Galileo PLS RECORD (LPW) Mode Summary Ida, Jupiter-Approach, Io Torus, Jupiter Tour ______________________________________________________________________________ Hot Plasma Scan: A 8x13x8 = 832 bytes/spin B 6x13x8 = 624 bytes/spin Accumulation time: 18/120 s = 150 ms S/C rotation in one step: 0.150*0.33 = 0.0495 radians = 2,8 degrees S/C rotation in one sector: = 45 degrees Maximum count rate: 65535/.150 = 436,900 Hz Duty cycle: 208x0.150 = 31.2 sec/2 spins = 81% (@3.1 rpm) Energy range: Step 13-63 = 10 ev - 50,000 ev Energy resolution: E(n+4)/E(n) = 2.0 Time resolution: 19 seconds, 1-spin Energy resolution: E(n+2)/E(n) = 1.4 Time resolution: 57 seconds, 3-spins Energy resolution: E(n+1)/E(n) = 1.19 Time resolution: 120 seconds, 6.3-spins (1/2 instrument cycle) ______________________________________________________________________________ Mass Scan: 2x20x24 = 960 Accumulation time: 4/120 s = 33.3 ms Maximum count rate: 65535/.033 = 1,966,050 Hz Duty cycle: 480x0.033 = 16 sec/spin = 83% (@3.1 rpm) Energy range: Step 06-63 = 3 - 50,000 ev Energy resolution: E(n+3)/E(n) = 1.62 Time resolution: 3 mass scans/4 RIMS MS selected by sequence command ______________________________________________________________________________ S/C Potential:A 4x16x2 = 128 bytes B 2x16x2 = 64 bytes Accumulation time: 20/120 s = 167 ms Maximum count rate: 65535/.167 = 393,210 Hz Duty cycle: 32x167. = 5.3 sec = 74% (@3.1 rpm) Energy range: Step 00-15 = 0.9 - 14 ev Energy resolution: E(n+1)/E(n) = 1.19 Time resolution: 4-RIMs ______________________________________________________________________________ PLS LPW (Record) Modes Sample Mass Mode Sensors Plate steps sectors time steps 16A 1Mi,1Md 6-63 by 3 (20) n/a 0.033 s 17-63 by 2 16B 2Mi,2Md 6-63 by 3 (20) n/a 0.033 s 17-63 by 2 17B 3Mi,3Md 6-63 by 3 (20) n/a 0.033 s 17-63 by 2 18A P1,P7 E1,E7 0-15 by 1 (16) 2 0.167 s none 18B P4 E4 0-15 by 1 (16) 2 0.167 s none 19A P1,P3,P5,P7 13-61 by 4 (13) 8 0.150 s none E1,E3,E5,E7 19B P2,P4,P6 13-61 by 4 (13) 8 0.150 s none E2,E4,E6 20A P1,P3,P5,P7 15-63 by 4 (13) 8 0.150 s none E1,E3,E5,E7 20B P2,P4,P6 15-63 by 4 (13) 8 0.150 s none E2,E4,E6 21A none none 1/3 spin delay 21B none none 1/3 spin delay 22A P1,P3,P5,P7 12-60 by 4 (13) 8 0.150 s none E1,E3,E5,E7 22B P2,P4,P6 12-60 by 4 (13) 8 0.150 s none E2,E4,E6 23A P1,P3,P5,P7 14-62 by 4 (13) 8 0.150 s none E1,E3,E5,E7 23B P2,P4,P6 14-62 by 4 (13) 8 0.150 s none E2,E4,E6 OPERATION DESCRIPTION for PLS LPW (RECORD) data ______________________________________________________________________________ | -SECTOR- | | Spin # | 12345678 | Instrument A | Instrument B Mode | | --sensors-- ----steps---- | --sensors-- ----steps--- ______________________________________________________________________________ | | | 1 | | P1357 E1357 8x(13 E-steps) | P246 E246 8x(13 E-steps) 19 | | 13,17,21 ... 61 | 13,17,21 ... 61 2 | | P1357 E1357 8x(13 E-steps) | P246 E246 8x(13 E-steps) 20 | | 15,19,23 ... 63 | 15,19,23 ... 63 | | 3 | | MS (20 E-steps) x (24 M-steps) 16 | | 06-63 by 3 17-63 by 2 | | | | | 4 | | P1357 E1357 8x(13 E-steps) | P246 E246 8x(13 E-steps) 22 | | 12,16,20 ... 60 | 12,16,20 ... 60 5 | | P1357 E1357 8x(13 E-steps) | P246 E246 8x(13 E-steps) 23 | | 14,18,22 ... 62 | 14,18,22 ... 62 6 21 | --- | 1/3 spin delay 16 | | 06-63 by 3 17-63 by 2 | | | | | 19 | | 13,17,21 ... 61 | 13,17,21 ... 61 20 | | 15,19,23 ... 63 | 15,19,23 ... 63 21 | --- | 1/3 spin delay 16 | | 06-63 by 3 17-63 by 2 | | | | | 22 | | 12,16,20 ... 60 | 12,16,20 ... 60 23 | | 14,18,22 ... 62 | 14,18,22 ... 62 | | | | | | 18 | | 0-15 | 0-15 | | | 13 18 | | P17 E17 2x(16 E-steps) | P4 E4 2x(16 E-steps) | | 0-15 | 0-15 | | | 18 | | P17 E17 2x(16 E-steps) | P4 E4 2x(16 E-steps) | | 0-15 | 0-15 PLS Phase 2 Modes (RT0 - Low bit rate) Sample minutes Mode Sensors Plate steps sectors time max rate bytes @5b/s A6 1p,3p,5p,7p 11,35 by 4 (7) 4 0.5 s 131,072 112 3.0 A7 1p,3p,5p,7p 39,63 by 4 (7) 4 0.5 s 131,072 112 3.0 A8 1e,3e,5e,7e 11,35 by 4 (7) 4 0.5 s 131,072 112 3.0 A9 1e,3e,5e,7e 39,63 by 4 (7) 4 0.5 s 131,072 112 3.0 C6 2p,4p,6p 11,35 by 4 (7) 4 0.5 s 131,072 84 2.2 C7 2p,4p,6p 39,63 by 4 (7) 4 0.5 s 131,072 84 2.2 C8 2e,4e,6e 11,35 by 4 (7) 4 0.5 s 131,072 84 2.2 C9 2e,4e,6e 39,63 by 4 (7) 4 0.5 s 131,072 84 2.2 CA 4e 0,13 by 1 (14) 4 .25 s 262,144 56 1.5 CB 1mi peak step (1) 1 .033s 1,966,080 58 1.5 AB 2mi peak step (1) 1 .033s 