Version 01 DATA_UNCERTAINTY_EQNS_VO01.PDF 2016-10-19

Poisson Uncertainty of JADE data

Poisson statistics: 1-standard deviation uncertainty is the square root of the total number of counts.
But if zero counts were measured, the uncertainty is 1 count (technically *} as can not be negative,
but level 3 files only provide a single number, hence *1).

Yet we have two further sources of uncertainty on total number of counts (and all these are
independent of each other):
* Variance in counts due to Look Up Table (LUT) compression VAR yr:
If zero counts there is no lossy compression in the LUT, so VAR.yr = 0.
e Avariance in number of views, m, of VAR,,. If m is known then VAR,, = 0.

Counts per Accumulation product.
DATA product returns total counts, compressed by a LUT: VAR 74141 counts = DATA

Variance of VAR7otal_counts 1S just the uncertainty on the total number of counts, which is only due to
the LUT compression, DATA + \/VAR yr

Variances are summed together to give:
DATA = DATA + \JVARcounss + VAR yr = DATA + \/DATA + VAR, yr

=> The combined standard uncertainty for a ‘counts per accumulation’ product is:
Counts {DATA + JDATA+VAR,,; ifDATA >0

Accumulation 0+ 1 if DATA =0

Counts per View product. (Rate product)

DATA product returns counts per view, compressed by a LUT. There are m views.

Total number of counts (required for Poisson Statistics) is the counts per view, multiplied by number

of views: VAR rota1 counts = M DATA

Uncertainty per view requires dividing the standard deviation by m, so divided the variance by m2:
mDATA DATA

VARyews = =

m?2 m

Variance of VARyiews requires propagating the uncertainty of DATA and m, with uncertainty of VAR.yr
and VAR, respectively. Variance of DATA/m is then:
DATA? (VARLUT VARm> VAR, yr N DATA?VAR,,

DATA? m2

VARpara/m =

m2 m2 m#

If zero counts, then for total counts for Poisson statistics, m DATA = 1s0: VARypps = —
Variance of VAR_views requires propagating the uncertainty of m=.

DATA VAR,;r DATA?VAR,,
DATA + + — + vy if DATA > 0
Counts m m m
View
1 2VAR,, .
0+ St if DATA=0
m m

When it is known that m = 1 (=> VAR, = 0) then this collapses to the Counts/accumulation equation.
For this version 1 approach, it is assumed that VAR, = 0, simplified equations are shown later.

See https://en.wikipedia.org/wiki/Propagation_of uncertainty for propagation equations.

Rob Wilson

Page 1

Version 01 DATA_UNCERTAINTY_EQNS_VO01.PDF 2016-10-19

If DATA object contains MISSING_CONSTANT values

If the DATA value is a MISSING_CONSTANT (fill) value, then the uncertainty should be returned as a
MISSING_CONSTANT too. This makes coding more complicated, as there are several reasons why the
DATA object could contain MISSING_CONSTANT values. E.g. HRS_ELC_ALL contains data from all
three electron sensors, however when E300 is off, then the E300 entries are all MISSING_CONSTANT
values, but the E060 and E180 entries are not. Alternatively, for JADE-I records, there may be a ping
without a pong, or vice versa, hence half the 64 energy steps must remain MISSING_CONSTANT. As
such, be careful not to treat a MISSING_CONSTANT value (which differs depending on product) as if it
was valid DATA.

VAR.ur

The VAR, yr term relates to the onboard lossy compression and for each look up table is provided in
the LUT_m_mm_COMPRESSION.CSV files as one of the following 4 columns:

Object in file (form L3_n_nn_??? in Data Info

file LUT_m_mm_COMPRESSION.CSV) | Mode

L3_16_1_VAR HRS 16 to 8 bit variance for compression for electrons
L3_16_2 VAR HRS 16 to 8 bit variance for compression for ions
L3_32_1 VAR LRS/CAL | 32 to 8 bit variance for compression for electrons
L3_32_ 2 VAR LRS/CAL | 32 to 8 bit variance for compression for ions

Which LUT_m_mm_COMPRESSION.CSV files to use may be found from the level 2 data files in the
TABLES_VERSION object for each level 2 record. If TABLES_VERSION = 3.06 then use
LUT_3_06_COMPRESSION.CSV, etc. Note that TABLES_VERSION is a value to two decimal places, but
due to rounding errors may show up in IDL as 3.0599999, which obviously means 3.06. At time of
writing there are LUTS 3.00, 3.01, 3.02, 3.03, 3.04, 3.05, 3.06, 3.07, 3.08 and 3.09 - which so far the
LUT_m_mm_COMPRESSION.CSV files are identical for all, however it is possible later LUTs may
contain different values to optimize them once we’ve got a feeling for general plasma conditions at
Jupiter.

However it is not as simple as taking the DATA value and cross-referencing the L3_n_nn_VAR from
the corresponding L3_nn_n_REP column. The onboard data has a MIN_SUBTRACTED_VALUE
removed before lossy compression, which is also reported in the JADE Level 2 files. For JADE-I, there
is a different value for each Level 2 ping and pong record (32 energy steps each). In addition, values
onboard for LRS_ELC_ANY, LRS_ION_ANY and CAL_ION_ANY are multiplied by 512 before lossy
compression. All these effects must be taken in to account in order to get a value equivalent to that
when underwent lossy compression onboard and thus provided the VAR yr term.

IDL code is shown later and describes exactly how the uncertainties were generated for the level 3
products for this version 1 method of uncertainties; that is the ultimate documentation source.

