supply issue
 and reported energy steps may be incorrect.
 If E300 is off but still reported in the data
 product, it may be zeros of fill values.
Bit 19 = Ion packet abruptly truncated.
 This packet should not be used. It had an
 ACCUMULATION TIME = 1, ACCUM TRUNCATION = 1
 and the DATA object is all zeros, with a
 timestamp that matches an earlier valid packet
```

```
that was not truncated and has non-zero DATA. e.g. TOF and LOG example in level 2 data at TIMESTAMP_WHOLE of 495879710 (UTC 2015-261).
Bit \(20=M C P\) Dippin̄ Triggered, in one or more sensors. If the sensor measures excessive counts, it temporarily lowers the MCP voltage to reduce the number of counts and protect the sensor. The MCP_NOT_AT_COMMANDED object is also flagged \({ }^{-}(B i \bar{t} 1 \overline{7}\) in ISSUES) since the MCP is no longer at the commanded voltage.
For HRS/CAL/HVE electrons (datasets where multiple sensors are on) it is possible that one sensor has been dipped, but the others are not and still providing good data. (First MCP dip was HRS electrons, 2017-350.)
Bit \(21=\mathrm{MCP}\) Dipped sensor's DATA set to fill values. If MCP dipping has triggered (Bit 20 of ISSUES) then: DATA and BACKGROUND objects (and their *_SIGMAs) have been replaced with MISSING CONSTANT values.
(Never used for Level 2 data, which has the counts as measured in the dipped state.)
In addition, Bit 17 of the ISSUES object (i.e. MCP_NOT_AT_COMMANDED object = 1) is set to zero, and, if it exists, the MCP NOT AT COMMANDED object itself is changed (from 1) to be 0 for the offending sensor (s).
If the DATA object contains data from multiple sensors (HRS/CAL/HVE electrons) then only the elements of the DATA object for the dipped sensor are set to MISSING CONSTANT (as identified by the MCP_NOT_AT_COMMANDED value for each sensor (prior to setting them to 0)). [See Bit 22 for a similar flag.]
Bit \(22=1\) or more ELC sensor DATA set to fill values. Affects only electron HRS/CAL/HVE products (i.e. products that use multiple sensors), and generally only when starting that mode. When switching to HRS/CAL/HVE from LRS, one JADE-E sensor is already on, and the other (s) have to turn on, then it takes some time for that sensor to reach the commanded voltage. For a given record, MCP_NOT_AT_COMMANDED \(=0\) for one sensor but is still \(=\overline{1}\) for others. That is one sensor is taking valid science but the other(s) are not there yet and for those sensors: DATA and BACKGROUND objects (and their *_SIGMAs) have been replaced with MISSING_CONSTANT values.
(Never used for Level 2 data, which has the counts as measured in the dipped state.)
In addition, Bit 17 of the ISSUES object (i.e. MCP NOT AT COMMANDED object \(=1\)) is set to zero, and, if it exists, the MCP_NOT_AT_COMMANDED object itself is changed (from \(1 \overline{)}\) to be 0 for the offending sensor \((s)\).
Only the elements of the DATA object for the original MCP_NOT_AT_COMMANDED = 1 sensor (s) (prior to setting them to 0) are set to MISSING_CONSTANT.
[Bits 21 and 22 are essentially the same feature caused by an mcp voltage not being at the commanded value, but the reason why this
```

```
 is the case is different. The treatment is
 identical for both Bit }21\mathrm{ and Bit 22.]
 Bit 23 = Currently unused.
 Bit 24= Currently unused.
 Bit 25 = Currently unused.
 Bit 26 = Currently unused.
 Bit 27 = Currently unused.
 Bit 28 = Currently unused.
 Bit 29= Currently unused.
 Bit 30= Currently unused.
 Bit 31 = Reserved for MISSING CONSTANT use.
 Each bit has a decimal value of 2^{bit number}, and the
 Issues flag is the sum of 2^{flagged bit numbers}.
 For instance, if this ISSUES flag = 131329, then in
 binary that value is 00000000000000100000000100000001
 showing bits 17, 8 and 0 are flagged.
 [If a currently unused bit is set, please check the
 latest LBL file for this product that you can find to
 see if it now has a definition.]"
 OBJECT = BIT_COLUMN
 NAME = ISSUES BITS
 BIT_DATA_TYPE = BOOLEA\overline{N}
 START_BIT = 1
 BITS = 32
 ITEMS = 32
 ITEM_BITS = 1
 MINIMUM = 0
 MAXIMUM = 1
 DESCRIPTION = "See ISSUES column object for description of bits."
 END OBJECT = BIT COLUMN
/* RJW, ISSUES, I, 1, 1 */
 END OBJECT = COLUMN
END_\overline{OBJECT = CONTAINER}
OBJECT = COLUMN
 NAME = TIMESTAMP_WHOLE
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 STAR\overline{T}}\mathrm{ BYTE = 281
 ITEMS - = 1
 ITEM BYTES = 4
 BYTE}\overline{S}=
 VALID_MINIMUM = 365774402 /* 2011-Aug-05: Juno Launch */
 VALID MAXIMUM = 599573000 /* ~ 2019-Jan-01 */
 MISSI\overline{NG_CONSTANT = 0}
 DESCRIPTION = "Timestamp (Whole Second) of JADE Level 2 packet
 used to make this Level 3 record."
/* RJW, TIMESTAMP_WHOLE, I, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = TIMESTAMP SUB
 DATA_TYPE = LSB_UNSIGÑED_INTEGER
 START_BYTE = 285
 ITEMS = 1
 ITEM_BYTES = 2
 BYTES = 2
 VALID MINIMUM = 0
 VALID_MAXIMUM = 65535
 MISSING_CONSTANT = 0
```

```
 DESCRIPTION = "Timestamp (Subsecond) of JADE Level 2 packet
 used to make this Level 3 record."
/* RJW, TIMESTAMP_SUB, H, 1, 1 */
END_OBJECT - = COLUMN
OBJECT = CONTAINER
 NAME = DATA_DIM1
 START_BYTE = 287
 BYTES = 192 /* = 48 * 4-bytes */
 REPETITIONS = 64
 DESCRIPTION = "DATA_DIM1,
 2D arrray of data, 1st and 2nd Dimensions."
 OBJECT = CONTAINER
 NAME = DATA_DIM2
 START_BYTE = 1
 BYTES = 4
 REPETITIONS = 48
 DESCRIPTION = "DATA_DIM2,
 1D arrray of data, 2nd Dimension."
 OBJECT = COLUMN
 NAME = DATA
 DATA_TYPE = PC_REAL
 START_BYTE = 1
 ITEMS }=
 ITEM_BYTES = 4
 BYTES = = 4
 VALID_MINIMUM = 0
 VALID_MAXIMUM = 1000000 /* A guess! need to refine value later */
 MISSING_CONSTANT = -1
 UNIT - = "COUNTS/SECOND"
 DESCRIPTION = "DATA: Counts/Second
 64 Energy x 48 Look Directions.
 "
/* RJW, DATA, f, 2, 64, 48 */
 END OBJECT = COLUMN
 END_O\overline{BJECT = CONTAINER}
END O\overline{BJECT = CONTAINER}
OBJECT = CONTAINER
 NAME = DATA SIGMA DIM1
 START_BYTE = 1257\overline{5}
 BYTES = 192 /* = 48 * 4-bytes */
 REPETITIONS = 64
 DESCRIPTION = "DATA_SIGMA_DIM1,
 2D array of data, 1st and 2nd Dimensions."
 OBJECT = CONTAINER
 NAME = DATA_SIGMA DIM2
 START_BYTE = 1
 BYTES = 4
 REPETITIONS = 48
 DESCRIPTION = "DATA_SIGMA_DIM2,
 1D array of data, 2nd Dimension."
 OBJECT = COLUMN
 NAME = DATA SIGMA
 DATA_TYPE = PC_REAL
 START_BYTE = 1
 ITEMS = 1
 ITEM_BYTES = 4
 BYTES =}=
```



```
 MISSING CONSTANT = -1
 UNIT = "COUNTS/SECOND"
 DESCRIPTION = "DATA_SIGMA
 1-sigma uncertainties on values in object DATA,
 such that true value = DATA +/- DATA SIGMA.
 See DATA entry above for size information."
/* RJW, DATA SIGMA, f, 2, 64, 48 */
 END OBJE\overline{CT = COLUMN}
 END OBJECT = CONTAINER
END_O\overline{B}JECT = CONTAINER
OBJECT = CONTAINER
 NAME = BACKGROUND_DIM1
 START_BYTE = 24863
 BYTES = 192 /* = 48 * 4-bytes */
 REPETITIONS = 64
 DESCRIPTION = "BACKGROUND_DIM1,
 2D array o\overline{f data, 1st and 2nd Dimensions."}
 OBJECT = CONTAINER
 NAME = BACKGROUND_DIM2
 START_BYTE = 1
 BYTES = 4
 REPETITIONS = 48
 DESCRIPTION = "BACKGROUND_DIM2,
 1D array of data, 2nd Dimension."
 OBJECT = COLUMN
 NAME = BACKGROUND
 DATA_TYPE = PC_REAL
 START_BYTE = 1
 ITEMS = 1
 ITEM_BYTES = 4
 BYTES = 4
 VALID_MINIMUM = 0
 VALID_MAXIMUM = 1000000 /* A guess! need to refine value later */
 MISSINNG CONSTANT = -1
 UNIT - = "COUNTS/SECOND"
 DESCRIPTION = "Background value removed from DATA.
 No further background removal is required.
 If you wish to do your own background removal,
 add this object to DATA then you can remove a
 background via your own method.
 The background values here were found from either
 a background anode or JADE's own ground method."
/* RJW, BACKGROUND, f, 2, 64, 48 */
 END_OBJECT = COLUMN
 END O\overline{BJECT = CONTAINER}
END O\overline{B}JECT = CONTAINER
OBJECT = CONTAINER
 NAME = BACKGROUND_SIGMA_DIM1
 START BYTE = 37151
 BYTES }\mp@subsup{}{}{-}=192 /* = 48 * 4-bytes */
 REPETITIONS = 64
 DESCRIPTION = "BACKGROUND_SIGMA_DIM1,
 2D array o\overline{f data,}\mathrm{ , 1st and 2nd Dimensions."}
 OBJECT = CONTAINER
 NAME = BACKGROUND_SIGMA_DIM2
 START_BYTE = 1
```

```
 BYTES = 4
 REPETITIONS = 48
 DESCRIPTION = "BACKGROUND_SIGMA_DIM2,
 1D array of data,
 OBJECT = COLUMN
 NAME = BACKGROUND_SIGMA
 DATA_TYPE = PC_REAL
 START BYTE = 1
 ITEMS - = 1
 ITEM BYTES = 4
 BYTES = 4
 VALID_MINIMUM = 0
 VALID MAXIMUM = 1000000 /* A guess! need to refine value later */
 MISSI\overline{NG} CONSTANT = -1
 UNIT = "COUNTS/SECOND"
 DESCRIPTION = "BACKGROUND SIGMA
 1-sigma uncertainties on values in object
 BACKGROUND, such that
 true value = BACKGROUND +/- BACKGROUND_SIGMA.
 See BACKGROUND entry above for size information."
/* RJW, BACKGROUND_SIGMA, f, 2, 64, 48 */
 END OBJECT = COLUMN
 END_OBJECT = CONTAINER
END_OBJECT = CONTAINER
OBJECT = CONTAINER
 NAME = DIM1 E DIM1
 START_BYTE = 4943\overline{9}
 BYTES = 192 /* = 48 * 4-bytes */
 REPETITIONS = 64
 DESCRIPTION = "DIM1_E_DIM1,
 2D array of data, 1st and 2nd Dimensions."
 OBJECT = CONTAINER
 NAME = DIM1_E_DIM2
 START BYTE = 1
 BYTES = 4
 REPETITIONS = 48
 DESCRIPTION = "DIM1_E_DIM2,
 1D array of data, 2nd Dimension."
 OBJECT = COLUMN
 NAME = DIM1 E
 DATA TYPE = PC REAL
 START_BYTE = 1
 ITEMS = 1
 ITEM BYTES = 4
 BYTES = 4
 VALID MINIMUM = 0.0
 VALID_MAXIMUM = 99000.0 /* Refine. Rounded up to whole keV/q */
 MISSING_CONSTANT = 99999.0
 UNIT = "eV/q"
 DESCRIPTION = "1st Dimension of DATA: Energy - center eV/q value
 Upper and lower limits are given by the
 objects DIM1_E_UPPER and DIM1_E_LOWER."
/* RJW, DIM1_E, f, 2, 64, 48 */
 END OBJECT = COLUMN
 END_OBJECT = CONTAINER
END_OBJECT = CONTAINER
OBJECT = CONTAINER
 NAME = DIM1_E_UPPER_DIM1
```