1,966,080 58 1.5 CC 3mi peak step (1) 1 .033s 1,966,080 58 1.5 AC peak(1/2/3)mi peak step (1) 1 .033s 1,966,080 58 1.5 PLS Phase 2 Modes (RT4 - High bit rate) Sample minutes Code Sensors Plate steps sectors time max rate bytes @20b/s A6 1p,3p,5p,7p 18,39 by 3 (8) 8 0.267s 245,756 256 1.7 A7 1p,3p,5p,7p 42,63 by 3 (8) 8 0.267s 245,756 256 1.7 A8 1e,3e,5e,7e 18,39 by 3 (8) 8 0.267s 245,756 256 1.7 A9 1e,3e,5e,7e 42,63 by 3 (8) 8 0.267s 245,756 256 1.7 C6 2p,4p,6p 18,39 by 3 (8) 8 0.267s 245,756 192 1.3 C7 2p,4p,6p 42,63 by 3 (8) 8 0.267s 245,756 192 1.3 C8 2e,4e,6e 18,39 by 3 (8) 8 0.267s 245,756 192 1.3 C9 2e,4e,6e 42,63 by 3 (8) 8 0.267s 245,756 192 1.3 CA 4e 0,13 by 1 (14) 4 .25 s 262,144 56 .375 CB 1mi peak step (1) 1 .033s 1,966,080 58 .375 AB 2mi peak step (1) 1 .033s 1,966,080 58 .375 CC 3mi peak step (1) 1 .033s 1,966,080 58 .375 AC peak(1/2/3)mi peak step (1) 1 .033s 1,966,080 58 .375 Operation description for Phase 2 (RTS): 1. A6 Lo Energy A ions 2. A7 Hi Energy A ions 3. A8 Lo Energy A electrons 4. A9 Hi Energy A electrons 5. C6 Lo Energy B ions 6. C7 Hi Energy B ions 7. C8 Lo Energy B electrons 8. C9 Hi Energy B electrons 9. CA Photo-electrons in 4e 10. AC Mass @peak (step,sector,sensor) 11. A6 Lo Energy A ions 12. A7 Hi Energy A ions 13. A8 Lo Energy A electrons 14. A9 Hi Energy A electrons 15. C6 Lo Energy B ions 16. C7 Hi Energy B ions 17. C8 Lo Energy B electrons 18. C9 Hi Energy B electrons 19. CA Photo-electrons in 4e 20. xx Mass @peak (step,sector) (xx = CB/AB/CC, controlled by ground command) 21. Loop back to beginning DISCUSSION OF PLS OPERATION DURING RECORD (LPW) DATA COLLECTION _______________________________________________________________ PLS is mounted on the spun section of the Orbiter and makes use of the spin motion to obtain three-dimensional observations of the plasma distribution function. Many of the subsequent analyses of these data require observations in exactly opposite directions. Extensive experience on various spacecraft has shown that significant ground processing efficiencies can be obtained if the data on-board the spacecraft is obtained in a spin-synchronous manner, i.e. if the instrument operation is closely synchronized with the spin motion of the spacecraft. This is typically done by gating accumulators with sector pulses provided by a spacecraft subsystem. The nature of the instrument-to-spacecraft interface on GALILEO precludes this type of control. Consequently a decision was made to use interrupt driven software coupled with software determination of spin phase to synchronize instrument operation with the spin motion of the orbiter. This increased the computational load on the microprocessor imbedded in PLS but significantly enhanced the value of the data obtained. The GALILEO Plasma Analyzer (PLS) has an instrument cycle time of four (4) RIM's (364 minor frames or 242.67 seconds). During this time interval the spun section of the Orbiter will rotate 12.2-13.3 times depending on the spacecraft spin rate (within 4% of 0.33 rad/sec). The instrument cycle is subdivided into twelve spin-modes. Each spin-mode is a separate instrument operation and data collection cycle. Each spin-mode starts at a selected spin sector boundary (quadrant, octant, etc., as determined from the on-board AACS spin phase data) and generally (but not necessarily) takes slightly less than one spin period. At the end of one spin- mode the Data Handling and Control (DHC) system automatically cycles to the next spin-mode in the instrument cycle. The PLS instrument comprises two sets of concentric quadrispherical electrostatic analyzers. Each analyzer has its own programable high-voltage supply and an array of ten sensors positioned around its exit aperture. Each analyzer has its own Spin-mode Sequence Table, for cycling through spin-modes during each instrument cycle, allowing independent operation of the two analyzers. Subsequent discussions of instrument operation which refer to one analyzer will also be applicable to the other unless explicitly stated otherwise. All spin-modes share a common underlying scheme of operation. This scheme may be visualized in terms of nested control loops. These loops control 1) the number of sectors in the spin-mode, 2) the number of "steps" in a sector 3) the sequence of center plate voltage steps, 4) the sequence of mass spectrometer current steps, 