Rob Wilson

Page 2

Version 01 DATA_UNCERTAINTY_EQNS_VO01.PDF 2016-10-19

VAR,

The uncertainty on number of views for a given spin-phase sector of a low rate science product is
surprisingly tricky to work out. It is dependent on three items: the total accumulation period, the
current Juno spin period for that record, and the spin-phase at the start of the record. The former is
provided in the level 2 data record as ACCUMULATION_TIME. However the spin period can vary
from 29.2 to 30.8 seconds for the Juno propulsion folk to consider it an acceptable “2 RPM”, and its
value must be calculated from reconstructed SPICE kernels. The start spin-phase is based on the
onboard reported spin-phase to JADE, which is an unsigned 32-bit value representing 0 to 2m, that is
4294967296 different values, each 83.82 nano-degrees apart. The start spin-phase may also be
calculated using reconstructed SPICE kernels, however it is not known if that accurately reflects the
reported onboard spin-phase to the same 32-bit resolution - as such it also has an unknown
uncertainty. The other option would be to use the SHK housekeeping data file that lists an onboard
spin-phase (spin-phase to next ‘north’ crossing rather than from the last ‘north’ crossing) and time
when it was registered. However the cadence of these records are different to that of the science
products, and even when plotting the values against time it does not flow linearly but with a slight
wave, suggesting that although the onboard value is to 32-bit resolution, it is not reported to that.

A possible solution is two-fold:

- If ACCUMULATION_TIME was truncated (Level 2 object ACCUM_TRUNCATION = 1) then we cannot
calculate VAR, therefore set returned uncertainty to the MISSING_CONSTANT value for all elements.
- Otherwise, use the worst-case VAR, independent of start spin-phase and spin-period.

Calculating the worst-case VAR, may be done by brute force. For a fixed spin period and
ACCUMULATION_TIME, altering the start spin-phase value tended to provide a few unique VAR
values, of which we take the largest. Such calculations take time, therefore should be done in
advance. The following plot shows an early test by way of example for LRS electrons; trying spin
periods from 29.2s to 30.8s in steps of 0.005s, and start spin phase angles from 0° to 359.9° in steps
of 0.1°, providing over a million sample calculations for VAR, to be plotted. The figure clearly shows
distinct quantization of values, with larger VAR, values as you get further away from the perfect
30.000s spin period. The figure also shows that even if the spin period is known exactly, if the start
spin phase is unknown then VAR, could be any one of 3 or 4 different values.

05 Low Rate Science Electrons: ACCUMULATION TIME=30s
- T T T T T T T

0.4 J

03 | e —_—

m
o
o
T
.
I

VAR (counts./second)2

0k I I I I I I e

29.2 294 296 298 30 30.2 30.4 30.6 30.8
SC_SPIN_PERIOD (s)

For reference, SC_SPIN_PERIOD for when JADE has been on in 2015 and 2016 has varied from

~60.17s (early 2015), ~30.12s to ~30.15s, ~30.19s to ~30.20s and ~30.68s after JOI to ~30.74s at

PJ1 (last known value at time of writing this document).

However as mentioned before, this is still very hard to get right. Onboard spin-phase used to select
which look direction each anode falls in may well be different (to 32-bit resolution) to the spin-phase
calculated on the ground with SPICE kernels.

Rob Wilson Page 3

Version 01 DATA_UNCERTAINTY_EQNS_VO01.PDF 2016-10-19

Essentially - solving this problem to accurately get VAR, will require a major investigation project,
and is not done for this iteration of uncertainty calculation.

Instead, for this version 01 iteration, we shall assume m is known perfectly based on a perfect 30s (or
multiples of) spin-period, and as such VAR, = 0. This simplifies the equations considerably.

Should a users wish to add back in a VAR, term they may take the DATA_SIGMA value from the level
3 files (generated by the equations in the next section without the VAR, term by setting VAR»=0),
square it to get a variance, add the users desired VAR, term to that variance, and square root it to
return to the standard deviation.

[Note: Returning the onboard average is better than returning the onboard sum. Had the onboard
code returned the sum only, we’d still have the uncertainty in number of views, so a VAR, term, but
now we’d also have an uncertainty in the average counts per view too - which we do not get from the
onboard average - it knew what m was to make the average.]

Equations used for uncertainties in Version 01

Counts per Accumulation product.

Accumulation products do not have an unknown number of views - so the equations are unchanged
from those originally postulated. However we add an extra condition, the cases when DATA is the
MISSING_CONSTANT (FILL for short) value:

The combined standard uncertainty for a ‘counts per accumulation’ product is:

DATA + \/DATA+VAR,yr ifDATA >0

0t1 if DATA =0
FILL + FILL if DATA = FILL

Counts
Accumulation

Counts per View product. (Rate product)

For the three Rate products (low rate science electrons and low rate (and calibration) ion species)
we assume we known m perfectly, hence VAR, = 0, and the earlier equations simplify, except we have
two new cases. If the DATA is the MISSING_CONSTANT value (FILL for short) then both the data and
uncertainty are set to the MISSING_CONSTANT value. The second is if the level 2 object
ACCUM_TRUNCATION equals 1 (rather than zero) then we know that the record was ended before
the expected 30 (or multiples of) seconds. In that case we do not know which look directions got
how many views, as such we report the value as DATA, but set the uncertainty to the
MISSING_CONSTANT value.