```
 START BYTE = 61727
 BYTES }\mp@subsup{}{}{-}=192 /* = 48 * 4-bytes */
 REPETITIONS = 64
 DESCRIPTION = "DIM1_E_UPPER_DIM1,
 2D array of data, 1st and 2nd Dimensions."
 OBJECT = CONTAINER
 NAME = DIM1_E_UPPER_DIM2
 START BYTE = 1
 BYTES }\mp@subsup{}{}{-}=
 REPETITIONS = 48
 DESCRIPTION = "DIM1_E_UPPER_DIM2,
 1D array of data, 2nd Dimension."
 OBJECT = COLUMN
 NAME = DIM1_E_UPPER
 DATA TYPE = PC REA\overline{L}
 START_BYTE = 1
 ITEMS = 1
 ITEM BYTES = 4
 BYTES = = 4
 VALID MINIMUM = 0.0
 VALID MAXIMUM = 99000.0 /* Refine. Rounded up to whole keV/q */
```



```
 UNIT = "eV/q"
 DESCRIPTION = "1st Dimension of DATA: Energy - upper eV/q limit.
 See DIM1_E for description."
/* RJW, DIM1 E UPPER, f, 2, 64, 48 */
 END OBJECT = COLUMN
 END OBJECT = CONTAINER
END O\overline{B}JECT = CONTAINER
OBJECT = CONTAINER
 NAME = DIM1 E LOWER DIM1
 START_BYTE = 7401\overline{5}
 BYTES = 192 /* = 48 * 4-bytes */
 REPETITIONS = 64
 DESCRIPTION = "DIM1_E_LOWER_DIM1,
 2D array of data, 1st and 2nd Dimensions."
 OBJECT = CONTAINER
 NAME = DIM1_E_LOWER_DIM2
 START_BYTE = 1
 BYTES = 4
 REPETITIONS = 48
 DESCRIPTION = "DIM1_E_LOWER_DIM2,
 1D array of data, 2nd Dimension."
 OBJECT = COLUMN
 NAME = DIM1 E LOWER
 DATA_TYPE = PC_REA\overline{L}
 START_BYTE = 1
 ITEMS }\mp@subsup{}{}{-}=
 ITEM_BYTES = 4
 BYTES = 4
 VALID_MINIMUM = 0.0
 VALID_MAXIMUM = 99000.0 /* Refine. Rounded up to whole keV/q */
 MISSING_CONSTANT = 99999.0
 UNIT - = "eV/q"
 DESCRIPTION = "1st Dimension of DATA: Energy - lower eV/q limit.
 See DIM1 E for description."
/* RJW, DIM1_E_LOWER, f, 2, 64, 48 */
 END_OBJECT = COLUMN
```

```
 END OBJECT
 = CONTAINER
END_OBJECT
 = CONTAINER
OBJECT = CONTAINER
 NAME = DIM2_ELEVATION_DIM1
 START BYTE = 86303
 BYTES = 192 /* = 48 * 4-bytes */
 REPETITIONS = 64
 DESCRIPTION = "DIM2 ELEVATION DIM1,
 2D arrray of dāta, 1st and 2nd Dimensions."
 OBJECT = CONTAINER
 NAME = DIM2_ELEVATION_DIM2
 START BYTE = 1
 BYTES = 4
 REPETITIONS = 48
 DESCRIPTION = "DIM2_ELEVATION_DIM2,
 1D arrray of data, 2nd Dimension."
 OBJECT = COLUMN
 NAME = DIM2 ELEVATION
 DATA TYPE = PC REAL
 STAR\overline{T}}\mathrm{ BYTE = 1
 ITEMS = =
 ITEM BYTES = 4
 BYTES
 VALID_MINIMUM = -90.0
 VALID MAXIMUM = 90.0
 MISSING CONSTANT = 65535.0
 UNIT = "Degrees"
 DESCRIPTION = "2nd Dimension of DATA: Spacecraft elevation -
 center value. Spacecraft elevation (degs) is
 analogous to latitude on a sphere. In spacecraft
 xyz co-ords:
 +z is equivalent to elevation = +90 degs
 -z is equivalent to elevation = -90 degs
 (The communication dish is directed along +z)
 xy-plane at z = 0 is equivalent to elevation = 0
 Note, 2nd dimension is really look direction
 which has an elevation and azimuth; hence two
 objects describe this: DIM2 ELEVATION and
 DIM2_AZIMUTH_DESPUN."
/* RJW, DIM2 ELEVATION, f, 2, 64, 48 */
 END OBJECT = COLUMN
 END_OB
END OBJECT = CONTAINER
OBJECT = CONTAINER
 NAME = DIM2 ELEVATION UPPER DIM1
 START_BYTE = 98591
 BYTES = 192 /* = 48 * 4-bytes */
 REPETITIONS = 64
 DESCRIPTION = "DIM2_ELEVATION_UPPER_DIM1,
 2D array of data, 1st and 2nd Dimensions."
 OBJECT = CONTAINER
 NAME = DIM2_ELEVATION_UPPER_DIM2
 START_BYTE = 1
 BYTES = 4
 REPETITIONS = 48
 DESCRIPTION = "DIM2_ELEVATION_UPPER_DIM2,
 1D array of data, 2nd Dimension."
```

```
 OBJECT = COLUMN
 NAME = DIM2_ELEVATION_UPPER
 DATA_TYPE = PC_REAL
 STAR\overline{T}_BYTE = 1
 ITEMS = 1
 ITEM BYTES = 4
 BYTES = 4
 VALID MINIMUM = -90.0
 VALID-MAXIMUM = 90.0
 MISSING_CONSTANT = 65535.0
 UNIT = "Degrees"
 DESCRIPTION = "2nd Dimension of DATA: S/C elevation - upper
 limit. See DIM2_ELEVATION for description."
/* RJW, DIM2 ELEVATION_UPPER, f, 2, 64, 48 `/
 END_OBJECT = COLUMN
 END OBJECT = CONTAINER
END O\overline{B}JECT = CONTAINER
OBJECT = CONTAINER
 NAME = DIM2_ELEVATION_LOWER_DIM1
 START_BYTE = 110879
 BYTES }\mp@subsup{}{}{-}=192 /* = 48 * 4-bytes */
 REPETITIONS = 64
 DESCRIPTION = "DIM2_ELEVATION_LOWER_DIM1,
 2D a\overline{rray of da\overline{t}a, 1s\overline{t}}\mathrm{ and 2nd Dimensions."}
 OBJECT = CONTAINER
 NAME = DIM2_ELEVATION_LOWER_DIM2
 START_BYTE = 1
 BYTES = 4
 REPETITIONS = 48
 DESCRIPTION = "DIM2_ELEVATION_LOWER_DIM2,
 1D arrray of da\overline{ta, 2n\overline{d}}\mathrm{ Dimension."}
 OBJECT = COLUMN
 NAME = DIM2_ELEVATION_LOWER
 DATA_TYPE = PC_REAL
 STAR\overline{T}_BYTE = 1
 ITEMS }=
 ITEM_BYTES = 4
 BYTE\overline{S }=4
 VALID_MINIMUM = -90.0
 VALID MAXIMUM = 90.0
 MISSIN}\mp@subsup{M}{_}{CONSTANT = 65535.0
 UNIT = "Degrees"
 DESCRIPTION = "2nd Dimension of DATA: S/C elevation - lower
 limit. See DIM2_ELEVATION for description."
/* RJW, DIM2_ELEVATION_LOWER, f, 2, 64, 48 `/
 END OBJECT = COLUMN
 END_O\overline{B}JECT = CONTAINER
END_OBJECT = CONTAINER
OBJECT = CONTAINER
 NAME = DIM2_AZIMUTH_DESPUN_DIM1
 START_BYTE = 1231\overline{6}7
 BYTES = 192 /* = 48 * 4-bytes */
 REPETITIONS = 64
 DESCRIPTION = "DIM2_AZIMUTH_DESPUN_DIM1,
 2D arrray of d
 OBJECT = CONTAINER
 NAME = DIM2_AZIMUTH_DESPUN_DIM2
```

```
 START_BYTE = 1
 BYTES = 4
 REPETITIONS = 48
 DESCRIPTION = "DIM2 AZIMUTH DESPUN DIM2,
 1D array of data, 2nd Dimension."
 OBJECT = COLUMN
 NAME = DIM2_AZIMUTH_DESPUN
 DATA TYPE = PC REAL
 START_BYTE = 1
 ITEMS = 1
 ITEM BYTES = 4
 BYTES = = 4
 VALID MINIMUM = 0.0
 VALID_MAXIMUM = 720.0
 MISSINGGCONSTANT = 65535.0
 UNIT = "Degrees"
 DESCRIPTION = "2nd Dimension of DATA: Despun S/C azimuth -
 center value. Spacecraft azimuth (degs) is
 analogous to longitude on a sphere. In spacecraft
 xyz co-ords:
 +x is equivalent to azimuth = 0 degs
 +y is equivalent to azimuth = 90 degs
 -x is equivalent to azimuth = 180 degs
 -y is equivalent to azimuth = 270 degs
 +x is equivalent to azimuth = 360 degs
 +y is equivalent to azimuth = 450 degs
 The 'Despun' azimuth angle varies because Juno
 spins, where azimuth = 0 is defined as +x when
 spin phase equals zero (e.g. despun x-z plane
 contains the ECLIPJ2000 north).
 The relationship between despun azimuth and spin
 phase (which decreases during a spin) is simply:
 Despun Azimuth = 360 degrees - Spin Phase
 Because a lower to upper limit could occur over a
 360 degree boundary, the VALID_MINIMUM and
 VALID MAXIMUM go from 0 to +72\overline{0}}\mathrm{ degrees:
 e.g. [lower, center, upper] = [-10, 5, 20]
 would be given instead as = [350, 365, 380]
 Note, 2nd dimension is really look direction
 which has an elevation and azimuth; hence two
 objects describe this: DIM2 ELEVATION and
 DIM2_AZIMUTH_DESPUN."
/* RJW, DIM2_AZIMUTH_DESPUN, f, - 2, 64, \overline{4}8 */
 END OBJE\overline{CTT - = COLUMN}
 END_OBJECT = CONTAINER
END_O\overline{B}JECT = CONTAINER
OBJECT = CONTAINER
 NAME = DIM2_AZIMUTH_DESPUN_UPPER_DIM1
 START_BYTE = 135455
 BYTES = 192 /* = 48 * 4-bytes */
 REPETITIONS = 64
 DESCRIPTION = "DIM2_AZIMUTH_DESPUN_UPPER_DIM1,
 2D arrray of d
 OBJECT = CONTAINER
 NAME = DIM2 AZIMUTH_DESPUN_UPPER_DIM2
 START_BYTE = 1
 BYTES }=
```