5) the duration of one "step", An individual spin-mode is defined by a set of four sequencing tables: Sensor Sequence Table Mass Sequence Table High-Voltage Sequence Table Sector Sequence Table The contents of these tables are defined as follows: SENSOR SEQUENCE TABLE This table specifies which detectors will be read out and the order of their appearance in the sensor data blocks in the telemetry. The table comprises an arbitrary number of detector ID words and is terminated by an END-FLAG. One sample of each of the detectors selected in the table will be taken for each "step" in the spin-mode. The detectors ID codes for the A- and B-Analyzers are: Code Sensor Angle from Accum. Software Base 16 Name Measurement Z-Axis Bank Port/Q _______ ______ ___________ ______ ______ ______ 02 2MI Integral Mass 90 A1 5/1 06 1p Positive Ions 12 A1 5/1 0A 3p " " 64 A1 5/1 0E 5p " " 116 A1 5/1 12 7p " " 168 A1 5/1 42 2MD Differential Mass 90 A2 6/1 46 1e Electrons 12 A2 6/1 4A 3e " 64 A2 6/1 4E 5e " 116 A2 6/1 52 7e " 168 A2 6/1 82 1MI Integral Mass 12 B1 5/0 86 3MI " " 168 B1 5/0 8A 2p Positive Ions 38 B1 5/0 8E 4p " " 90 B1 5/0 92 6p " " 142 B1 5/0 C2 1MD Differential Mass 12 B2 6/0 C6 3MD " " 168 B2 6/0 CA 2e Electrons 38 B2 6/0 CE 4e " 90 B2 6/0 D2 6e " 142 B2 6/0 MASS SEQUENCE TABLE This table consists of a list of the desired mass spectrometer step numbers and is terminated by an END-FLAG. Each mass step in the table is selected for one "step". The next High-voltage step is not selected until the END-FLAG in the Mass Sequence Table is reached. HIGH VOLTAGE SEQUENCE TABLE This table supplies the parameters necessary to control the sequence of high-voltage steps in the Energy Analyzer. These parameters are: 1. Initial step number 2. Step number increment 3. Final step number At the start of the spin-mode, the initial step number is selected. During instrument operation anytime a step greater than the final step number is computed, the step number is reset to the initial step number. The high voltage step number is not incremented until any mass scan in progress has been completed, i.e. the END-FLAG in the Mass table has been reached. A NULL mass table (consisting of only an END-FLAG) and a Mass table containing a single mass step (followed by an END-FLAG) result in the mass step remaining constant (and zero if NULL) and the center plate stepping at the end of every "step" time. The start step must always be numerically less than the end step. The step increment is treated as a signed number: FF = -1, 01 = +1, etc. In the event that the increment is negative, the analyzer plate high voltage supply will scan from high voltage (end-step) to low voltage (start-step). If the negative increment produces a negative step number or a step less than the start step the step generator will be reset to the end-step. SECTOR SEQUENCE TABLE This table supplies five pieces of information for control of the spin synchronization of the spin-mode: 1. The sector type (quadrant, octant, etc.) at which to start the spin-mode. The mode will start at the next available sector boundary, not at a specified spin angle (except in the case of the "Beam" modes). 2. The time duration of each "step" within a sector. The units of the time duration are 8.33 milliseconds (the instrument Internal Time Sequencing Interrupt, ITSI). At the end of each "step" the sensors selected by the sensor sequence table are read-out. 3. The number of "steps" to be accumulated in one sector. When this number of "steps" have been done, instrument operation during the current sector are defined to be complete. Depending on the values of items 4 and 5 below, the spin mode may be over, or the instrument may have a dead-time delay until the start of the next sector in the spin-mode. 4. The spin phase modulus of the start of the next sector in the spin-mode. This tells the controller to start the next sector on the next quadrant, octant, etc. in the spin motion of the Orbiter. 