The combined standard uncertainty for a ‘counts per accumulation’ product is:

DATA VARyyr .
Counts
: = 1
View 0+ = if DATA = 0
FILL + FILL if DATA = FILL
DATA + FILL if ACCUM_TRUNCATION =1

However, there is a further complication in that the VAR, yr values reported in the CALIB/LUT tables
are for the cases after the onboard DATA was multiplied by 512. This must be accounted for and is
shown in the following outline.

Rob Wilson

Page 4

Version 01 DATA_UNCERTAINTY_EQNS_VO01.PDF 2016-10-19

Background value uncertainties.
The uncertainties for any background value are calculated as above for accumulation or rate
background products. If using the background anodes within some of the Level 2 files they are
compressed the same way as the regular data, with the exception of JAD_L20_LRS_ELC_ANY where
the Level 2 data has its own BACKGROUND_COUNTS object that is total accumulated counts over the
ACCUMULATION_TIME without any lossy LUT compression (nor 512 multiplier), despite the DATA
object being a rate product. Therefore if using the LRS electron background anode (object
BACKGROUND_COUNTS) for a background value, then for JAD_L20_LRS_ELC_ANY only:
BACKGROUND_COUNTS {BACKGROUND_COUNTS + /BACKGROUND_COUNTS if BACKGROUND_COUNTS > 0

0+1 if BACKGROUND_COUNTS = 0
FILL + FILL if BACKGROUND_COUNTS = FILL

e.g. same as the equation for any accumulation product, but with VAR.yr = 0.

Accumulation

If no background is removed, then the level 3 objects BACKGROUND and BACKGROUND_SIGMA (both
the same size as object DATA) will be all zeros.

To tell if a background has been removed from the data (or not) in the level 3 files, the
SOURCE_BACKGROUND object in every level 3 record provides a number representing if a
background has been removed, and if so, with what method. SOURCE_BACKGROUND = 0 means that
no background was removed and that the BACKGROUND and BACKGROUND_SIMGA level 3 objects
are all zeros, which is usually the case for the first iteration of data files.

Process to calculate uncertainties in code — an outline.

Implementing the above equations is not trivial - but here’s the outline. The IDL code that follows is
the true source - the following is trying to put the basics in to words.

* Start with Level 2 data, record by record
For ions this is per ping record and per pong record, before merging them.
* Ifpacketis from arate species,mult = 512, elsemult = 1
Rate species are packets from JAD_L20_LRS_ELC_ANY, JAD_L20_LRS_ION_ANY or
JAD_L20_CAL_ION_ANY.
o For electrons, there are 10 views per look direction for a 30 s spin-period with 30s
ACCUMULATION_TIME. This is true for all 48 look directions, all have 10 views.
Therefore number of views, m, is:
m = ACCUMULATION TIME * 1 0 / 30
o Forion species (both LRS and CAL) there are 78 look directions, for a given 30 s
spin-period with 30s ACCUMULATION_TIME, the number of views may be 5, 3, 2 or
1. Therefor if

LRS species views = [5,5,5,3,2,3,2,3,2,1,1,1,1,
11,
11,
llllllllll111111213121312131515151

then for look direction i (of 0 to 77):
m[i] = ACCUMULATION TIME*LRS species views[1]/30
o Note, both the above equations work for a spin period of 1 or 2 revolutions per
minute (RPM), e.g. for electrons with 2 RPM the equation would bem =
ACCUMULATION TIME * 20/ 60,
however that is equivalent to the original equation.
[Main mission is at ~2 RPM, but 2015 cruise data also had ~1 RPM.]
* Identify any element of DATA that is a MISSING_CONSTANT value. For Level 2 data this is
either 4294967295 or 65535, depending on which product.
This will be required later to reset any values back to MISSING_CONSTANT.

Rob Wilson

Page 5

Version 01 DATA_UNCERTAINTY_EQNS_VO01.PDF 2016-10-19

e Ifany DATA element is a MISSING_CONSTANT, set the corresponding uncertainty to
MISSING_CONSTANT and do not alter that value with anything from the following steps.
The remaining bullets only apply to non-MISSING_CONSTANT elements of DATA.

* Copy the DATA value, and remove the record’s MIN_SUBTRACTED_VALUE from it, then
multiply by mult.

D = (DATA - MIN SUBTRACTED VALUE) * mult

* Identify which of the 4 compression LUTs to use: 16_1, 16_2, 32_1 or 32_2.

* Using the LUT, replace the level 2 count representative value (integers) with the more
appropriate Level 3 count representative value (floats), and rename it D_L3. E.g. if LUT is
16_1, then find the index of object L2_16_1_REP that matches D with the corresponding
index in L3_16_1_REP to get D_L3:

D L3 = LUT3 nn _n REP[WHERE(LUT2 nn n REP = D)]
(NOTE : should not be doing this (or below) if D = MISSING_CONSTANT.)

¢ With that same index, find the VAR yr term. E.g. is LUT is 16_1, then the index of object
L3_16_1_VAR value:

VAR LUT = LUT3 nn n VAR[WHERE(LUT2 nn n REP = D)]

* Now reverse the earlier onboard adjustment equations:

D L3 = (D L3 / mult) + MIN SUBTRACTED VALUE

* The VAR yr term may also need adjusting depending on if it’s a rate product:
VAR LUT = VAR LUT / mult / mult

* Now one of the following 4 cases, starting from the top

o Ifmult = 1 (i.e.an accumulation product)
VAR CNTS = D L3
VAR VAR CNTS + VAR LUT
Finally, if any element of VAR is 0, replace it with a value of 1:
J = WHERE(VAR = 0)
VAR[j] = 1
o Elseif ACCUM_TRUNCATION = 1
Set all uncertainty elements to fill values and move to next record.