```
 REPETITIONS = 48
 DESCRIPTION = "DIM2_AZIMUTH_DESPUN_UPPER_DIM2,
 1D array of data, 2nd Dimension."
 OBJECT = COLUMN
 NAME = DIM2_AZIMUTH_DESPUN_UPPER
 DATA TYPE = PC REAL
 START_BYTE = 1
 ITEMS = 1
 ITEM BYTES = 4
 BYTES = 4
 VALID MINIMUM = 0.0
 VALID_MAXIMUM = 720.0
 MISSING_CONSTANT = 65535.0
 UNIT - = "Degrees"
 DESCRIPTION = "2nd Dimension of DATA: Despun S/C azimuth - upper
 limit. See DIM2 AZIMUTH DESPUN for description."
/* RJW, DIM2_AZIMUTH_DESPUN_UPPER, f, 2, \overline{64, 48 */}
 END_OBJECT = COLUMN
 END OBJECT = CONTAINER
END_OB
OBJECT = CONTAINER
 NAME = DIM2_AZIMUTH_DESPUN_LOWER_DIM1
 START BYTE = 147743
 BYTES - = 192 /* = 48 * 4-bytes */
 REPETITIONS = 64
 DESCRIPTION = "DIM2 AZIMUTH DESPUN LOWER_DIM1,
 2D arrray of data, 1\overline{st and ' 2nd Dimensions."}
 OBJECT = CONTAINER
 NAME = DIM2_AZIMUTH_DESPUN_LOWER_DIM2
 START_BYTE = 1
 BYTES = 4
 REPETITIONS = 48
 DESCRIPTION = "DIM2 AZIMUTH DESPUN_LOWER_DIM2,
```



```
 OBJECT = COLUMN
 NAME = DIM2_AZIMUTH_DESPUN_LOWER
 DATA_TYPE = PC_REAL
 START BYTE = 1
 ITEMS = 1
 ITEM BYTES = 4
 BYTE}\overline{S}=
 VALID_MINIMUM = 0.0
 VALID MAXIMUM = 720.0
 MISSIN
 UNIT = "Degrees"
 DESCRIPTION = "2nd Dimension of DATA: Despun S/C azimuth - lower
 limit. See DIM2_AZIMUTH_DESPUN for description."
/* RJW, DIM2_AZIMUTH_DESPUN_LOWER, f, 2, 64, 48 */
 END OBJE\overline{CT }
 END_OB
END_OBJECT = CONTAINER
OBJECT = COLUMN
 NAME = MAG VECTOR
 DATA_TYPE = PC_距LL
 START BYTE = 1600031
 ITEMS = 3
 ITEM_BYTES = 4
 BYTES = 12
```

```
 VALID MINIMUM = -1600000.0
 VALID MAXIMUM = 1600000.0
 MISSING CONSTANT = 9990000.0
 UNIT
 DESCRIPTION = "MAG vector in nT, 3 components [X, Y, Z]
 MAG range is +/- 16 G, hence limits.
 This xyz coordinate system is despun spacecraft; see
 the definitions of DIM2_ELEVATION and DIM2 AZIMUTH:
 +X is when [azimuth, elevation] = [0, 0] degrees,
 +Y is when [azimuth, elevation] = [90, 0] degrees,
 +Z is when elevation = 90 degrees."
/* RJW, MAG VECTOR, f, 1, 3 */
END_OBJECT - = COLUMN
```


## D. 2 Sample FMT file for JAD_L30_HLS_ION_TOF_CNT_V02.FMT

```
/* Filename: Version02/JAD_L30_HLS_ION_TOF_CNT_V02.FMT */
/* File written: 2018/01/24 14:08:23 */
/* Will code useful Python based letters to describe each object */
/* see http://docs.python.org/library/struct.html for codes */
/* formats will comma separated beginning with "RJW," as key then */
/* {NAME}, {FORMAT}, {Number of dims}, {Size Dim 1}, {Size Dim 2}, ... */
/* where {FORMAT} is the Python code for the type, i.e. I for uint32 */
/* and there are as many Size Dim's as number of dimensions. */
/* Remember to remove the comment markers at either end */
/* RJW, BYTES PER RECORD, 100476 */
/* RJW, OBJECTS_PER_RECORD, 56 */
OBJECT = COLUMN
 NAME = DIMO_UTC
 DATA TYPE = DATE /* ASCII character string */
 START_BYTE = 1
 BYTES =}2
 VALID_MINIMUM = 2011-217T00:00:00.001
 /* SC Clock 365774402:0, JUNO Launch */
 VALID_MAXIMUM = 2019-001T00:00:00.000 /* Expect mission end in 2018 */
 MISSI\overline{NG_CONSTANT = 0001-001T00:00:00.000}
 DESCRIP\overline{TION = "UTC timestamp at center (not start) of record.}
 Format is yyyy-dddTHH:MM:SS.sss
 where yYyy = year, ddd = day of year,
 HH = hour, MM = minute,
 SS.SSS = decimal seconds to millisecond resolution.
 Note: Duration of record can be found in S.I. seconds
 by DIMO_UTC_UPPER - DIMO_UTC_LOWER. Do not confuse
```



```
 number of spacecraft clock ticks for accumulation.
 While 1 tick is approximately 1 second, it is not
 identical."
/* RJW, DIMO_UTC, C, 1, 21 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = PACKETID
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START_BYTE = 22
 BYTES }\mp@subsup{}{}{-}=
 VALID_MINIMUM = 105 /* (0x69) */
 VALID-MAXIMUM = 137 /* (0x89) */
 MISSI\overline{NG_CONSTANT = 255 /* Unknown, or a mix of packets */}
 DESCRIPTION = "Packet ID (DPID), Data Product Identifier
 High and Low Rate Science - Ion Time Of Flight
 PACKETID = 137 (0x89) = High Rate Science
 PACKETID = 105 (0x69) = Low Rate Science"
/* RJW, PACKETID, B, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = DIM0_UTC_UPPER
 DATA TYPE = DATE
 START_BYTE = 23
 BYTES = 21
 VALID MINIMUM = 2011-217T00:00:00.001
 VALID-MAXIMUM = 2019-001T00:00:00.000
 MISSI\overline{NG_CONSTANT = 0001-001T00:00:00.000}
 DESCRIPTION = "Oth Dimension of DATA: Time - upper limit.
```

```
 See DIMO UTC for description."
/* RJW, DIMO_UTC_UPPER, C, 1, 21 ₹/
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = PACKET_MODE
 DATA_TYPE = LSB_INTEGER
 START_BYTE = 44
 BYTES = 1
 VALID_MINIMUM = 1
 VALID_MAXIMUM = 2
 MISSIN̄G_CONSTANT = 127
 DESCRIP\overline{TION = "Packet Mode, describes type of data telemetry.}
 -2 = HSK / Housekeeping Engineering (Level 2 only)
 -1 = HVE / High Voltage Engineering (Level 2 only)
 0 = CAL / MCP Calibration Science (Level 2 only)
 1 = LRS / Low Rate Science
 2 = HRS / High Rate Science
 3 = DRS / DeRived Science from LRS and/or HRS
 127 = Unknown
 254 = Wrong - but HSK, see below. (Level 2 only)
 255 = Wrong - but HVE, see below. (Level 2 only)
 (Note, this could also be calculated via PACKETID.)
 If you have 254 or 255 then your code is incorrect,
 check you read a signed byte, rather than unsigned."
/* RJW, PACKET_MODE, b, 1, 1 */
END_OBJECT - = COLUMN
OBJECT = COLUMN
 NAME = DIM0_UTC_LOWER
 DATA TYPE = DATE /*- ASCII character string */
 START_BYTE = 45
 BYTES = 21
 VALID_MINIMUM = 2011-217T00:00:00.001
 VALID_MAXIMUM = 2019-001T00:00:00.000
 MISSING_CONSTANT = 0001-001T00:00:00.000
 DESCRIPTION = "Oth Dimension of DATA: Time - lower limit.
 See DIMO_UTC for description."
/* RJW, DIMO UTC LOWER, c, 1, 21 ₹/
END_OBJECT - - = COLUMN
OBJECT = COLUMN
 NAME = PACKET_SPECIES
 DATA TYPE = LSB INTEGER
 START_BYTE = 66
 BYTES = 1
 VALID MINIMUM = 9
 VALID_MAXIMUM = 9
 MISSING_CONSTANT = 127
 DESCRIP\overline{TION = "Packet Species, describes type of plasma data.}
 -1 = electrons
 0 = ion species 0, SPO
 1 = ion species 1, SP1
 2 = ion species 2, SP2
 3 = ion species 3, SP3
 4 = ion species 4, SP4
 5 = ion species 5, SP5
 6 = ion species 6, SP6
 7 = ion species 7, SP7
 8 = Sum of SP3, SP4 and SP5
 9 = All ions /* or any ion, e.g. TOF and LOG */
 10 = Single ion species derived from TOF data
 127 = Unknown
```

```
 255 = Wrong - but electrons, see below.
 If you have 255 then your code is incorrect,
 check you read a signed byte, rather than unsigned.'
/* RJW, PACKET SPECIES, b, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = ACCUMULATION_TIME
 DATA TYPE = LSB UNSIGNED INTEGER
 START_BYTE = 67
 BYTES = 2
 VALID MINIMUM = 1
 VALID_MAXIMUM = 1800
 MISSING_CONSTANT = 65535
 UNIT = "SECONDS" /* Not S.I. Seconds, but SCLK ticks */
 DESCRIPTION = "Accumulation Time.
 Number of seconds over which the data in this product
 was collected (Science Program).
 Note: Duration of record can be found in S.I. seconds
 by DIMO UTC UPPER - DIMO UTC LOWER. Do not confuse
 this with the ACCUMULATI\overline{ONN T\overline{IME object, which is the}}\mathbf{T}=\mp@code{M}
 number of spacecraft clock ticks for accumulation.
 While 1 tick is approximately 1 second, it is not
 identical.
 ACCUMULATION_TIME is left in spacecraft clock ticks to
 both aid mat\overline{ching with the level }2\mathrm{ data and to help}
 filtering for data taken in a particular mode."
/* RJW, ACCUMULATION TIME, H, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = DATA_UNITS
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START BYTE = 69
 BYTES - = 1
 VALID_MINIMUM = 2
 VALID MAXIMUM = 2
 MISSI\overline{NG_CONSTANT = 255}
 DESCRIPTION = "Data units correspond to:
 0 = All counts in the accumulation period
 1 = All counts divided by number of views
 2 = Counts per second
 /* S.I. science units: */
 3 = Differential Energy Flux [1/(m^2 sr s)]
 4 = Differential Number Flux [1/(m^2 sr s J)]
 5 = Phase Space Density [m^-6 s^3]
 /* Convenient (non-S.I.) science units: */
 6 = Differential Energy Flux [1/(cm^2 sr s)]
 7 = Differential Number Flux [1/(cm^2 sr s keV)]
 8 = Phase Space Density [cm^-6 s^3]
 /* As new products are developed this list will increase */
 /* If a number is not listed, */
 /* try a LBL/FMT file from a recent date. */
 255 = Unknown."
/* RJW, DATA_UNITS, B, 1, 1 */
END_OBJECT - = COLUMN
OBJECT = COLUMN
 NAME = SOURCE_BACKGROUND
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START BYTE = 70
 BYTES }\mp@subsup{}{}{-}=
 VALID_MINIMUM = 0
```