5. The number of sectors which constitute the spin-mode. There is no requirement that the number of sectors and their size be less than one spin. It is possible to define a Sector Sequence Table which would take longer than an instrument cycle to complete. When a spin-mode is started the entire set of four sequencing tables which define the spin-mode are inserted in the telemetry stream. These tables will precede any sensor data which was produced by the spin-mode. The contents of these tables as seen in the telemetry are identical to the tables provided to the DHC at spin-mode initialization time with one exception. The first byte of the Sector Sequence Table used by the DHC specifies the TYPE of sector at which to start the spin mode (i.e. quadrant, octant, etc.). The first byte of the Sector Sequence Table in the telemetry stream contains the ACTUAL spin angle (in AACS units) at which the spin mode began. This provides the crucial piece of information needed to assign inertial directions to the observations. This is true for all spin-modes even though the interactive modes (2 and 5) have unique subroutines for generation of the sequencing tables which are used internally by the DHC. The mass step and high-voltage step numbers are initialized only at the START of a spin-mode. Thereafter they cycle on successive "steps" in their defined fashion: first the mass step number moves through its full range; then the next plate step in sequence is selected and another mass scan is initiated. There is no REQUIREMENT that mass or high-voltage scans be completed within a "sector" or be completed within a spin-mode. DISCUSSION OF PLS OPERATION DURING RTS (PHASE 2) DATA COLLECTION ________________________________________________________________ When the Low-Gain-Antenna mission (Phase 2 RTS) was developed the PLS telemetry rate dropped from 612 bps to as low as 5 bps. Substantial changes were made in PLS operations. Among the changes were: All analog housekeeping data was abandoned All digital status data was abandoned The inclusion of sequence tables in the telemetry was abandoned Only one analyzer was operated at a time A loss-less data compression scheme was implemented New spin-modes were developed with less angular and energy resolution A new telemetry format was developed A new scheme for collecting telemetry was implemented The underlying scheme for operating the instrument was retained: sector sequence tables, sensor sequence tables, high-voltage sequence tables, and mass sequence tables still controlled the lowest levels of instrument operation. PLS presents a 226-byte packet to CDS. The first byte is a flag-byte (00 or AA) and the remaining 225 bytes are PLS data. The flag byte is not telemetered to the ground. The rate at which the 226-byte packets are collected by CDS is determined by the S/C telemetry rate and by the availability of data from PLS. a) CDS does not transmit the 226-byte packet to the ground unless PLS has set the flag byte non-zero. b) PLS does not set the flag byte non-zero until a full packet is available. The nominal interval between packet collections as a function of PLS bit-rate is as follows: PLS data rate ----- Packet-interval----- bits/second minor frames minutes 5 540 6.00 10 270 3.00 15 180 2.00 20 135 1.50 30 90 1.00 40 67 0.75 PLS fills the packet with data obtained during operation of spin-modes. Consecutive spin-modes are executed, in their entirety, until the 226-byte packet has been filled. Data bytes in excess of the 226-byte packet will appear at the beginning of the following packet. Note that each spin-mode completes its operation before the telemetry packet is checked for fullness. The format of the data from each spin-mode is the following: Hot Plasma Modes A6,A7,A8,A9,C6,C7,C8,C9,CA: Byte 1 Low-order 7-bits of the RIM count at start of mode (00-7F) 2 Mod-91 counter (minor frame) at start of mode (00-5A) 3 High-order 7-bits of the Spin Phase at start of mode (00-FE) 4 Spin-Mode number (A0-BF, C0-DF) (A0-DF) 5 first sensor data byte (01-FE) ...... . . . 4+n n-th (last) sensor data byte (01-FE) 5+n FF end-flag. (FF) Mass Spectrometer Modes AB,AC,CB,CC: Byte 1 Low-order 7-bits of the RIM count at start of mode (00-7F) 2 Mod-91 counter (minor frame) at start of mode (00-5A) 3 High-order 7-bits of the Spin Phase at start of mode (00-FE) 4 Spin-Mode number (A0-BF, C0-DF) (A0-DF) 5 Analyzer Plate Step number (00-3F) 6 Actual initial sector value (00-F8) 7 Sensor ID code (02-D2) 8 first sensor data byte (01-FE) ...... . . . 