VAR[{all}] = MISSING CONSTANT
o Elseifmult != 1 (i.e.arate product) then the following equations apply.
[Note that for LRS electrons, m is a scalar so use m rather thanm[i] .]
VAR CNTS[i] = DATA L3[i] / m[i]
VAR LUT[i] = VAR LUT[i] / m[i] / m[i]
VAR[1] = VAR CNTS (i1 + VAR LUT [i]

Finally, if any element of VAR is 0, replace it with a value of 1/m2:
J = WHERE(VAR = 0)
VAR[J] =1 / m[j] / m[]]
* Asafinal check - if any element of DATA = MISSING_CONSTANT, the corresponding element
of VAR should also be a MISSING_CONSTANT, and if not then set it to MISSING_CONSTANT.
* The uncertainty for DATA is now the square root of VAR,
unless VAR was a MISSING_CONSTANT, in which case the uncertainty becomes a
MISSING_CONSTANT.

Rob Wilson Page 6

Version 01

Process to calculate uncertainties in code — Actual IDL code used

The following two functions are the actual IDL code used (at time of writing this document when LUT

DATA_UNCERTAINTY_EQNS_VO01.PDF

2016-10-19

version 3.09 was the latest) to calculate the uncertainties for Level 3 JADE data, version 01 of
uncertainty method.

The first function puts the LUT from CALIB/LUT_3_00_COMPRESSION.CSV in to an IDL script; rather
than 256 entries per array, which would take up many pages to list, we show the first two elements

and last element of each.

The second function does all the calculation, taking an input of a Level 2 file (as an IDL structure). As

opposed to what was said in the outline in the previous section, this code takes ion data with ping

and pongs already merged, so there are two MIN_SUBTRACTED_VALUES to worry about, one for the

first half of energy steps, and one for the second half.

RN NN RN

FUNCTION jade load compression LUT, TABLES_VERSION

ON_ERROR, 2
COMPILE_OPT

;There are

;16_1 : 16
;716_2 : 16
;32_1 : 32
;32_2 : 32

;High Rate
;Low Rate s
;tables
;by 512)."

; LUTS 3.00 to 3.09 are identical,

HIDDEN

4 compression tables
to 8 bit compression
to 8 bit compression
to 8 bit compression
to 8 bit compression
science data use the
cience (and CAL) dat

for FSW4:

for electrons

for ions

for electrons

for ions

16 to 8 bit tables.
a use the 32 to 8 bit

(with some rate products first multiplied

; Values from CALlB/LUT7370OiCOMPRhSSlON.CSV

; Each arra

CASE 1 OF ;

(TABLES_V.
STEP

L2 16 1 MIN :
L2 16 1 MAX :

L2 16 1

L3 16 1 REP :
L3 16 1 VAR :
L2 16 2 MIN :
L2 16 2 MAX :
L2 16 2 REP :
L3 16 2 REP :

L3 16 2

L2 32 1 MIN :
L2 32 1 MAX :
L2 32 1 REP :
L3 32 1 REP :
L3 32 1 VAR :
L2 32 2 MIN :
L2 32 2 MAX :
L2 32 2 REP :
L3 32 2 REP :

L3 32 2
ELSE : ME
ENDCASE

RETURN, LUT
END

IR RN

y has 256 elements
main code already c

FUNCTION jade counts for 13 v01,

ERSION LT 3.095) : LUT = { $; LUT 3.00 Compression table
: [0.000d, 1.000d, {253 ELEMENTS CUT FOR SPACE}, 255.000d], $

[0.000d, 1.000d, {253 ELEMENTS CUT FOR SPACE}, 63243.000d],$
[0.000d, 1.000d, {253 ELEMENTS CUT FOR SPACE}, 65535.000d],$

REP : [0.000d, 1.000d, {253 ELEMENTS CUT FOR SPACE}, 64389.000d],$
[0.000d, 1.000d, {253 ELEMENTS CUT FOR SPACE}, 64389.000d],$
[0.000d, 0.000d, {253 ELEMENTS CUT FOR SPACE}, 438345.167d],$
[0.000d, 1.000d, {253 ELEMENTS CUT FOR SPACE}, 63243.000d],$
[0.000d, 1.000d, {253 ELEMENTS CUT FOR SPACE}, 65535.000d],$
[0.000d, 1.000d, {253 ELEMENTS CUT FOR SPACE}, 64389.000d],$
[0.000d, 1.000d, {253 ELEMENTS CUT FOR SPACE}, 64389.000d],$

VAR : | 0.000d, 0.000d, {253 ELEMENTS CUT FOR SPACE}, 438345.167d],$
[0.000d, 1.000d, {253 ELEMENTS CUT FOR SPACE}, 3773127747.000d],$
[0.000d, 1.000d, {253 ELEMENTS CUT FOR SPACE}, 4294967295.000d], $
[0.000d, 1.000d, {253 ELEMENTS CUT FOR SPACE}, 4034047521.000d], $
[0.000d, 1.000d, {253 ELEMENTS CUT FOR SPACE}, 4034047520.500d], $
[0.000d, 0.000d, {253 ELEMENTS CUT FOR SPACE}, 22693042951859276.000d],$
[0.000d, 1.000d, {253 ELEMENTS CUT FOR SPACE}, 3773127747.000d],$
[0.000d, 1.000d, {253 ELEMENTS CUT FOR SPACE}, 4294967295.000d], $
[0.000d, 1.000d, {253 ELEMENTS CUT FOR SPACE}, 4034047521.000d], $
[0.000d, 1.000d, {253 ELEMENTS CUT FOR SPACE}, 4034047520.500d], $