```
 VALID MAXIMUM = 1
 MISSING_CONSTANT = 255
 DESCRIPTION = "Source of Background values (see BACKGROUND object)
 that have been removed from the DATA object.
 0 = None: No background has been removed
 1 = Background anode (electron sensors only)
/* As new background removal methods are developed this list will increase */
 255 = Unknown."
/* RJW, SOURCE_BACKGROUND, B, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SOURCE_DEAD_TIME
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START BYTE = 71
 BYTES = 1
 VALID MINIMUM = 0
 VALID_MAXIMUM = 0
 MISSING_CONSTANT = 255
 DESCRIPTION = "Source of Dead Time Correction Method
 0 = None: Data has not been Dead Time corrected.
 255 = Unknown."
/* RJW, SOURCE_DEAD_TIME, B, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SOURCE_MAG
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 START_BYTE = 72
 BYTES = 1
 VALID_MINIMUM = 0
 VALID-MAXIMUM = 39
 MISSING_CONSTANT = 255
 DESCRIPTिION = "Source of MAG data
 Except case 0 and 1, PAYLOAD (pl) co-ordinate MAG files
 were used at 1s (or 2s if no 1s) resolution.
 0 = None: No MAG data in this product.
 1 = From Juno JADE's Level 2 files.
 (From spacecraft and therefore uncalibrated.)
 This is independent to JADE Level 2 version
 number as it does not change with versions.
 [Note MAG data in JADE files may be affected
 by the Juno time stutter.]
 3n = Juno's MAG's Level 3 version n calibrated
 files, e.g. }34\mathrm{ means version 4, so:
 30 = From Juno MAG's Level 3 version O0 quicklook
 payload files.
 (These are temporary files not in PDS.)
 31 = From Juno MAG's Level 3 version 01 calibrated
 payload files.
 32 = From Juno MAG's Level 3 version 02 calibrated
 payload files.
 Likewise 33 to 39 being Level 3 version 3 to 9.
 255 = Unknown.
 If you see a number not listed above, there may be
 later versions of MAG data - find the latest
 available LBL file for this product and see what that
 has listed."
/* RJW, SOURCE_MAG, B, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
```

```
 NAME = SOURCE JADE METAKERNEL
 DATA_TYPE = LSB_INTEGER
 START_BYTE = 73
 BYTES }\mp@subsup{}{}{-}=
 VALID_MINIMUM = -32767
 VALID MAXIMUM = 32767
 MISSIN\overline{NG CONSTANT = -32768}
 DESCRIPTION = "The JADE SPICE metakernel used to get the time,
 position, velocity, orientation and transformation
 objects in this file. The metakernel lists the
 many individual spice kernels used, which are
 archived by NAIF and not in this PDS volume.
 The JADE SPICE metakernel may be found in the CALIB
 directory of this PDS volume, with filenames of:
 JAD L30 SPICE METAKERNEL nnnnn.TXT
 where nnnn̄n is the \overline{S}OURCE_JADE_METAKERNEL object
 number (with leading zeros and positive).
 If any of the kernels within the metakernel are not
 reconstructed (but reference or predicted) for the
 time in question, this value will be negative.
 Within the JADE PDS archive this value should always
 be positive."
/* RJW, SOURCE JADE METAKERNEL, h, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SOURCE_JADE_CALIB
 DATA TYPE = LSB INTEGER
 START_BYTE = 75
 BYTES = 2
 VALID_MINIMUM = -32767
 VALID-MAXIMUM = 32767
 MISSIN̄G_CONSTANT = -32768
 DESCRIPTION = "The JADE calibration files list used to convert the
 engineering units of Level 2 data to the scientific
 units in this file. Similar to the SPICE metakernel
 list, this lists the many individual calibration files
 used, each of which may be found in the CALIB
 directory on this PDS volume.
 This list may be found in the CALIB directory of this
 PDS volume, with filenames of:
 JAD_L30_CALIB_LIST_nnnnn.TXT
 where nnnnn is the SOURCE_JADE_CALIB object
 number (with leading zeros and 'positive).
 If any of the calibration files listed are not final
 at the time in question, this value will be negative.
 (Newer calibration files will have a higher version and
 simply be listed in a newer SOURCE_JADE_CALIB file.)
 Within the JADE PDS archive this value should always
 be positive. However a version 00 file (for team use
 or uploaded to JSOC, not PDS) may have negative values
 with predicted positions/orientations/transformations.
 /* Rob Note: ensure this file says which version of
 Level 2 JADE files were used to make this L3 file. */"
/* RJW, SOURCE_JADE_CALIB, h, 1, 1 */
END OBJECT - = COLUMN
OBJECT = COLUMN
 NAME = FSW VERSION
 DATA_TYPE = PC_\overline{REAL}
 START_BYTE = 77
```

```
 BYTES = 4
 VALID_MINIMUM = 0.00
 VALID MAXIMUM = 9.99
 MISSIN\overline{NG_CONSTANT = -99.99}
 DESCRIPTION = "Flight Software version used.
 Number should be to 2 decimal places, with rounding.
 e.g. 4.00, 4.10, 4.20."
/* RJW, FSW_VERSION, f, 1, 1 */
END OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SC POS R
 DATA_TYPE = PC_REA\overline{L}
 START BYTE = 81
 BYTES }\mp@subsup{}{}{-}=
 VALID_MINIMUM = 0.000
 VALID MAXIMUM = 140.000 /* Excluding Cruise, can refine later */
 MISSIN}G_CONSTANT = 65535.000
 UNIT = "Jupiter Radii"
 DESCRIPTION = "Juno radial distance from Jupiter.
 (1 Rj = 71492.0 km)
 [Values may be greater than VALID_MAXIMUM
 during cruise to Jupiter before primary mission.]"
/* RJW, SC_POS_R, f, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SC_POS_R_UPPER
 DATA_TYPE = PC_REA\overline{L}
 START_BYTE = 85
 BYTES = = 4
 VALID_MINIMUM = 0.000
 VALID_MAXIMUM = 140.000 /* Excluding Cruise, can refine later */
 MISSIN}G_CONSTANT = 65535.000
 UNIT = "Jupiter Radii"
 DESCRIPTION = "Juno radial distance from Jupiter - upper limit.
 See SC_POS_R for description."
/* RJW, SC_POS_R_UPPER, f, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SC_POS_R_LOWER
 DATA_TYPE = PC_REA\overline{L}
 START BYTE = 89
 BYTES }\mp@subsup{}{}{-}=
 VALID_MINIMUM = 0.000
 VALID MAXIMUM = 140.000 /* Excluding Cruise, can refine later */
 MISSI\overline{NG_CONSTANT = 65535.000}
 UNIT = "Jupiter Radii"
 DESCRIPTION = "Juno radial distance from Jupiter - lower limit.
 See SC_POS_R for description."
/* RJW, SC_POS_R_LOWER, f, 1, 1 */
END_OBJECT - = COLUMN
OBJECT = COLUMN
 NAME = SC_POS_LAT
 DATA_TYPE = PC_REA\overline{L}
 START_BYTE = 93
 BYTES }\mp@subsup{}{}{-}=
 VALID_MINIMUM = -90.000
 VALID MAXIMUM = 90.000
 MISSI\overline{NG_CONSTANT = 65535.000}
 UNIT = "Degrees"
```

```
 DESCRIPTION = "Juno Latitude above Jupiter.
 (0 = Equatorial)"
/* RJW, SC_POS_LAT, f, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SC_POS_LAT_UPPER
 DATA_TYPE = PC_REAI
 START BYTE = 97
 BYTES = 4
 VALID_MINIMUM = -90.000
 VALID MAXIMUM = 90.000
 MISSING_CONSTANT = 65535.000
 UNIT = "Degrees"
 DESCRIPTION = "Juno Latitude above Jupiter - upper limit.
 See SC_POS_LAT for description."
/* RJW, SC_POS_LAT_UPPER, f, 1, 1 */
END_OBJECT - - - = COLUMN
OBJECT = COLUMN
 NAME = SC_POS_LAT_LOWER
 DATA_TYPE = PC_REAL
 STAR\overline{T}}\mathrm{ BYTE = 10
 BYTES }==
 VALID MINIMUM = -90.000
 VALID-MAXIMUM = 90.000
 MISSING_CONSTANT = 65535.000
 UNIT = "Degrees"
 DESCRIPTION = "Juno Latitude above Jupiter - lower limit.
 See SC_POS_LAT for description."
/* RJW, SC_POS_LAT_LOWER, f, 1, `1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SC_POS_LOCAL_TIME
 DATA_TYPE = PC REAL
 STAR\overline{T}_BYTE = 10\overline{5}
 BYTES = 4
 VALID MINIMUM = 0.000
 VALID_MAXIMUM = 24.000
 MISSING_CONSTANT = 65535.000
 UNIT = "Hours"
 DESCRIPTION = "Juno Local Time from Jupiter.
 00 = Midnight
 06 = Dawn
 12 = Noon
 18 = Dusk"
/* RJW, SC_POS_LOCAL_TIME, f, 1, 1 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SC_POS_LOCAL_TIME_UPPER
 DATA_TYPE = PC_REA\overline{L}
 STAR\overline{T}_BYTE = 10\overline{9}
 BYTES = 4
 VALID_MINIMUM = 0.000
 VALID_MAXIMUM = 24.000
 MISSING_CONSTANT = 65535.000
 UNIT = "Hours"
 DESCRIPTION = "Juno Local Time from Jupiter - upper limit.
 See SC POS LOCAL TIME for description."
/* RJW, SC_POS_LOCAL_TIME_UPPER, f, 1, 1 `/
END_OBJECT = COLUMN
```

```
OBJECT = COLUMN
 NAME = SC_POS_LOCAL_TIME_LOWER
 DATA TYPE = PC REAL
 START BYTE = 113
 BYTES = 4
 VALID_MINIMUM = 0.000
 VALID_MAXIMUM = 24.000
 MISSING CONSTANT = 65535.000
 UNIT - = "Hours"
 DESCRIPTION = "Juno Local Time from Jupiter - lower limit.
 See SC POS LOCAL TIME for description."
/* RJW, SC_POS_LOCAL_TIME_LOWER, f, 1, 1 \star/
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SC POS JUPITER J2000XYZ
 DATA_TYPE = PC_REA\overline{L}
 START_BYTE = 117
 ITEMS = 3
 ITEM_BYTES = 4
 BYTES = 12
 VALID MINIMUM = -10008880.0 /* ~ -140 Rj */
 VALID_MAXIMUM = 10008880.0 /* ~ +140 Rj */
 MISSING_CONSTANT = 65535.0 /* ~ +0.917 Rj */
 UNIT - = "km"
 DESCRIPTION = "Juno position from Jupiter in J2000 Cartesian
 co-ordinates [x,y,z] (units km).
 [Values may be outside of VALID_MIN/MAX range (~140Rj)
 during cruise to Jupiter before primary mission.]"
/* RJW, SC POS JUPITER J2000XYZ, f, 1, 3 */
END_OBJECT - = ' COLUMN
OBJECT = COLUMN
 NAME = SC_VEL_JUPITER_J2000XYZ
 DATA TYPE = PC REAL
 STAR\overline{T}
 ITEMS = 3
 ITEM BYTES = 4
 BYTES =
 VALID_MINIMUM = -70.0 /* Need to refine with V_mag during JOI */
 VALID MAXIMUM = 70.0 /* Need to refine with V mag during JOI */
 MISSING_CONSTANT = 65535.0
 UNIT = "km/s"
 DESCRIPTION = "Juno Velocity with respect to Jupiter in J2000
 Cartesian co-ordinates [Vx,Vy,Vz] (units km/s)."
/* RJW, SC_VEL_JUPITER_J2000XYZ, f, 1, 3 */
END_OBJECT - - = \overline{COLUMN}
OBJECT = COLUMN
 NAME = SC_VEL_ANGULAR_J2000XYZ
 DATA TYPE = PC REAL
 STAR\overline{T}}\mathrm{ BYTE = 14
 ITEMS = 3
 ITEM BYTES = 4
 BYTE}\overline{S}=1
 VALID_MINIMUM = -1.0 /* General limit */
 VALID MAXIMUM = 1.0 /* General limit */
 MISSI\overline{NG_CONSTANT = 65535.0}
 UNIT = "radians/s"
 DESCRIPTION = "Juno Angular Velocity in Cartesian co-ordinates
 [AVx,AVy,AVz] (units radians/s).
 (This is calculated with the SPICE ckgpav command
```