7+n n-th (last) sensor data byte (01-FE) 8+n FF end-flag. (FF) The spin phase (byte 3) is the angle when the mode was initialized, not the angle at which the first data was taken. Typically the data collection begins at the next sector boundary after the byte-3 spin phase. The lsb is set to zero to avoid an angle of FF. A run-length compression is performed on zero data-values in the sensor data portion of the telemetry. A single zero is replaced with the value E0, two consecutive zeroes are replaced with E1, three consecutive zeroes are replaced with E2, and so on up to thirty-one (31) consecutive zeroes being replaced with FE. Thirty-two zeroes would generate the values FE E0 in the output buffer. This algorithm is quite effective in regions where the count-rates are low, and has no effect when count-rates are non-zero. Note that the value FF appears only as an end-flag after the sensor data. It cannot occur as a RIM count nor as a Mod-91 counter nor as a spin phase nor as a Spin-Mode number nor as a data value. During Phase 2 (RTS) operations PLS has two sets of spin-modes available: RT0 for low-bit-rates and RT4 for high-bit-rates. There is no fixed assignment of RT0/RT4 to specific bit rates. Which set to use is at the discretion of the PLS science team. The difference between the two sets of modes is contained in the Sector Sequence Table and the High Voltage Sequence Tables used by the spin-modes. RT0 (Low Bit Rate) | RT4 (High Bit Rate) ____________________________________|_____________________________________ Sector Sequence Tables 1B00 40 Start at next Quadrant | 1B00 40 Start at next Quadrant 3C 60______ ITSIs/step | 20 32______ ITSIs/step 07 7______ Step/sector | 08 8______ Step/sector 40 QUAD___ Next sector | 20 Octant_ Next sector 04 4_____ Sectors/mode | 08 8_____ Sectors/mode FF end-flag | FF end-flag | High Voltage Sequence Tables 1B06 0B 11 TO 35 EVERY 4TH STEP | 1B06 12 18 TO 39 EVERY 3rd STEP 04 used for low energy | 03 used for low energy 23 modes (A6,A8,C6,C8) | 27 modes (A6,A8,C6,C8) FF | FF | | 1B0A 27 39 TO 63 EVERY 4TH STEP | 1B0A 2A 42 TO 63 EVERY 3rd STEP 04 used for high energy | 03 used for high energy 3F modes (A7,A9,C7,C9) | 3F modes (A7,A9,C7,C9) FF | FF | DETAILED DEFINITIONS OF PLS SPIN-MODES | | Mode 16A | Mode 16B | IDA / J.A. /TORUS | IDA / J.A. /TORUS Fast Mass #2 | Fast Mass #3 | 32TUA7 52,15B8 | 32TUB7 C4,15C2 | | | 32TUA6 15B8,02E2,1920,0E1B,1926,1950 | 32TUB6 15C2,02E9,1920,0E21,1926,1970 | 15B8 02E2 'A' Initialization | 15C2 02E9 'B' Initialization 1920 Sector | 1920 Sector 0E1B Sensor | 0E21 Sensor 1926 HV | 1926 HV 1950 Mass | 1970 Mass | | | 32TUA2 1920,0C,04,18,0C,14 | 32TUB2 1920,0C,04,18,0C,14 | 1920 0C Start next 1/20 spin | 1920 0C Start next 1/20 spin 04 4 ITSIs/step | 04 4 ITSIs/step 18 24 Steps/sector | 18 24 Steps/sector 0C 1/20 spin to sector | 0C 1/20 spin to sector 14 20 sectors/spin mode | 14 20 sectors/spin mode FF end-flag | FF end-flag | | | 32TUA0 0E1B I2,D2 | 32TUB0 0E21 I3,D3 | 0E1B 02,42, Mass Spec. 2 | 0E21 86,C6, Mass Spec. 3 FF | FF | | | 32TUA1 1926,06,03,3F H.V. | 32TUB1 1926,06,03,3F H.V. | 1926 06 06 - 63, every 3rd | 1926 06 06 - 63, every 3rd 03 step | 03 step 3F | 3F FF | FF | | | | | 32TUA3 1950, Mass | 32TUB3 1970,3, Mass 11,13,15,17,19,1B,1D,1F, | 11,13,15,17,19,1B,1D,1F, 21,23,25,27,29,2B,2D,2F, | 21,23,25,27,29,2B,2D,2F, 31,33,35,37,39,3B,3D,3F | 31,33,35,37,39,3B,3D,3F | | | | | Mode 17A | Mode 17B | ________________________ | IDA / J.A. /TORUS | Fast Mass #1 | 32TUA7 54,______ | 32TUB7 C6,15CC | | | 32TUA6 ____,____,____,____,____,____ | 32TUB6 15CC,02E9,1920,0E1E,1926,1950 | ____ ____ 'A' Initialization | 15CC 02E9 'B' Initialization ____ Sector | 1920 Sector ____ Sensor | 0E1E Sensor ____ HV | 1926 HV ____ Mass | 1950 Mass | | | 32TUA2 ____,__,__,__,__,__ | 32TUB2 1920,0C,04,18,0C,14 | ____ __ ____________ Sector | 1920 0C Start next 1/20 spin __ ________ ITSIs/step | 04 4 ITSIs/step __ _______ Step/sector | 18 24 Steps/sector __ _______ Next sector | 0C 1/20 spin to sector __ ______ Sectors/mode | 14 20 sectors/spin mode FF end-flag | FF end-flag | | | 32TUA0____ __,__,__,__,__,__,__,__,__ | 32TUB0 0E1E I1,D1 | ____ __,__,__,__,__, Sensors | 0E1E 82,C2,FF Sensors __,__,__,__,__, | FF | | | 32TUA1 ____ __,__,__ H.V. | 32TUB1 1926,06,03,3F H.V. | ____ __ __________________ | 1926 06 06 - 63, every 3rd __ | 03 step __ | 3F FF | FF | | | 32TUA3 ____ __ Mass | 32TUA3 1950, Mass | 11,13,15,17,19,1B,1D,1F, ____ __ ___________________ | 21,23,25,27,29,2B,2D,2F, | 31,33,35,37,39,3B,3D,3F | | | Mode 18A | Mode 18B | SPACECRAFT POTENTIAL | SPACECRAFT