VAR : [0.000d, 0.000d, {253 ELEMENTS CUT FOR SPACE}, 22693042951859276.000d]}

SSAGE, 'ERROR: unrecognized LUT for compression table'

L2_innnnnn
e _counts_for_ 13 v01, L2 innnnnn , SC_SPIN_ PERIOD; spin period no longer used in this code

; FUNCTION Jjad
; This code
; the compr
; It assume
; views for

ON_ERROR, 2

L2 = L2 _inn

hecked LUT > 2.995, i.e.

which are all the LUTs at time of coding.

3.00 with rounding

calculates uncertainties based on Poisson Statistics and

ession LUT table.
s perfect 30s spins
rate species (i.e.

nnnn ; so as not to

t = TAG_NAMES (L2)

IF MAX(L2.D

ATA UNITS) GT 1 THEN

Rob Wilson

(or 60s) with exactly known number of
VAR m = 0 assumed and not even coded for)
change original structure.

$; $ = continue on next line

Page 7

Version 01 DATA_UNCERTAINTY_EQNS_VO01.PDF 2016-10-19

MESSAGE, 'ERROR: Input structure does not look like Level 2, DATA UNITS look wrong'
IF TOTAL (STRCMP (t,'UTC')) NE 1 THEN $
MESSAGE, 'ERROR: Input structure does not look like Level 2, no UTC field'
IF (L2.PACKET SPECIES[0] GE 0) THEN IF (MAX(STRCMP(t,'T PING PONG')) EQ 0) THEN $
MESSAGE, "ERROR: This structure must already be merged for pings and pongs" ; only if ion
; Must run CAL modes separate to LRS/HRS
MAX MODE = MAX(L2.PACKET MODE, MIN = MIN_MODE)
IF (MIN MODE EQ 0) AND (MAX MODE NE 0) THEN $
MESSAGE, 'ERROR: For conversion of counts, must do CAL modes separately to HRS and/or LRS.'

; TABLES_VERSION has a MISSING_CONSTANT = -99.99
ind = WHERE (L2.TABLES VERSION LT -99.00, COMPLEMENT=notind, /NULL)
IF N_ELEMENTS(ind) GT 0 THEN BEGIN
IF N_ELEMENTS(ind) EQ N_ELEMENTS (L2.TABLES VERSION) THEN BEGIN
PRINT, 'WARNING: No records in file have a valid TABLES VERSION (LUT) number, '+$
'returning an empty structure of -1'
RETURN, -1
ENDIF
PRINT, 'WARNING: Removing records with a fill value for TABLES_ VERSION'
L2 = jade_ st shrink (TEMPORARY (L2), INDEX = notind)
; Jjade_st_shrink shrinks structure to only keep records specified by INDEX
; e.g9. here is keeping records with L2.TABLES VERSION GE -99.00,
; and removeing records with L2.TABLES_VERSION LT -99.00
ENDIF
; L2.TABLES_VERSION is definitely not fill by here
IF MIN(L2.TABLES VERSION) LT 2.995 THEN $
MESSAGE, 'ERROR: Input structure needs a TABLES VERSION 3.00 or greater'

CASE L2.PACKETID[0] OF

96 : FMT = 'JAD L20 LRS_ION_ANY'
97 : FMT = 'JAD L20 LRS_ION_ANY'
98 : FMT = 'JAD L20 LRS_ION_ANY'
99 : FMT = 'JAD L20 LRS_ION_ANY'
100: FMT = 'JAD L20_LRS_ION ANY'
101: FMT = 'JAD L20_LRS_ION ANY'
102: FMT = 'JAD L20_LRS_ION ANY'
103: FMT = 'JAD L20 LRS_ION ANY'
112: FMT = 'JAD L20 CAL_ION ANY'
113: FMT = 'JAD L20_ CAL_ION ANY'
114: FMT = 'JAD L20_CAL_ION ANY'
115: FMT = 'JAD L20 CAL_ION ANY'
116: FMT = 'JAD L20 CAL_ION ANY'
117: FMT = 'JAD L20 CAL ION ANY'
118: FMT = 'JAD L20 CAL ION ANY'
119: FMT = 'JAD L20 CAL ION ANY'
128: FMT = 'JAD L20 HRS_ION ANY'
129: FMT = 'JAD L20 HRS_ION ANY'
130: FMT = 'JAD L20 HRS_ION ANY'
131: FMT = 'JAD L20 HRS_ION ANY'
132: FMT = 'JAD L20 HRS_ION ANY'
133: FMT = 'JAD L20 HRS_ION ANY'
134: FMT = 'JAD L20 HRS_ION ANY'
135: FMT = 'JAD L20 HRS_ION ANY'
137: FMT = 'JAD L20 HLS_ ION TOF'
105: FMT = 'JAD L20 HLS ION TOF'
121: FMT = 'JAD L20 CAL ION TOF'
140: FMT = 'JAD_L20 HLS ION_LOG'
108: FMT = 'JAD L20 HLS ION LOG'
124: FMT = 'JAD _L20 CAL_ION_LOG'
142: FMT = 'JAD _L20 HRS ELC_ALL'
104: FMT = 'JAD _L20 LRS ELC_ANY'
106: FMT = 'JAD L20 LRS ELC_ANY'
107: FMT = 'JAD L20 LRS ELC_ANY'
126: FMT = 'JAD_L20_CAL_ELC_ALL'
ELSE MESSAGE, 'ERROR: PacketID '+STRTRIM (STRING (L2.PACKETID[0]),2)+ $
' packets should not have counts converted in preparation for level 3.'
ENDCASE