```
 where ref=J2000. SPICE defines it as 'This is the
 axis about which the reference frame tied to the
 instrument is rotating in the right-handed sense.')"
/* RJW, SC_VEL_ANGULAR_J2000XYZ, f, 1, 3 */
END_OBJECT }\mp@subsup{}{}{-}\quad-\quad=\overline{COLUMN
OBJECT = COLUMN
 NAME = SC_SPIN_PERIOD
 DATA TYPE = PC REAL
 STAR\overline{T_BYTE = 15}
 BYTES = 4
 VALID_MINIMUM = 0.0
 VALID_MAXIMUM = 100.0 /* May want to refine later */
 MISSIN}\mp@subsup{N}{__CONSTANT = 65535.0}{
 UNIT - = "SECONDS"
 DESCRIPTION = "Juno spin period (seconds).
 This is not useful during spacecraft maneuvers."
/* RJW, SC_SPIN_PERIOD, f, 1, 1 */
END_OBJECT - - = COLUMN
OBJECT = CONTAINER
 NAME = DESPUN_SC_TO_J2000_DIM1
 START_BYTE = 157
 BYTES }\mp@subsup{}{}{-}=12/*=3*4\mathrm{ -bytes */
 REPETITIONS = 3
 DESCRIPTION = "DESPUN_SC_TO_J2000_DIM1,
 2D arr\overline{a}y \overline{Of d}\\ta, \overline{1st and 2nd Dimensions."}
 OBJECT = CONTAINER
 NAME = DESPUN_SC_TO_J2000_DIM2
 START_BYTE = 1
 BYTES }\mp@subsup{}{}{-}=
 REPETITIONS = 3
 DESCRIPTION = "DESPUN_SC_TO_J2000_DIM2,
 1D arrāy of \overline{data, 2}\mathrm{ nd Dimension."}
 OBJECT = COLUMN
 NAME = DESPUN_SC_TO_J2000
 DATA_TYPE = PC_REA \overline{L}
 START_BYTE = 1
 ITEMS - = 1
 ITEM_BYTES = 4
 BYTE}\overline{S}=
 VALID_MINIMUM = -1.0
 VALID_MAXIMUM = 1.0
 MISSI\overline{N}G_CONSTANT = 65535.0
 DESCRIPTION = "Rotation matrix from despun spacecraft
 co-ordinates to J2000.
 This is a 3x3 matrix, but if read in as a 1x9
 stream then the 1D stream is [a,b,c, d,e,f, g,h,i]
 and the 2D matrix would be [a,b,c
 d,e,f
 g,h,i]"
/* RJW, DESPUN_SC_TO_J2000, £, 2, 3, 3 */
 END_OBJECT = COLUMN
 END_OB
END_OB
OBJECT = CONTAINER
 NAME = J2000_TO_JSSXYZ_DIM1
 START_BYTE = 193
 BYTES }=12/*=3 * 4-bytes */\
 REPETITIONS = 3
```

```
 DESCRIPTION = "J2000 TO JSSXYZ DIM1,
 2D array of dat\overline{a}, 1st and 2nd Dimensions."
 OBJECT = CONTAINER
 NAME = J2000_TO_JSSXYZ_DIM2
 START BYTE = 1
 BYTES - = 4
 REPETITIONS = 3
 DESCRIPTION = "J2000 TO JSSXYZ DIM2,
 1D arrray of dat\overline{a}, 2nd Dimension."
 OBJECT = COLUMN
 NAME = J2000_TO_JSSXYZ
 DATA TYPE = PC REAL
 START BYTE = 1
 ITEMS = 1
 ITEM BYTES = 4
 BYTES}
 VALID MINIMUM = -1.0
 VALID MAXIMUM = 1.0
 MISSIN}G_CONSTANT = 65535.0
 DESCRIPTION = "Rotation matrix from J2000 co-ordinates to JSS xyz
 (JSS = Jupiter-De-Spun-Sun, see SIS for details).
 This is a 3x3 matrix, but if read in as a 1x9
 stream then the 1D stream is [a,b,c, d,e,f, g,h,i]
 and the 2D matrix would be [a,b,c
 d,e,f
 g,h,i]"
/* RJW, J2000_TO_JSSXYZ, f, 2, 3, 3 */
 END_OBJECT = COLUMN
 END_OBJECT = CONTAINER
END_OBJECT = CONTAINER
OBJECT = CONTAINER
 NAME = J2000_TO_JSSRTP_DIM1
 START BYTE = 229
 BYTES }\mp@subsup{}{}{-}=12/*=3 * 4-bytes *
 REPETITIONS = 3
 DESCRIPTION = "J2000_TO_JSSRTP_DIM1,
 2D array of data, 1st and 2nd Dimensions."
 OBJECT = CONTAINER
 NAME = J2000_TO_JSSRTP_DIM2
 START BYTE = 1
 BYTES = 4
 REPETITIONS = 3
 DESCRIPTION = "J2000 TO JSSRTP DIM2,
 1D arrray of dat\overline{a}, 2nd Dimension."
 OBJECT = COLUMN
 NAME = J2000 TO JSSRTP
 DATA_TYPE = PC_REAL
 STAR\overline{T}}\mathrm{ BYTE = 1
 ITEMS = 1
 ITEM BYTES = 4
 BYTE}\overline{S}=
 VALID_MINIMUM = -1.0
 VALID MAXIMUM = 1.0
 MISSIN
 DESCRIPTION = "Rotation matrix from J2000 co-ordinates to
 JSS RTP, where RTP is Jupiter centered right
 handed R-Theta-Phi.
 (JSS = Jupiter-De-Spun-Sun, see SIS for details.)
```

```
This is a 3x3 matrix, but if read in as a 1x9
```

stream then the 1D stream is $[a, b, c, d, e, f, g, h, i]$
and the 2 D matrix would be $[\mathrm{a}, \mathrm{b}, \mathrm{c}$
$\mathrm{d}, \mathrm{e}, \mathrm{f}$
/* RJW, J2000_TO_JSSRTP, f, 2, 3, 3 */
END_OBJECT - $\quad=$ COLUMN
END_OBJECT $\quad=$ CONTAINER
END OBJECT $=$ CONTAINER
OBJECT $=$ COLUMN
NAME $\quad=$ MCP VOLTAGE
DATA_TYPE $=$ PC_ $\bar{R} E A L$
START BYTE $=265$
ITEMS $=1$
ITEM_BYTES $=4$
$\mathrm{BYTE} \overline{\mathrm{S}}=4$
VALID_MINIMUM $\quad=-5000.000 / *$ Will need to refine these limits */
VALID_MAXIMUM $=5000.000$ /* Will need to refine these limits */
MISSING_CONSTANT $=65535.000$
UNIT - = "Volts"
DESCRIPTION $=$ "MCP Voltage on sensor."
/* RJW, MCP VOLTAGE, f, 1, 1 */
END_OBJECT $=$ COLUMN
OBJECT $=$ CONTAINER
NAME $=$ ISSUES_CONTAINER
START BYTE $=269$
BYTES $\quad=4$
REPETITIONS $=2$
DESCRIPTION $=$ "ISSUES_CONTAINER, size 2."
OBJECT $=$ COLUMN
NAME $=$ ISSUES
DATA_TYPE = LSB_UNSIGNED_INTEGER
STAR $\bar{T}$ BYTE $=1$
ITEMS $\quad=1$
ITEM_BYTES $=4$
BYTES $=4$
VALID MINIMUM $=0$
VALID_MAXIMUM $=4294967294$
MISSING_CONSTANT $=4294967295$
DESCRIPTION $\quad$ "Issues or potential issues in this data record.
[Two values for ions as this is the ISSUES object
from both the ping and pong level 2 packets used
to create this record.]
These are issues that can be identified within the JADE
packet of data itself without any external information.
e.g. timing issues due to the MAG time stutter, or any
voltage pulsing, would not be included as there are no
indicators to them within this JADE packet.
[For a more comprehensive list of potential issues
from internal and external sources please see the
Level 3 data.]
Level 2 issues of this JADE packet are flagged by
individual bits, and several may be hit. If no issues
are flagged then this 4-byte unsigned integer is zero.
A value of 4294967295 is the MISSING CONSTANT and means
that the issue status is currently unknown.
All bits at 0 implies all is okay as seen by this
packet. If a bit is set to 1 then that bit is flagged,
otherwise it is set to zero and unflagged.