POTENTIAL | | 32TUA7 56,15D6 | 32TUB7 C8,15E0 | | | 32TUA6 15D6,02E2,1930,193A,1936,0D74 | 32TUB6 15E0,02E9,1930,1940,1936,0D74 | 15D6 02E2 'A' Initialization | 15E0 02E9 'B' Initialization 1930 Sector | 1930 Sector 193A Sensor | 1940 Sensor 1936 HV | 1936 HV 0D74 Mass | 0D74 Mass | | | 32TUA2 1930,20,14,10,20,02 | 32TUB2 1930,20,14,10,20,02 | 1930 20 Start next 1/8 spin | 1930 20 Start next 1/8 spin 14 20 ITSIs/step | 14 20 ITSIs/step 10 16 Step/sector | 10 16 Step/sector 20 1/8 spin to sector | 20 1/8 spin to sector 02 2 Sectors/mode | 02 2 Sectors/mode FF end-flag | FF end-flag | | | 32TUA0 193A,P1,P7,E1,E7 | 32TUB0 1940 P4,E4 | 193A 06,12,46,52,FF Sensors | 1940 8E,CE,FF Sensors | | | | 32TUA1 1936,00,01,0F H.V. | 32TUB1 1936,00,01,0F H.V. | 1936 00 Steps 0 - 15 | 1936 00 Steps 0 - 15 01 | 01 0F | 0F FF | FF | | | 32TUA3 0D74 FF | 32TUB3 0D74 FF | 0D74 FF No mass steps | 0D74 FF No mass steps | | | | | Mode 19A | Mode 19B | GASPRA/EARTH2 Fast Plasma 1 | GASPRA/EARTH2 Fast Plasma 1 | 32TUA7 58,1590 | 32TUB7 CA,159A | | | 32TUA6 1590,02E2,1900,190A,1906,0D74 | 32TUB6 159A,02E9,1900,1915,1906,0D74 | 1590 02E2 'A' Initialization | 159A 02E9 'B' Initialization 1900 Sector | 1900 Sector 190A Sensor | 1915 Sensor 1906 HV | 1906 HV 0D74 Mass | 0D74 Mass | | | 32TUA2 1900,20,12,0D,20,08 | 32TUB2 1900,20,12,0D,20,08 | 1900 20 Start next 1/8 spin | 1900 20 Start next 1/8 spin 12 18 ITSIs/step | 12 18 ITSIs/step 0D 13 Steps/sector | 0D 13 Steps/sector 20 1/8 spin to sector | 20 1/8 spin to sector 08 8 Sectors/mode | 08 8 Sectors/mode FF end-flag | FF end-flag | | | | | 32TUA0 190A P1,P3,P5,P7,E1,E3,E5,E7 | 32TUB0 1915 P2,P4,P6,E2,E4,E6 | 190A 06,0A,0E,12,46, Sensors| 1915 8A,8E,92,CA,CE, Sensors 4A,4E,52,FF | D2,FF | | | 32TUA1 1906,0D,04,3D H.V. | 32TUB1 1906,0D,04,3D H.V. | 1906 0D 13 - 61, every 4th | 1906 0D 13 - 61, every 4th 04 step | 04 step 3D | 3D FF | FF | | | 32TUA3 0D74 FF | 32TUB3 0D74 FF | 0D74 FF No mass steps | 0D74 FF No mass steps | | | | | | Mode 20A | Mode 20B | GASPRA/EARTH2 Fast Plasma 2 | GASPRA/EARTH2 Fast Plasma 2 | 32TUA7 5A,15A4 | 32TUB7 CC,15AE | | | 32TUA6 15A4,02E2,1900,190A,191C,0D74 | 32TUB6 15AE,02E9,1900,1915,191C,0D74 | 15A4 02E2 'A' Initialization | 15AE 02E9 'B' Initialization 1900 Sector | 1900 Sector 190A Sensor | 1915 Sensor 191C HV | 191C HV 0D74 Mass | 0D74 Mass | | | 1900 20 Start next 1/8 spin | 1900 20 Start next 1/8 spin 12 18 ITSIs/step | 12 18 ITSIs/step 0D 13 Steps/sector | 0D 13 Steps/sector 20 1/8 spin to sector | 20 1/8 spin to sector 08 8 Sectors/mode | 08 8 Sectors/mode FF end-flag | FF end-flag | | | 32TUA0 190A P1,P3,P5,P7,E1,E3,E5,E7 | 32TUB0 1915 P2,P4,P6,E2,E4,E6 | 190A 06,0A,0E,12,46, Sensors| 1915 8A,8E,92,CA,CE, Sensors 4A,4E,52,FF | D2,FF | | 32TUA1 191C,0F,04,3F H.V. | 32TUB1 191C,0F,04,3F H.V. | 191C 0F 15 - 63, every 4th | 191C 0F 15 - 63, every 4th 04 step | 04 step 3F | 3F FF | FF | | | 32TUA3 0D74 FF | 32TUB3 0D74 FF | 0D74 FF No mass steps | 0D74 FF No mass steps | | | | | Mode 21A | Mode 21B | 0.33-spin IDLE Mode | 0.33-spin IDLE Mode | | 32TUA7 5C,15EA | 32TUB7 CE,15F4 | | | 32TUA6 15EA,02E2,1990,0D74,0D71,0D74 | 32TUB6 15F4,02E9,1990,0D74,0D71,0D74 | 15EA 02E2 'A' Initialization | 15F4 02E9 'B' Initialization 1990 Null Sector | 1990 Null Sector 0D74 Null Sensor | 0D74 Null Sensor 0D71 Null HV | 0D71 Null HV 0D74 Null Mass | 0D74 Null Mass | | | 32TUA2 1990,10,02,01,10,06 | 32TUB2 1990,10,02,01,10,06 | 1990 10 next 1/16 spin | 1990 10 next 1/16 spin 02 2 ITSIs/step | 02 2 ITSI's/step 01 1 step/sector | 01 1 step/sector 10 1/16 spin to sector | 10 1/16 spin to sector 06 6 sectors/mode | 06 6 sectors/mode FF end-flag | FF end-flag | | | 32TUA0____ __,__,__,__,__,__,__,__,__| 32TUB0 ____ __,__,__,__,__,__,__,__,__ | ____ ___,___,___,___, Sensors | ____ __,__,__,__,__, Sensors __,__,__,__,__, | __,__,__,__,__, FF | FF | | 32TUA1 ____ __,__,__ H.V. | 32TUB1 ____ __,__,__ H.V. | ____ __ ___________________ | ____ __ ___________________ __ | __ __ | __ FF | FF | | | 32TUA3 ____ __ Mass | 32TUB3 ____ __ Mass | ____ __ ___________________ | ____ __ ___________________ | | | | | | Mode 22A | Mode 22B | IO TORUS/Tour Fast Plasma 3 | IO TORUS/Tour Fast Plasma 3 | 32TUA7 58,1590 | 32TUB7 CA,159A | | | 32TUA6 1590,02E2,1900,190A,1906,0D74 | 32TUB6 159A,02E9,1900,1915,1906,0D74 | 1590 02E2 'A' Initialization | 159A 02E9 'B' Initialization 1900 