; Should not get here if you try a wrong packet

CASE FMT OF ; 3 products are multiplied x 512 onboard (never TOF nor LOG)
'JAD L20_LRS_ELC_ANY' : mult = 512d ; a rate species
'JAD L20_LRS_ION_ANY' : mult = 512d ; a rate species
'JAD L20_CAL_TION_ANY' : mult = 512d ; a rate species
ELSE : mult = 1d

Rob Wilson Page 8

Version 01

ENDCASE

DATA_UNCERTAINTY_EQNS_VO01.PDF

; set up number of views constants for rate species

IF ROUND (mult)

EQ 512 THEN BEGIN

; For LRS electrons
; ASSUMING A PERFECT MULTIPLE OF 30 second spins,

; where each look direction would get 10 views on

a perfect 30s spin period

LRS_electron_views =

104 ;

for a 30s spin period

;
;

;

And for LRS/CAL ion species

ASSUMING A PERFECT MULTIPLE OF 30 second spins,

there are 15 2-second sweeps

in one 30 second spin,

2016-10-19

LRS_species_views = DOUBLE ([S
5, 5, 5, S
3, 2, 3, 2, 3, 2, $§
i,1,1,1,1,11,1,1,1,1,1,1,1,1,5$
i,1,1,1,1,1,1,1,1,1,1,1,1,1,1,$
i,1,1,1,1,1,1,1,1,1,1,1,1,1,1,$
i,1,1,1,1,1,1,1,1,1,1,1,1,1,1,$
2, 3, 2, 3, 2, 3, $
5, 5, 5 1)

;LRS_species views2 =

;FOR vz =

;LRS_species views =

DBLARR (1, 64,78, /NOZERO)
0,77 DO LRS_species_views2[0,*,vz] =
LRS_species_views2

;+ Next line does the above 3 commented out lines faster

LRS_species_views =
ismult = 1

ENDIF ELSE BEGIN
ismult = 0

ENDELSE

CASE FMT OF

REBIN (REFORM(LRS species views,1,1,78)

LRS_species_views[vz]

,1,64,78)

"JAD 120 HRS ELC_ALL' : key = [' 16 1 ']
"JAD L20 LRS ELC_ANY' : key = [' 32 1 ']
"JAD 120 CAL ELC_ALL' : key = [' 32 1 ']
"JAD L20 HRS ION ANY' : key = [' 16 2 ']
"JAD L20 LRS_ION ANY' : key = [' 32 2 ']
"JAD L20 CAL ION ANY' : key = [' 32 2 ']
"JAD L20 CAL ION TOF' : key = [' 32 2 ']
"JAD 120 CAL ION LOG' : key = [' 32 2 ']
"JAD L20 HLS ION TOF' : key = [' 32 2 ',' 16 2 ']
"JAD L20 HLS ION LOG' : key = [' 32 2 ',' 16 2 ']

MESSAGE, ' ERROR:

ELSE
ENDCASE
CASE FMT OF ;

"JAD L20 HRS ELC ALL'

"JAD L20 HRS ION ANY'

ELSE : MISSING CONSTANT
ENDCASE

L3_MISSING_CONSTANT = -1d

; If any MISSING CONSTANT values in DATA,
L2.DATA[WHERE ((ROUND (L2.DATA, /L64) EQ MISSING CONSTANT) OR (L2.DATA EQ -1),
1 line for L2.DATA to L37MISSING7CONSTANT

L3_MISSING_CONSTANT ;

L2 = CREATE_STRUCT (L2,
L2.DATA SIGMA[*] =

DATA_ VAR = L2.DATA ;

unrecogniged VHEMT

3 products are multiplied x 512 onboard

(never TOF nor LOG)

MISSING CONSTANT = 65535LL ; make LONG64 with LL
MISSING_CONSTANT =

= 4294967295LL ;

65535LL
make LONG64 with LL

; make LONG64 with LL

; Set Missing Constant to use for L3 files.

'DATA_SIGMA',
L3_MISSING_CONSTANT ; preallocate with -1 as fill value

L2 .DATA)

set to -1 instead of what they where

start preallocation by matching size

DATA VAR[*]
empty zeros

od

; preallocate with 0 at the same size as DATA

DATA VAR[O, *, *, *]

;

prev_LUT = -99
prev_mode = -3
nml = N_ELEMENTS (L2.T) -1L

pre-allocate for size,

set to zero above

/NULL)] =

FOR rec = OL,nml DO BEGIN

; Don't get new LUT if no change

IF (prev_LUT NE L2.TABLES VERSION[rec]
L2.TABLES VERSION[rec] ;
L2 .PACKET MODE[

prev_LUT =
prev_mode =

CASE FMT OF
; For these two FMTS:

; packet _mode of 2 means HRS means 16_2 table

rec

; ...packet_mode of 1 means LRS

"JAD_L20_HLS_ION_TOF'

"JAD_L20_HLS_ION LOG'

ELSE key dim = 0
ENDCASE

Rob Wilson

key dim
key dim

update prev_lut
update prev_mode

1

(index 1),
means 32_2 table (index 0).
= ROUND (L2.PACKET MODE[rec])
= ROUND (L2 .PACKET MODE[rec])

while

OR (prev_mode NE L2.PACKET MODE[rec]

1
1

THEN BEGIN

Page 9

Version 01 DATA_UNCERTAINTY_EQNS_VO01.PDF 2016-10-19

LUT = _jade_load compression_ LUT (prev_LUT) ; and now get new one.