```
Not very serious issues for doing science:
```

Bit $0=U T C$ time is predicted, yet to be finalized.
Bit $1=$ Position/Orientation values predicted, yet to
be finalized. Level 3 (and above) data only.
Bit $2=$ TABLES_VERSION object was altered on the
ground to accurately reflect a 'commanded
parameter update' outside the initial
per-orbit commands JADE is returning.
[If changed, the original downlinked
TABLES_VERSION value can be found by cross-
referencing the PARAM TABLE VER object in the
JAD L20 HSK ALL SHK fīles. Note here the
PARAM_TABBLE_VER value is given as a unsigned
integer of Hex Major-Middle-Minor, such that
a value of 770 decimal is in hex $0 \times 302$,
meaning Table Version 3.02 ]
Bit 3 = FSW_VERSION 4.00 LRS/CAL Ion Species bug
fixèd on the ground by adjusting
TIMESTAMP_WHOLE, TIMESTAMP_SUB, and
ACCUMULATION TIME based on cross-referencing
JADE commanding.
Bit $4=$ LRS/CAL Ion Species record with unobserved
look directions (views) populated using views
from neighboring record. See Bit 12 for
uncorrected/unpopulated description.
(Only possible if ACCUMULATION TIME = 30.)
Bit $5=$ TIMESTAMP_WHOLE/SUB adjusted on the ground
to mitigate any Juno time stutter affects.
[Other TIMESTAMPs are susceptible to the
onboard time stutter too, but only the JADE
packet TIMESTAMP WHOLE/SUB is tracked here.]
Bit $6=$ Currently unused.
Bit 7 = Warning, a leap second occurs during the
accumulation period.
Data slightly different than expected, but can be used
for science with a little extra coding:
Bit $8=$ ACCUM_TRUNCATION object flagged.
Bit $9=$ Electřon (HRS/LRS/CAL) MAG objects are not
tracked, are either zeros or MISSING_CONSTANT.
[LRS and CAL did not have MAG objects prior
to FSW VERSION 4.10, therefore those MAG
objects here are set to MISSING_CONSTANT
when FSW VERSION < 4.10.]
Bit $10=$ TIMESTAMP WH$O L E / S U B$ affected by a Juno
onboard time stutter, JADE reported timestamp
is likely 1 whole tick too large.
[Other TIMESTAMPs are susceptible to the
onboard time stutter too, but only the JADE
packet TIMESTAMP WHOLE/SUB is tracked here.]
Bit $11=$ Currently ūnused.
Bit $12=$ LRS/CAL Ion Species record potentially has
unobserved look directions (spin phase sectors
or views) present in the data, meaning the
record may not contain data for a full 4pi
steradians field-of-view.
Unobserved look directions have zero counts
per view (or counts per second) in the data,
although an observed look direction may also
have zero counts if no ions were measured.

Therefore there is a potential confusion over zero measured counts or simply unmeasured. e.g. if the spin period is 30.7 seconds, then not all of the 78 spin phase sectors will be sampled in 30 seconds. (Unobserved views are only possible if ACCUMULATION_TIME = 30.) See the JADE SIS for more information.
Bit $13=$ At least one anode is blanked. See SIS document for further information.
Bit $14=$ FSW_VERSION 4.00 LRS/CAL Ion Species bug warning:

Not fixed as yet - when fixed it will become bit 3 of ISSUES instead. Level 2 data only when FSW_VERSION $=4.00$, ACCUMULTION TIME object is MĪSSING CONSTANT. Also, TIMESTAMP_WHOLE:TIMESTAMP_SUB is the end of the packet rather than the usual start, see TIMESTAMP_WHOLE object for more details. [Only affects data from 2015-089 to 2015-115.]
Bit $15=$ Electron Anodes Reversed.
Level 2 data only when FSW VERSION < 4.10 and only electron packets. Electron anodes are reversed in order and need to be remapped, however electron Spin Phase data (LRS data) cannot be remapped. See the SIS document for more information about this. [Affects all electron data 2011 to 2015-115.]

Data very different than expected, may not be suitable for science - use with extreme caution.
Bit $16=$ Data is not from flight instrument on Juno, see FLIGHT_OR_STL object.
Bit $17=\mathrm{MCP}$ _NOT_AT_COMMANDED object flagged. Electr̄on $\operatorname{HRS} / C A L / H V E$ packets use all three electron sensors and therefore have three MCP_NOT_AT_COMMANDED values per packet. Set'ing this flag means at least one of those three mcps is not at its commanded value.
Bit $18=$ Data includes some JADE-E300 sensor data. (Only flagged for HRS, LRS, CAL and HVE data.) E300 has a high voltage power supply issue and reported energy steps may be incorrect. If E 300 is off but still reported in the data product, it may be zeros of fill values.
Bit $19=$ Ion packet abruptly truncated.
This packet should not be used. It had an ACCUMULATION_TIME $=1$, ACCUM_TRUNCATION $=1$ and the DATA object is all zēros, with a timestamp that matches an earlier valid packet that was not truncated and has non-zero DATA. e.g. TOF and LOG example in level 2 data at TIMESTAMP_WHOLE of 495879710 (UTC 2015-261).
Bit $20=\mathrm{MCP}$ Dipping Triggered, in one or more sensors. If the sensor measures excessive counts, it temporarily lowers the MCP voltage to reduce the number of counts and protect the sensor. The MCP_NOT_AT_COMMANDED object is also flagged (Bī $1 \overline{7}$ in ISSUES) since the MCP is no longer at the commanded voltage.

For HRS/CAL/HVE electrons (datasets where multiple sensors are on) it is possible that one sensor has been dipped, but the others are not and still providing good data.
(First MCP dip was HRS electrons, 2017-350.)
Bit $21=\mathrm{MCP}$ Dipped sensor's DATA set to fill values. If MCP dipping has triggered (Bit 20 of ISSUES) then: DATA and BACKGROUND objects (and their *_SIGMAs) have been replaced with MISSING_CONSTANT values.
(Never used for Level 2 data, which has the counts as measured in the dipped state.)

In addition, Bit 17 of the ISSUES object (i.e. MCP_NOT_AT_COMMANDED object = 1) is set to zero, and, if it exists, the MCP NOT AT COMMANDED object itself is changed (from 1) tō be 0 for the offending sensor (s). If the DATA object contains data from multiple sensors (HRS/CAL/HVE electrons) then only the elements of the DATA object for the dipped sensor are set to MISSING CONSTANT (as identified by the MCP_NOT_AT_COMMANDED value for each sensor (prior to setting them to 0)). [See Bit 22 for a similar flag.]
Bit $22=1$ or more ELC sensor DATA set to fill values. Affects only electron HRS/CAL/HVE products (i.e. products that use multiple sensors), and generally only when starting that mode. When switching to HRS/CAL/HVE from LRS, one JADE-E sensor is already on, and the other (s) have to turn on, then it takes some time for that sensor to reach the commanded voltage. For a given record, MCP_NOT_AT_COMMANDED $=0$ for one sensor but is still $=\overline{1}$ for others. That is one sensor is taking valid science but the other(s) are not there yet and for those sensors: DATA and BACKGROUND objects (and their *_SIGMAs) have been replaced with MISSING_CONSTANT values.
(Never used for Level 2 data, which has the counts as measured in the dipped state.)

In addition, Bit 17 of the ISSUES object (i.e. MCP NOT_AT_COMMANDED object $=1$ ) is set to zero, and, if it exists, the MCP_NOT_AT_COMMANDED object itself is changed (from 1) to be 0 for the offending sensor (s).

Only the elements of the DATA object for the original MCP_NOT_AT_COMMANDED = 1 sensor (s) (prior to sēting them to 0 ) are set to MISSING_CONSTANT.
[Bits 21 and 22 are essentially the same feature caused by an mcp voltage not being at the commanded value, but the reason why this is the case is different. The treatment is identical for both Bit 21 and Bit 22.]
Bit $23=$ Currently unused.

Bit $24=\quad$ Currently unused.
Bit $25=\quad$ Currently unused.
Bit $26=$ Currently unused.
Bit $27=$ Currently unused.
Bit $28=$ Currently unused.
Bit $29=$ Currently unused.
Bit $30=$ Currently unused.
Bit $31=$ Reserved for MISSING_CONSTANT use.

Each bit has a decimal value of $2^{\wedge}\{b i t$ number\}, and the

```
 Issues flag is the sum of 2^{flagged bit numbers}.
 For instance, if this ISSUES flag = 131329, then in
 binary that value is 00000000000000100000000100000001
 showing bits 17, 8 and 0 are flagged.
 [If a currently unused bit is set, please check the
 latest LBL file for this product that you can find to
 see if it now has a definition.]"
 OBJECT = BIT_COLUMN
 NAME = ISSUES_BITS
 BIT DATA TYPE = BOOLEA\overline{N}
 STA\overline{RT_BI可 = 1}
 BITS = 32
 ITEMS = 32
 ITEM_BITS = 1
 MINIMUM = 0
 MAXIMUM = 1
 DESCRIPTION = "See ISSUES column object for description of bits."
 END OBJECT = BIT COLUMN
/* RJW, ISSUES, I, 1, 2 */
 END_OBJECT = COLUMN
END_ÖBJECT = CONTAINER
OBJECT = COLUMN
 NAME = TIMESTAMP_WHOLE
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 STAR\overline{T}}\mathrm{ BYTE = 277
 ITEMS - = 2
 ITEM_BYTES = 4
 BYTE}\overline{S}=
 VALID_MINIMUM = 365774402 /* 2011-Aug-05: Juno Launch */
 VALID MAXIMUM = 599573000 /* ~ 2019-Jan-01 */
 MISSIN
 DESCRIP\overline{TION = "Timestamps (Whole Second) of JADE Level 2 packets}
 used to make this Level }3\mathrm{ record.
 (Both the ping and pong level 2 packets.)"
/* RJW, TIMESTAMP_WHOLE, I, 1, 2 */
END_OBJECT - = COLUMN
OBJECT = COLUMN
 NAME = TIMESTAMP SUB
 DATA_TYPE = LSB_UNSIGNEED_INTEGER
 START BYTE = 285
 ITEMS }\mp@subsup{}{}{-}=
 ITEM_BYTES = 2
 BYTES
 VALID_MINIMUM = 0
 VALID_MAXIMUM = 65535
 MISSINGGCONSTANT = 0
 DESCRIPTION = "Timestamps (Subsecond) of JADE Level 2 packets
 used to make this Level 3 record.
 (Both the ping and pong level 2 packets.)"
/* RJW, TIMESTAMP_SUB, H, 1, 2 */
END_OBJECT = COLUMN
OBJECT = CONTAINER
 NAME = DATA_DIM1
 START_BYTE = 289
 BYTES
 REPETITIONS =
 DESCRIPTION = "DATA_DIM1,
 3D array of data, 1st, 2nd and 3rd Dimensions."
```

```
 OBJECT = CONTAINER
 NAME = DATA_DIM2
 START_BYTE = 1
 BYTES - = 372 /* = 93 * 4-bytes */
 REPETITIONS = 1
 DESCRIPTION = "DATA_DIM2,
 2D arrray of data, 2nd Dimension."
 OBJECT = CONTAINER
 NAME = DATA_DIM3
 START BYTE = 1
 BYTES }
 REPETITIONS = 93
 DESCRIPTION = "DATA DIM3,
 1D array of data, 3rd Dimension."
 OBJECT = COLUMN
 NAME = DATA
 DATA_TYPE = PC REAL
 START_BYTE = 1
 ITEMS = 1
 ITEM BYTES = 4
 BYTES }
 VALID MINIMUM = 0
 VALID MAXIMUM = 1000000 /* A guess! need to refine value later */
 MISSING_CONSTANT = -1
 UNIT = "COUNTS/SECOND"
 DESCRIPTION = "DATA: Counts/Second
 6 4 ~ E n e r g y ~ x ~ 1 ~ L o o k ~ D i r e c t i o n ~ x ~ 9 3 ~ C h a n n e l s . ~
 The 93 elements collapse the original 128 TOF
 channels as:
 [0]: TOF channels 0 - 1
 [1]: TOF channel 2
 [2]: TOF channel 3
 [3]: TOF channel 4
 [59]: TOF channel 60
 [60]: TOF channel 61
 [61]: TOF channels 62 - 63
 [62]: TOF channels 64 - 65
 [70]: TOF channels 80 - 81
 [71]: TOF channels 82 - 83
 [72]: TOF channel }8
 [73]: TOF channel }8
 [74]: TOF channel }8
 [75]: TOF channel }8
 [76]: TOF channel }8
 [77]: TOF channels 89 - 90
 [78]: TOF channels 91 - 92
 [89]: TOF channels 113 - }11
 [90]: TOF channels 115 - 116
 [91]: TOF channels 117 - 118
 [92]: TOF channels 119 - 124
 These channels are expressed as a duration in
 seconds in object DIM3 TOF.
 Original TOF channels 125, 126 and 127 are now
 objects TOF_WITH_START_OVERLOAD, TOF_TOO_SHORT
 and TOF TOO_LONG respectively."
/* RJW, DATA, f, 3, 64, 1, 93 */
 END_OBJECT = COLUMN
```

```
 END OBJECT = CONTAINER
 END_O\overline{BJECT = CONTAINER}
END_OBJECT = CONTAINER
OBJECT = CONTAINER
 NAME = DATA_SIGMA_DIM1
 START_BYTE = 2409\overline{7}
 BYTES = 372 /* = 1 * 93 * 4-bytes */
 REPETITIONS = 64
 DESCRIPTION = "DATA_SIGMA_DIM1,
 3D array of data, 1st, 2nd and 3rd Dimensions."
 OBJECT = CONTAINER
 NAME = DATA_SIGMA_DIM2
 START_BYTE = 1
 BYTES = = 372 /* = 93 * 4-bytes */
 REPETITIONS = 1
 DESCRIPTION = "DATA_SIGMA_DIM2,
 2D array of data, 2nd Dimension."
 OBJECT = CONTAINER
 NAME = DATA_SIGMA_DIM3
 START_BYTE = 1
 BYTES = 4
 REPETITIONS = 93
 DESCRIPTION = "DATA_SIGMA_DIM3,
 1D array of data, 3rd Dimension."
 OBJECT = COLUMN
 NAME = DATA_SIGMA
 DATA TYPE = PC RE}A
 START_BYTE = 1
 ITEMS = 1
 ITEM BYTES = 4
 BYTE\overline{S}}=
 VALID MINIMUM = 0
 VALID_MAXIMUM = 1000000 /* A guess! need to refine value later */
 MISSING_CONSTANT = -1
 UNIT = "COUNTS/SECOND"
 DESCRIPTION = "DATA_SIGMA
 1-sigma uncertainties on values in object DATA,
 such that true value = DATA +/- DATA SIGMA.
 See DATA entry above for size informätion."
/* RJW, DATA_SIGMA, f, 3, 64, 1, 93 */
 END OBJECT = COLUMN
 END_O\overline{BJECT = CONTAINER}
 END O\overline{BJECT = CONTAINER}
END_O\overline{B}JECT = CONTAINER
OBJECT = CONTAINER
 NAME = BACKGROUND_DIM1
 START_BYTE = 47905
 BYTES }\mp@subsup{}{}{-}=372 /* = 1 * 93 * 4-bytes */
 REPETITIONS = 64
 DESCRIPTION = "BACKGROUND DIM1,
 3D array of data, 1st, 2nd and 3rd Dimensions."
 OBJECT = CONTAINER
 NAME = BACKGROUND_DIM2
 START_BYTE = 1
 BYTES }\mp@subsup{}{}{-}=372 /* = 93 * 4-bytes */
 REPETITIONS = 1
 DESCRIPTION = "BACKGROUND_DIM2,
```