Sector | 1900 Sector 190A Sensor | 1915 Sensor 1906 HV | 1906 HV 0D74 Mass | 0D74 Mass | | | 32TUA2 1900,20,12,0D,20,08 | 32TUB2 1900,20,12,0D,20,08 | 1900 20 Start next 1/8 spin | 1900 20 Start next 1/8 spin 12 18 ITSIs/step | 12 18 ITSIs/step 0D 13 Steps/sector | 0D 13 Steps/sector 20 1/8 spin to sector | 20 1/8 spin to sector 08 8 Sectors/mode | 08 8 Sectors/mode FF end-flag | FF end-flag | | | | | 32TUA0 190A P1,P3,P5,P7,E1,E3,E5,E7 | 32TUB0 1915 P2,P4,P6,E2,E4,E6 | 190A 06,0A,0E,12,46, Sensors| 1915 8A,8E,92,CA,CE, Sensors 4A,4E,52,FF | D2,FF | | | 32TUA1 1906,0D,04,3D H.V. | 32TUB1 1906,0D,04,3D H.V. | 1906 0D 13 - 61, every 4th | 1906 0D 13 - 61, every 4th 04 step | 04 step 3D | 3D FF | FF | | | 32TUA3 0D74 FF | 32TUB3 0D74 FF | 0D74 FF No mass steps | 0D74 FF No mass steps | | | | | | Mode 23A | Mode 23B | IO TORUS/Tour Fast Plasma 4 | IO TORUS/Tour Fast Plasma 4 | 32TUA7 5A,15A4 | 32TUB7 CC,15AE | | | 32TUA6 15A4,02E2,1900,190A,191C,0D74 | 32TUB6 15AE,02E9,1900,1915,191C,0D74 | 15A4 02E2 'A' Initialization | 15AE 02E9 'B' Initialization 1900 Sector | 1900 Sector 190A Sensor | 1915 Sensor 191C HV | 191C HV 0D74 Mass | 0D74 Mass | | | 1900 20 Start next 1/8 spin | 1900 20 Start next 1/8 spin 12 18 ITSIs/step | 12 18 ITSIs/step 0D 13 Steps/sector | 0D 13 Steps/sector 20 1/8 spin to sector | 20 1/8 spin to sector 08 8 Sectors/mode | 08 8 Sectors/mode FF end-flag | FF end-flag | | | 32TUA0 190A P1,P3,P5,P7,E1,E3,E5,E7 | 32TUB0 1915 P2,P4,P6,E2,E4,E6 | 190A 06,0A,0E,12,46, Sensors| 1915 8A,8E,92,CA,CE, Sensors 4A,4E,52,FF | D2,FF | | 32TUA1 191C,0F,04,3F H.V. | 32TUB1 191C,0F,04,3F H.V. | 191C 0F 15 - 63, every 4th | 191C 0F 15 - 63, every 4th 04 step | 04 step 3F | 3F FF | FF | | | 32TUA3 0D74 FF | 32TUB3 0D74 FF | 0D74 FF No mass steps | 0D74 FF No mass steps | | | | Mode A6 | Mode C6 | RTS Hot Plasma Low E Ions | RTS Hot Plasma Low E Ions | | 32TUA7 3E,1B2C | 32TUB7 B0,1B68 | | | 32TUA6 1B2C,02E2,1B00,1B0E,1B06,0D74 | 32TUB6 1B68,02E9,1B00,1B18,1B06,0D74 | 1B2C 02E2 'A' Initialization | 1B68 02E9 'B' Initialization 1B00 Sector | 1B00 Sector 1B0E Sensor | 1B18 Sensor 1B06 HV | 1B06 HV 0D74 Mass | 0D74 Mass | | | 32TUA2 1B00,40,3C,07,40,04 | 32TUB2 1B00,40,3C,07,40,04 | 1B00 40 QUADRANT____ Sector | 1B00 40 QUADRANT____ Sector 3C 60______ ITSIs/step | 3C 60______ ITSIs/step 07 7______ Step/sector | 07 7______ Step/sector 40 QUAD___ Next sector | 40 QUAD___ Next sector 04 4_____ Sectors/mode | 04 4_____ Sectors/mode FF end-flag | FF end-flag | | | 32TUA0 1B0E P1,P3,P5,P7 | 32TUB0 1B18 P2,P4,P6 | 1B0E 06,0A,0E,12 Sensors | 1B18 8A,8E,92 Sensors | FF | FF | | 32TUA1 1B06 0B,04,23 H.V. | 32TUB1 1B06 0B,04,23 H.V. | 1B06 0B 11 TO 35 EVERY 4TH STEP| 1B06 0B 11 TO 35 EVERY 4TH STEP 04 | 04 23 | 23 FF | FF | | | 32TUA3 0D74 FF Mass | 32TUB3 0D74 FF Mass | 0D74 FF NULL MASS TABLE | 0D74 FF NULL MASS TABLE | | | | | | Mode A7 | Mode C7 | RTS Hot Plasma HI-E Ions | RTS Hot Plasma HI-E Ions | | 32TUA7 40,1B36 | 32TUB7 B2,1B72 | | | 32TUA6 1B36,02E2,1B00,1B0E,1B0A,0D74 | 32TUB6 1B72,02E9,1B00,1B18,1B0A,0D74 | 1B2C 02E2 'A' Initialization | 1B68 02E9 'B' Initialization 1B00 Sector | 1B00 Sector 1B0E Sensor | 1B18 Sensor 1B0A HV | 1B0A HV 0D74 Mass | 0D74 Mass | | | 32TUA2 1B00,40,3C,07,40,04 | 32TUB2 1B00,40,3C,07,40,04 | 1B00 40 QUADRANT____ Sector | 1B00 40 QUADRANT____ Sector 3C 60______ ITSIs/step | 3C 60______ ITSIs/step 07 7______ Step/sector | 07 7______ Step/sector 40 QUAD___ Next sector | 40 QUAD___ Next sector 04 4_____ Sectors/mode | 04 4_____ Sectors/mode FF end-flag | FF end-flag | | | 32TUA0 1B0E P1,P3,P5,P7 | 32TUB0 1B18 P2,P4,P6 | 1B0E 06,0A,0E,12 Sensors | 1B18 8A,8E,92 Sensors | FF | FF | | 32TUA1 1B0A 27,04,3F H.V. | 32TUB1 1B0A 27,04,3F H.V. | 1B0A 27 39 TO 63 EVERY 4TH STEP| 1B0A 27 39 TO 63 EVERY 4TH STEP 04 | 04 3F | 3F FF | FF | | | 32TUA3 0D74 FF Mass | 32TUB3 0D74 FF Mass | 0D74 FF NULL MASS TABLE | 0D74 FF NULL MASS TABLE | | | | | | Mode A8 | Mode C8 | RTS Hot Plasma Low E Electrons | RTS Hot Plasma Low E Electrons | | 32TUA7 42,1B40 | 32TUB7 B4,1B7C | | | 32TUA6 1B40,02E2,1B00,1B13,1B06,0D74 | 32TUB6 1B68,02E9,1B00,1B1C,1B06,0D74 | 1B2C 02E2 'A' Initialization | 1B68 02E9 'B' Initialization 1B00 Sector | 1B00 Sector 1B13 Sensor | 1B1C Sensor 1B06 HV | 1B06 HV 0D74 Mass | 0D74 Mass | | | 32TUA2 1B00,40,3C,07,40,04 | 32TUB2 1B00,40,3C,07,40,04 | 1B00 40 QUADRANT____ Sector | 1B00 40 