LUT_TAGS = TAG_NAMES (LUT)

L2 rep = WHERE (STRCMP (LUT TAGS, 'L2'+key[key dim]+'REP',/FOLD CASE) EQ 1, NULL=1)

; NULL = 1 faster than /NULL

IF N_ELEMENTS (L2_rep) EQ 0 THEN MESSAGE, 'ERROR: Failed to find LUT tag 12 rep',6key dim
L3 rep = WHERE (STRCMP (LUT TAGS, 'L3'+key[key dim]+'REP',/FOLD CASE) EQ 1, NULL=1)

IF N_ELEMENTS (L3_rep) EQ 0 THEN MESSAGE, 'ERROR: Failed to find LUT tag 13 rep', key_dim
L3 var = WHERE (STRCMP (LUT TAGS, 'L3'+key[key dim]+'VAR',/FOLD CASE) EQ 1, NULL=1)

IF N_ELEMENTS (L3_var) EQ 0 THEN MESSAGE, 'ERROR: Failed to find LUT tag 13 var',6key dim

L2 rep values = ROUND (LUT. (L2 rep),/L64) ; make integer of type LONG64 - used in for loop below
ENDIF
; Can use too many dimensions - if it's an unused dimension it's simply a dimension of size 1

; e.g. an array of size n x 64 x 13 is the same as an array of size n x 64 x 13 x 1

; so I will use 4 dimensions for all, as TOF goes up to 4 dimensions, although most are only to 3
DATA L2 = L2.DATA[rec,*,*,*]

; Find fills now so we can replace them later

FILLS = WHERE (DATA L2 EQ L3 MISSING CONSTANT, nFILLS, NULL=1) ; NULL = 1 faster than /NULL

; Deal with min-subtracted value and the products with the 512 multiple
IF N_ELEMENTS (L2.MIN SUBTRACTED VALUE[rec,*]) EQ 1 THEN BEGIN ; ELC

DATA 12[0, *,%,*] -= L2.MIN SUBTRACTED VALUE[rec]

ENDIF ELSE BEGIN ; ION, has two values - one for the ping, one for the pong.
DATA L2[0, 0:31,*,*] -= L2.MIN SUBTRACTED VALUE[rec,0]
DATA 12[0,32:63,%*,*] -= L2.MIN SUBTRACTED VALUE[rec,1]

ENDELSE

; Account for products thare are multiplied by 512
IF ismult EQ 1 THEN BEGIN ; IF statment fore speed, don't bother if mult = 1
DATA L2 = DATA L2 * mult

ENDIF

; Replace fill values to a fill value of -1

IF nFILLS GT 0 THEN DATA L2[FILLS] = L3 MISSING CONSTANT

DATA L2 = ROUND(TEMPORARY(DATA7L2),/L64) ; make DATA L2 an integer of type LONG64
DATA L3 = DATA L2 ; preallocate array of integers of right size.

uni = jade unique (DATA_L2) ; jade_unique extracts array of unique values in DATA_L2.

; check there's more than just fill, if it it just fill, set record to -1s and continue
IF (N_ELEMENTS (uni) EQ 1) AND (uni[0] EQ L3 _MISSING CONSTANT) THEN BEGIN
CONTINUE ; nothing to do as nothing but fill, go to next FOR loop iteration
ENDIF
uni = uni[WHERE (uni NE L3 MISSING_CONSTANT,n_ uni,NULL=1)] ; remove any fill values from list
; uni can not be empty/NULL due to IF statement above.

VAR LUT = empty_ zeros ; preallocate with 0 at the same size as DATA L2
FOR z = OL, (n uni - 1L) DO BEGIN
index = WHERE (L2 rep values EQ uni[z], NULL=1) ; NULL = 1 faster than /NULL
IF N_ELEMENTS (index) EQ 0 THEN $
MESSAGE, 'ERROR: Could not find value in LUT L2 table to convert to an L3 equivalent'
ind = WHERE (DATA L2 EQ uni[z],NULL=1l) ; can't be NULL as value in uni, but kept for safety
DATA L3[ind] = LUT. (L3_rep) [index]
VAR _LUT[ind] = LUT. (L3 _var) [index]
ENDFOR

; Reverse deal with min-subtracted value and the products with the 512 multiple
IF ismult EQ 1 THEN BEGIN ; IF statment fore speed, don't bother if mult = 1

DATA L3 = DATA L3 / mult ; Account for products thare are multiplied by 512
VAR_LUT = VAR_LUT / mult / mult ; since this is variance, need to divide twice,
; e.g. (stddev/mult) squared is (sqgrt(var)/mult)”2 = var/mult”2

ENDIF

IF N_ELEMENTS (L2.MIN SUBTRACTED VALUE[rec,*]) EQ 1 THEN BEGIN ; ELC
DATA L3 += L2.MIN SUBTRACTED VALUE[rec]
ENDIF ELSE BEGIN ; 10N
DATA L3[0, 0:31,*%,*%] += L2.MIN SUBTRACTED VALUE[rec,0]
DATA 13[0,32:63,%,*] += L2.MIN SUBTRACTED VALUE[rec,1]
ENDELSE
IF (nFILLS GT 0) THEN DATA L3[FILLS] = L3 _MISSING CONSTANT ; replace fills

;;; typical spin period cancels out below! Doesn't matter if 60 or 30! Do not need this section!
; ; If a rate product, we need to know the spin period for later.
; ; Don't need if an accumulation product.
; IF LZ.DATAiUNITS[rec] EQ 1 THEN BEGIN

; CASE 1 OF

; ; Engineering consider 2 RPM to be 29.2 to 30.8 seconds.