```
 2D array of data, 2nd Dimension."
 OBJECT = CONTAINER
 NAME = BACKGROUND_DIM3
 START_BYTE = 1
 BYTES = 4
 REPETITIONS = 93
 DESCRIPTION = "BACKGROUND_DIM3,
 1D array of data, 3rd Dimension."
 OBJECT = COLUMN
 NAME = BACKGROUND
 DATA_TYPE = PC_REAL
 START_BYTE = 1
 ITEMS = 1
 ITEM_BYTES = 4
 BYTE}\overline{S}=
 VALID_MINIMUM = 0
 VALID_MAXIMUM = 1000000 /* A guess! need to refine value later */
 MISSIN}G_CONSTANT = -1
 UNIT - = "COUNTS/SECOND"
 DESCRIPTION = "Background value removed from DATA.
 No further background removal is required.
 If you wish to do your own background removal,
 add this object to DATA then you can remove a
 background via your own method.
 The background values here were found from either
 a background anode or JADE's own ground method."
/* RJW, BACKGROUND, f, 3, 64, 1, 93 */
 END_OBJECT = COLUMN
 END O\overline{BJECT = CONTAINER}
 END_OB
END_OBJECT = CONTAINER
OBJECT = CONTAINER
 NAME = BACKGROUND_SIGMA_DIM1
 START_BYTE = 71713
 BYTES }\mp@subsup{}{}{-}=372/*=1 * 93 * 4-bytes */
 REPETITIONS = 64
 DESCRIPTION = "BACKGROUND_SIGMA_DIM1,
 3D array of data, 1st, 2nd and 3rd Dimensions."
 OBJECT = CONTAINER
 NAME = BACKGROUND_SIGMA_DIM2
 START_BYTE = 1
 BYTES }\mp@subsup{}{}{-}=372/*=93 * 4-bytes *
 REPETITIONS = 1
 DESCRIPTION = "BACKGROUND_SIGMA_DIM2,
 2D array of data, 2nd Dimension."
 OBJECT = CONTAINER
 NAME = BACKGROUND_SIGMA_DIM3
 START BYTE = 1
 BYTES = 4
 REPETITIONS = 93
 DESCRIPTION = "BACKGROUND_SIGMA_DIM3,
 1D array of d
 OBJECT = COLUMN
 NAME = BACKGROUND_SIGMA
 DATA_TYPE = PC_REAL
 START_BYTE = 1
 ITEMS = 1
```

```
 ITEM BYTES = 4
 BYTES = 4
 VALID_MINIMUM = 0
 VALID-MAXIMUM = 1000000 /* A guess! need to refine value later */
 MISSING_CONSTANT = -1
 UNIT = "COUNTS/SECOND"
 DESCRIPTION = "BACKGROUND_SIGMA
 1-sigma uncertainties on values in object
 BACKGROUND, such that
 true value = BACKGROUND +/- BACKGROUND_SIGMA.
 See BACKGROUND entry above for size information."
/* RJW, BACKGROUND SIGMA, f, 3, 64, 1, 93 */
 END_OBJECT = COLUMN
 END_O\overline{BJECT = CONTAINER}
 END OB
END_OBJECT = CONTAINER
OBJECT = CONTAINER
 NAME = DIM1_E_DIM1
 START_BYTE = 95521
 BYTES }==
 REPETITIONS = 64
 DESCRIPTION = "DIM1 E_DIM1,
 (2D array of size 64x1 = 1D array of size 64.)"
 OBJECT = COLUMN
 NAME = DIM1_E
 DATA TYPE = PC REAL
 START_BYTE = 1
 ITEMS = 1
 ITEM_BYTES = 4
 BYTES =}=
 VALID MINIMUM = 0.0
 VALID-MAXIMUM = 50000.0 /* Refine. Rounded up to whole keV/q */
 MISSINGGCONSTANT = 99999.0
 UNIT = "eV/q"
 DESCRIPTION = "1st Dimension of DATA: Energy - center eV/q value
 Upper and lower limits are given by the
 objects DIM1_E_UPPER and DIM1_E_LOWER."
/* RJW, DIM1_E, f, 1, 64 */
 END_OBJECT = COLUMN
END_OBJEC\overline{T}}=\mathrm{ CONTAINER
OBJECT = CONTAINER
 NAME = DIM1_E_UPPER_DIM1
 START_BYTE = 9577\overline{7}
 BYTES = 4
 REPETITIONS = 64
 DESCRIPTION = "DIM1_E_UPPER_DIM1,
 (2D \overline{array of size 64x1 = 1D array of size 64.)"}
 OBJECT = COLUMN
 NAME = DIM1_E_UPPER
 DATA_TYPE = PC_RE\overline{AL}
 START_BYTE = 1
 ITEMS = = 1
 ITEM_BYTES = 4
 BYTES = = 4
 VALID_MINIMUM = 0.0
 VALID_MAXIMUM = 50000.0 /* Refine. Rounded up to whole keV/q */
 MISSING_CONSTANT = 99999.0
 UNIT - = "eV/q"
 DESCRIPTION = "1st Dimension of DATA: Energy - upper eV/q limit.
```

```
 See DIM1 E for description."
/* RJW, DIM1 E UPPER, f, 1, 64 */
 END_OBJECT = COLUMN
END_OBJEC\overline{T}}=\mathrm{ CONTAINER
OBJECT = CONTAINER
 NAME = DIM1_E_LOWER_DIM1
 START_BYTE = 9603\overline{3}
 BYTES = 4
 REPETITIONS = 64
 DESCRIPTION = "DIM1_E_LOWER_DIM1,
 (2D array of size 64x1 = 1D array of size 64.)"
 OBJECT = COLUMN
 NAME = DIM1_E_LOWER
 DATA_TYPE = PC_REAL
 STAR\overline{T}}\textrm{BYTE}=
 ITEMS }\mp@subsup{}{}{-}=
 ITEM_BYTES = 4
 BYTE\overline{S}}=
 VALID_MINIMUM = 0.0
 VALID_MAXIMUM = 50000.0 /* Refine. Rounded up to whole keV/q */
 MISSING_CONSTANT = 99999.0
 UNIT = "eV/q"
 DESCRIPTION = "1st Dimension of DATA: Energy - lower eV/q limit.
 See DIM1_E for description."
/* RJW, DIM1_E_LOWER, f, 1, 64 */
 END OB\overline{JECT = COLUMN}
END_OBJEC\overline{T}}=\mathrm{ CONTAINER
OBJECT = CONTAINER
 NAME = DIM2_ELEVATION_DIM1
 START BYTE = 96289
 BYTES }\mp@subsup{}{}{-}=
 REPETITIONS = 64
 DESCRIPTION = "DIM2_ELEVATION_DIM1,
 (2D a}\mathrm{ array of síze 64x1 = 1D array of size 64.)"
 OBJECT = COLUMN
 NAME = DIM2_ELEVATION
 DATA_TYPE = PC_RE\overline{EL}
 STAR\overline{T}}\mathrm{ BYTE = 1
 ITEMS }\mp@subsup{}{}{-}=
 ITEM_BYTES = 4
 BYTES = 4
 VALID_MINIMUM = -90.0
 /* 12 ion anodes cover 270 degs of elevation */
 VALID_MAXIMUM = 180.0
 MISSING_CONSTANT = 65535.0
 UNIT = "Degrees"
 DESCRIPTION = "2nd Dimension of DATA: Spacecraft elevation -
 center value. Spacecraft elevation (degs) is
 analogous to latitude on a sphere. In spacecraft
 xyz co-ords:
 +z is equivalent to elevation = +90 degs
 -z is equivalent to elevation = -90 degs
 (The communication dish is directed along +z)
 xy-plane at z = 0 is equivalent to elevation = 0
 Note, 2nd dimension is really look direction
 which has an elevation and azimuth; hence two
 objects describe this: DIM2_ELEVATION and
 DIM2_AZIMUTH_DESPUN."
```

```
/* RJW, DIM2 ELEVATION, f, 1, 64 */
 END_OBJECT = COLUMN
END_OBJECT}\quad= CONTAINE
OBJECT = CONTAINER
 NAME = DIM2_ELEVATION_UPPER_DIM1
 START_BYTE = 9654\overline{5}
 BYTES = 4
 REPETITIONS = 64
 DESCRIPTION = "DIM2_ELEVATION_UPPER_DIM1,
 (2D array of size 64x1 = 1D array of size 64.)"
 OBJECT = COLUMN
 NAME = DIM2_ELEVATION_UPPER
 DATA_TYPE = PC_REAL
 START_BYTE = 1
 ITEMS = 1
 ITEM BYTES = 4
 BYTES
 VALID MINIMUM = -90.0
 /* 12 ion anodes cover 270 degs of elevation */
 VALID_MAXIMUM = 180.0
 MISSIN}G CONSTANT = 65535.0
 UNIT = "Degrees"
 DESCRIPTION = "2nd Dimension of DATA: S/C elevation - upper
 limit. See DIM2_ELEVATION for description."
/* RJW, DIM2_ELEVATION_UPPER, f, 1, 64 */
 END OBJECT
 = COLUMN
END_OBJECT}=\mathrm{ = CONTAINER
OBJECT = CONTAINER
 NAME = DIM2_ELEVATION_LOWER_DIM1
 START BYTE = 96801
 BYTES }\mp@subsup{}{}{-}=
 REPETITIONS = 64
 DESCRIPTION = "DIM2_ELEVATION_LOWER_DIM1,
 (2D \overline{array of si}ze 64\overline{x}1=1D array of size 64.)"
 OBJECT = COLUMN
 NAME = DIM2_ELEVATION_LOWER
 DATA_TYPE = PC_REAL
 START BYTE = 1
 ITEMS - = 1
 ITEM_BYTES = 4
 BYTES =}=
 VALID_MINIMUM = -90.0
 /* 12 ion anodes cover 270 degs of elevation */
 VALID_MAXIMUM = 180.0
 MISSING_CONSTANT = 65535.0
 UNIT = "Degrees"
 DESCRIPTION = "2nd Dimension of DATA: S/C elevation - lower
 limit. See DIM2_ELEVATION for description."
/* RJW, DIM2 ELEVATION_LOWER, f, 1, 64 */
 END_OBJECT = COLUMN
END_OBJECT}=\mathrm{ = CONTAINER
OBJECT = CONTAINER
 NAME = DIM2_AZIMUTH_DESPUN_DIM1
 START_BYTE = 97057
 BYTES = 4
 REPETITIONS = 64
 DESCRIPTION = "DIM2_AZIMUTH_DESPUN_DIM1,
 (2D array of size 64x1 = 1D array of size 64.)"
```