; (SC_SPIN PERIOD[rec] GE 29.2) AND (SC_SPIN PERIOD[rec] LE 30.8) : S
; typical_spin period = 30d ; We expect this at Jupiter.

; (ROUND (SC_SPIN PERIOD[rec]) EQ 60) AND (L2.TIMESTAMP WHOLE LT 481935731) : $

; typical_spin period = 60d ; Cruise in early 2015 only, SCLK 481935731 = 2015-100T11:00:00
; ELSE : MESSAGE, 'ERROR: unrecognized standard spin for rate product'

; ENDCASE

; nspins = DOUBLE (ROUND(L2.ACCUMULATION_ TIME[rec] / typical spin period))

; ; rounding for safety - but not required if both numbers are multiples of 30

Rob Wilson Page 10

Version 01 DATA_UNCERTAINTY_EQNS_VO1.PDF 2016-10-19

; ENDIF
; Now calculate variance... using Poisson it's the size of the counts,
; plus variance due to unknowing the counts due to the compression table
CASE 1 OF

L2.DATA UNITS[rec] EQ 0: BEGIN

ACCUMULATION product - nice and easy!

; Does not matter if ACCUM _TRUCATION EQ 1, we know the accumulation time
VAR_CNTS = DATA L3 ; This is the Poisson stats variance term

;

VAR = VAR CNTS + VAR _LUT ; Combined Standard uncertainty
VAR[WHERE (VAR EQ 0, NULL=1l)] = 1d ; Deal with any case of variance = 0
END

; If a rate product but was accumulation truncated - return fill values for
; uncertainties, after all, we really don't know how many views (m)...
L2.ACCUM_TRUNCATION[rec] EQ 1: VAR[*] = L3 MISSING_CONSTANT

; Case statements that follows must have L2.DATA UNITS[rec] = 1 and L2.ACCUM TRUNCATION[rec] = 0
L2.PACKET SPECIES[rec] LT 0: BEGIN

; Rate product, and electrons, must be LRS electrons

; ASSUMING A perfect MULTIPLE OF 30 second spins

; m = number of views per spin sector

;jm = LRS_electron views * nspins * typical spin period / 30d

; This is independent of spin rate if assumed spin rate is a multiple of 30

m = LRS electron views * L2.ACCUMULATION TIME[rec] / 30d

; note, m is a scalar for LRS Electrons.

; We are ignoring any variance in m itself.

VAR_CNTS = DATA_ L3 / m ; This is the Poisson stats variance term

VAR LUT = VAR LUT / m / m ; This is the term based on the uncertainty in the LUT
VAR = VAR _CNTS + VAR _LUT ; Combined Standard uncertainty, no VAR m term
VAR[WHERE (DATA L3 EQ 0, NULL=1)] = 1d / m / m ; Deal with zero count cases

END

ELSE: BEGIN
; Rate product, and ion species data for LRS or CAL
ASSUMING A perfect MULTIPLE OF 30 second spins
; m = number of views per spin sector
;m = LRS_species_views * nspins * typical spin period / 30d
; This is independent of spin rate if assumed spin rate is a multiple of 30
m = LRS_species_views * L2.ACCUMULATION TIME[rec] / 30d
note, m is an array of size 1 x 64 x 78 for ion species LRS/CAL.
; We are ignoring any variance in m itself.
VAR_CNTS = DATA_ L3 / m ; This is the Poisson stats variance term
VAR LUT = VAR LUT / m / m ; This is the term based on the uncertainty in the LUT
VAR = VAR CNTS + VAR LUT ; Combined Standard uncertainty
; now deal with zero counts
iz = WHERE (DATA L3 EQ 0, NULL=1) ; NULL = 1 faster than /NULL
IF N_ELEMENTS (iz) GT 0 THEN VAR[iz] = 1d / m[iz] / m[iz]
END

AR RN

ENDCASE

;

;

; Replace fills in original L2.DATA array with fills for data and uncertainty
DATA L3[FILLS] = L3 _MISSING CONSTANT ; not original MISSING CONSTANT
VAR ([FILLS] = L3_MISSING_CONSTANT ; not original MISSING CONSTANT
; Put back in structure
L2.DATA[rec,*,*,*] = DATA L3
DATA VAR[rec,*,*,*] = VAR
ENDFOR

Finally sqgrt (Variance) = std dev, but only those values that are not -1

; note L2.DATA SIGMA was set to -1 initially

ind = WHERE (DATA VAR NE L3 MISSING CONSTANT, NULL=1) ; NULL = 1 faster than /NULL
IF N_ELEMENTS (ind) GT O THEN L2.DATA SIGMA[ind] = SQRT(DOUBLE (DATA VAR[ind]))

;

RETURN, L2
END

Rob Wilson

Page 11