```
 OBJECT = COLUMN
 NAME = DIM2_AZIMUTH_DESPUN
 DATA TYPE = PC RE\overline{EAL}
 START_BYTE = 1
 ITEMS = 1
 ITEM_BYTES = 4
 BYTE\overline{S}}=
 VALID MINIMUM = 0.0
 VALID MAXIMUM = 720.0
 MISSING_CONSTANT = 65535.0
 UNIT - = "Degrees"
 DESCRIPTION = "2nd Dimension of DATA: Despun S/C azimuth -
 center value. Spacecraft azimuth (degs) is
 analogous to longitude on a sphere. In spacecraft
 xyz co-ords:
 +x is equivalent to azimuth = 0 degs
 +y is equivalent to azimuth = 90 degs
 -x is equivalent to azimuth = 180 degs
 -y is equivalent to azimuth = 270 degs
 +x is equivalent to azimuth = 360 degs
 +y is equivalent to azimuth = 450 degs
 The 'Despun' azimuth angle varies because Juno
 spins, where azimuth = 0 is defined as +x when
 spin phase equals zero (e.g. despun x-z plane
 contains the ECLIPJ2000 north).
 The relationship between despun azimuth and spin
 phase (which decreases during a spin) is simply:
 Despun Azimuth = 360 degrees - Spin Phase
 Because a lower to upper limit could occur over a
 360 degree boundary, the VALID_MINIMUM and
 VALID MAXIMUM go from 0 to +72\overline{0}}\mathrm{ degrees:
 e.g. [lower, center, upper] = [-10, 5, 20]
 would be given instead as = [350, 365, 380]
 Note, 2nd dimension is really look direction
 which has an elevation and azimuth; hence two
 objects describe this: DIM2_ELEVATION and
 DIM2_AZIMUTH_DESPUN."
/* RJW, DIM2_AZIMUTH_DESPUN, f, 1, 64 */
 END_OBJECT = COLUMN
END_OBJEC\overline{T}}=\mathrm{ CONTAINER
OBJECT = CONTAINER
 NAME = DIM2_AZIMUTH_DESPUN_UPPER_DIM1
 START_BYTE = 9731\overline{3}
 BYTES = 4
 REPETITIONS = 64
 DESCRIPTION = "DIM2_AZIMUTH_DESPUN_UPPER_DIM1,
 (2D array of size 64x1 = 1D array of size 64.)"
 OBJECT = COLUMN
 NAME = DIM2_AZIMUTH_DESPUN_UPPER
 DATA_TYPE = PC_R\overline{EAL}
 START_BYTE = 1
 ITEMS = 1
 ITEM_BYTES = 4
 BYTE\overline{S}}=
 VALID MINIMUM = 0.0
 VALID-MAXIMUM = 720.0
 MISSING_CONSTANT = 65535.0
```

```
 UNIT = "Degrees"
 DESCRIPTION = "2nd Dimension of DATA: Despun S/C azimuth - upper
 limit. See DIM2_AZIMUTH_DESPUN for description."
/* RJW, DIM2_AZIMUTH_DESPUN_UPPER, f, 1, 64**/
 END_OBJECT = COLUMN
END_OBJEC\overline{T}}=\mathrm{ CONTAINER
OBJECT = CONTAINER
 NAME = DIM2_AZIMUTH_DESPUN_LOWER_DIM1
 START_BYTE = 97569
 BYTES = 4
 REPETITIONS = 64
 DESCRIPTION = "DIM2_AZIMUTH_DESPUN_LOWER_DIM1,
 (2D array of size 64x1 = \overline{1D array of size 64.)"}
 OBJECT = COLUMN
 NAME = DIM2_AZIMUTH_DESPUN_LOWER
 DATA_TYPE = PC_REAL
 START_BYTE = 1
 ITEMS = 1
 ITEM_BYTES = 4
 BYTES =}=
 VALID MINIMUM = 0.0
 VALID_MAXIMUM = 720.0
 MISSING_CONSTANT = 65535.0
 UNIT - = "Degrees"
 DESCRIPTION = "2nd Dimension of DATA: Despun S/C azimuth - lower
 limit. See DIM2_AZIMUTH_DESPUN for description."
/* RJW, DIM2_AZIMUTH_DESPUN_LOWER, f, 1, 64*/
 END_OBJECT = COLUMN
END_OBJEC\overline{T}}=\mathrm{ CONTAINER
OBJECT = COLUMN
 NAME = DIM3 TOF
 DATA_TYPE = PC_REAL
 START_BYTE = 97多25
 ITEMS }\mp@subsup{}{}{-}=9
 ITEM_BYTES = 4
 BYTE\overline{S}=372
 VALID_MINIMUM = 0.000000000
 VALID MAXIMUM = 0.000000330 /* = 330e-9 = 330 ns */
 MISSINGGCONSTANT = 65535.0
 UNIT - = "SECONDS"
 DESCRIPTION = "3rd Dimension of DATA: Time Of Flight - center value.
 (Seconds)"
/* RJW, DIM3_TOF, f, 1, 93 */
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = DIM3_TOF_UPPER
 DATA_TYPE = PC_REALL
 START_BYTE = 98197
 ITEMS }\mp@subsup{}{}{-}=9
 ITEM_BYTES = 4
 BYTE\overline{S}}=37
 VALID_MINIMUM = 0.000000000
 VALID_MAXIMUM = 0.000000330 /* = 330e-9 = 330 ns*/
 MISSING_CONSTANT = 65535.0
 UNIT - = "SECONDS"
 DESCRIPTION = "3rd Dimension of DATA: Time Of Flight - upper limit.
 See DIM3 TOF for description."
/* RJW, DIM3_TOF_UPPER, f, 1, 93 */
END_OBJECT = COLUMN
```

```
OBJECT = COLUMN
 NAME = DIM3_TOF_LOWER
 DATA_TYPE = PC_REAL
 STAR\overline{T}_BYTE = 98\overline{5}69
 ITEMS = 93
 ITEM BYTES = 4
 BYTES = 372
 VALID MINIMUM = 0.000000000
 VALID_MAXIMUM = 0.000000330 /* = 330e-9 = 330 ns*/
 MISSING_CONSTANT = 65535.0
 UNIT = "SECONDS"
 DESCRIPTION = "3rd Dimension of DATA: Time Of Flight - lower limit.
 See DIM3_TOF for description."
/* RJW, DIM3_TOF_LOWER, f, 1, 93 `/
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = TOF_WITH_START_OVERLOAD
 DATA_TYPE = PC_REAL
 STAR\overline{T}_BYTE = 98\overline{9}41
 ITEMS = 64
 ITEM_BYTES = 4
 BYTES =}=25
 VALID_MINIMUM = 0 /* same value as for DATA object */
 VALID_MAXIMUM = 1000000 /* same value as for DATA object */
 MISSING_CONSTANT = -1 /* same value as for DATA object */
 UNIT = "COUNTS/SECOND"
 DESCRIPTION = "TOF with start overload: Counts/Second
 A signal pulse that is too strong (above a threshold)
 in the electronics. Multiple start-overloads that
 occur within a 330ns event window are counted each time
 in the Logicals Start Overload, but only once here."
/* RJW, TOF_WITH_START_OVERLOAD, f, 1, 64 */
END_OBJECT - - = \overline{COLUMN}
OBJECT = COLUMN
 NAME = TOF_WITH_START_OVERLOAD_SIGMA
 DATA_TYPE = PC_-REAL
 STAR\overline{T}_BYTE = 99\overline{197}
 ITEMS = 64
 ITEM_BYTES = 4
 BYTE\overline{S}}=25
 VALID_MINIMUM = 0 /* same value as for DATA object */
 VALID_MAXIMUM = 1000000 /* same value as for DATA object */
 MISSIN̄G_CONSTANT = -1 /* same value as for DATA object */
 UNIT - = "COUNTS/SECOND"
 DESCRIPTION = "TOF with start overload uncertainty: Counts/Second
 1-sigma uncertainties on values in object
 TOF WITH START OVERLOAD such that true value =
 TOF_WITM_S_STA\overline{RT_OVER\overline{LOAD +/- TOF_WITH_START_OVERLOAD_SIGMA.}}\mathbf{T}\mathrm{ .}
 See T
 information."
/* RJW, TOF_WITH_START_OVERLOAD_SIGMA, f, 1, 64 */
END_OBJECT - - = \overline{COLUMN}
OBJECT = COLUMN
 NAME = TOF_TOO_SHORT
 DATA_TYPE = PC_\overline{REAL}
 STAR\overline{T}_BYTE = 99苂53
 ITEMS }\mp@subsup{}{}{-}=6
 ITEM_BYTES = 4
 BYTE\overline{S}}=25
```

```
 VALID MINIMUM = 0 /* same value as for DATA object */
 VALID_MAXIMUM = 1000000 /* same value as for DATA object */
 MISSING_CONSTANT = -1 /* same value as for DATA object */
 UNIT - = "COUNTS/SECOND"
 DESCRIPTION = "TOF too short: Counts/Second
 TOF underflow: Count of TOF measurements that did not
 timeout, but resulted in a measurement smaller than
 the sensor could measure."
/* RJW, TOF TOO SHORT, f, 1, 64 */
END_OBJECT - = COLUMN
OBJECT = COLUMN
 NAME = TOF_TOO_SHORT_SIGMA
 DATA_TYPE = PC_REAL
 STAR\overline{T}}\mathrm{ BYTE = 99709
 ITEMS }=6
 ITEM BYTES = 4
 BYTE\overline{S}}=25
 VALID_MINIMUM = 0 /* same value as for DATA object */
 VALID MAXIMUM = 1000000 /* same value as for DATA object */
 MISSINNG_CONSTANT = -1 /* same value as for DATA object */
 UNIT = "COUNTS/SECOND"
 DESCRIPTION = "TOF too short uncertainty: Counts/Second
 1-sigma uncertainties on values in object
 TOF TOO SHORT such that true value =
 \overline{T}OF_\overline{TOO_SHORT +/- TOF_TOO_SHORT_SIGMA.}
 See TO\overline{F}_TO\overline{O}SHORT entry \overline{above} for size information."
/* RJW, TOF_TOO_SHORT_SIGMA, f, 1, - 64 */
END_OBJECT - - = COLUMN
OBJECT = COLUMN
 NAME = TOF_TOO_LONG
 DATA_TYPE = PC_REAL
 STAR\overline{T}_BYTE = 999}6
 ITEMS }=6
 ITEM_BYTES = 4
 BYTE\overline{S}}=25
 VALID_MINIMUM = 0 /* same value as for DATA object */
 VALID_MAXIMUM = 1000000 /* same value as for DATA object */
 MISSINNG_CONSTANT = -1 /* same value as for DATA object */
 UNIT = "COUNTS/SECOND"
 DESCRIPTION = "TOF too long: Counts/Second
 TOF overflow: Count of TOF measurements that resulted
 in no stop signal arriving within 330ns of the start
 signal."
/* RJW, TOF_TOO_LONG, f, 1, 64 */
END_OBJECT - = COLUMN
OBJECT = COLUMN
 NAME = TOF_TOO_LONG_SIGMA
 DATA_TYPE = PC_REAL
 STAR\overline{T}}\mathrm{ BYTE = 10}\overline{0}22
 ITEMS }\mp@subsup{}{}{-}=6
 ITEM_BYTES = 4
 BYTE\overline{S}}=25
 VALID_MINIMUM = 0 /* same value as for DATA object */
 VALID_MAXIMUM = 1000000 /* same value as for DATA object */
 MISSI\overline{NG_CONSTANT = -1 /* same value as for DATA object */}
 UNIT = "COUNTS/SECOND"
 DESCRIPTION = "TOF too long uncertainty: Counts/Second
 1-sigma uncertainties on values in object
 TOF_TOO_LONG such that true value =
```

TOF TOO LONG +/- TOF TOO LONG SIGMA.
See TOF $\quad$ TOO_LONG entry $\bar{a} b o v \bar{e}$ for $\overline{\text { Bize }}$ information."
/* RJW, TOF_TOO_LONG_SIGMA, f, $1, \overline{6} 4$ */
END_OBJECT - - $\quad$ - COLUMN

## Appendix E Level 5 data record formats

This section describes the format of the Level 5 data files.


[^0]:    Counts $=$ Total Counts,
    Rate $=$ Count rates (normalized by number of views)