QUADRANT____ Sector 3C 60______ ITSIs/step | 3C 60______ ITSIs/step 07 7______ Step/sector | 07 7______ Step/sector 40 QUAD___ Next sector | 40 QUAD___ Next sector 04 4_____ Sectors/mode | 04 4_____ Sectors/mode FF end-flag | FF end-flag | | | 32TUA0 1B13 E1,E3,E5,E7 | 32TUB0 1B1C E2,E4,E6 | 1B13 46,4A,4E,52 Sensors | 1B1C CA,CE,D2 Sensors | FF | FF | | 32TUA1 1B06 0B,04,23 H.V. | 32TUB1 1B06 0B,04,23 H.V. | 1B06 0B 11 TO 35 EVERY 4TH STEP| 1B06 0B 11 TO 35 EVERY 4TH STEP 04 | 04 23 | 23 FF | FF | | | 32TUA3 0D74 FF Mass | 32TUB3 0D74 FF Mass | 0D74 FF NULL MASS TABLE | 0D74 FF NULL MASS TABLE | | | | | | Mode A9 | Mode C9 | RTS Hot Plasma Hi-E Electrons | RTS Hot Plasma Hi-E Electrons | | 32TUA7 44,1B4A | 32TUB7 B6,1B86 | | | 32TUA6 1B4A,02E2,1B00,1B13,1B0A,0D74 | 32TUB6 1B86,02E9,1B00,1B1C,1B0A,0D74 | 1B4A 02E2 'A' Initialization | 1B86 02E9 'B' Initialization 1B00 Sector | 1B00 Sector 1B13 Sensor | 1B1C Sensor 1B0A HV | 1B0A HV 0D74 Mass | 0D74 Mass | | | 32TUA2 1B00,40,3C,07,40,04 | 32TUB2 1B00,40,3C,07,40,04 | 1B00 40 QUADRANT____ Sector | 1B00 40 QUADRANT____ Sector 3C 60______ ITSIs/step | 3C 60______ ITSIs/step 07 7______ Step/sector | 07 7______ Step/sector 40 QUAD___ Next sector | 40 QUAD___ Next sector 04 4_____ Sectors/mode | 04 4_____ Sectors/mode FF end-flag | FF end-flag | | | 32TUA0 1B13 E1,E3,E5,E7 | 32TUB0 1B1C E2,E4,E6 | 1B13 86,8A,8E,92 Sensors | 1B1C CA,CE,D2 Sensors | FF | FF | | 32TUA1 1B0A 27,04,3F H.V. | 32TUB1 1B0A 27,04,3F H.V. | 1B0A 27 39 TO 63 EVERY 4TH STEP| 1B06 27 39 TO 63 EVERY 4TH STEP 04 | 04 3F | 3F FF | FF | | | 32TUA3 0D74 FF Mass | 32TUB3 0D74 FF Mass | 0D74 FF NULL MASS TABLE | 0D74 FF NULL MASS TABLE | | | | | | | Mode CA | | RTS Photo electrons | | 32TUA7 70,______ | 32TUB7 B8,1B90 | | | 32TUA6 ____,____,____,____,____,____ | 32TUB6 1B90,02E9,1B20,1B2A,1B26,0D74 | ______ ______ 'A' Initialization | 1B90 02E9 'B' Initialization ______ Sector | 1B20 Sector ______ Sensor | 1B2A Sensor ______ HV | 1B26 HV ______ Mass | 0D74 Mass | | | 32TUA2 ____,____,____,____,____,____ | 32TUB2 1B20,40,1E,0E,40,04 | ____ __ ____________ Sector | 1B20 40 QUADRANT____ Sector __ ________ ITSIs/step | 1E 30______ ITSIs/step __ _______ Step/sector | 0E 14_____ Step/sector __ _______ Next sector | 40 QUAD___ Next sector __ ______ Sectors/mode | 04 4_____ Sectors/mode FF end-flag | FF end-flag | | | 32TUA0____ __,__,__,__,__,__,__,__,__ | 32TUB0 1B2A E4 | ____ ___,___,___,___, Sensors | 1B2A CE Sensors __,__,__,__,__, | FF | FF | | 32TUA1 ____ __,__,__ H.V. | 32TUB1 1B26 00,01,0D H.V. | ____ __ ___________________ | 1B26 00 00 TO 13 BY 1 __ | 01 __ | 0D FF | FF | | | 32TUA3 ____ __ Mass | 32TUB3 0D74 FF Mass | ____ __ ___________________ | 0D74 FF NO MASS STEPS | | | | | Mode AB | Mode CB | RTS Mass Spec 2 Scan | RTS Mass Spec 1 Scan | | 32TUA7 48,1B54 | 32TUB7 BA,1B9A | | 32TUA6 1B54,0448,00B5,1BC1,00BB,0083 | 32TUB6 1B9A,0448,00B5,1BBD,00BB,0083 | 1B54 0448 'A' Initialization | 1B9A 0448 'B' Initialization 00B5 Sector | 00B5 Sector 1BC1 Sensor | 1BBD Sensor 00BB HV | 00BB HV 0083 Mass | 0083 Mass | | | 32TUA2 00B5,10,04,3A,10,01 | 32TUB2 00B5,10,04,3A,10,01 | 00B5 10 PEAK________ Sector | 00B5 10 PEAK________ Sector 04 4_______ ITSIs/step | 04 4_______ ITSIs/step 3A 58_____ Step/sector | 3A 58_____ Step/sector 10 _______ Next sector | 10 _______ Next sector 01 1_____ Sectors/mode | 01 1_____ Sectors/mode FF end-flag | FF end-flag | | | 32TUA0 1BC1 I2 | 32TUB0 1BBD I1 | 1BC1 02 Sensors | 1BBD 82 Sensors FF | FF | | 32TUA1 00BB __,__,__ H.V. | 32TUB1 00BB __,__,__ H.V. | 00BB __ PEAK ENERGY STEP | 00BB __ PEAK ENERGY STEP __ | __ __ | __ FF | FF | | | 32TUA3 083 06,07,08,09,0A,0B,0C,0D,0E,|32TUB3 0083 06,07,08,09,0A,0B,0C,0D,0E, 0F,10,11,12,13,14,15,16,17,| 0F,10,11,12,13,14,15,16,17, 18,19,1A,1B,1C,1D,1E,1F,20,| 18,19,1A,1B,1C,1D,1E,1F,20, 21,22,23,24,25,26,27,28,29,| 21,22,23,24,25,26,27,28,29, 2A,2B,2C,2D,2E,2F,30,31,32,| 2A,2B,2C,2D,2E,2F,30,31,32, 33,34,35,36,37,38,39,3A,3B,| 33,34,35,36,37,38,39,3A,3B, 3C,3D,3E,3F | 3C,3D,3E,3F 0083 MASS STEPS 6-63 | 0083 MASS STEPS 6-63 | | | Mode AC | Mode CC | RTS Peak Mass Spec Scan | RTS Mass Spec 3 Scan | | 32TUA7 4A,1B5E | 32TUB7 BC,1BA4 | | 32TUA6 1B5E,0470,00B5,00C5,00BB,0083 | 32TUB6 1BA4,0448,00B5,1BC5,00BB,0085 | 1B5E 0470 'A' Initialization | 1BA4 0448 'B' Initialization 00B5 Sector | 00B5 Sector 00C5 Sensor | 1BC5 Sensor 00BB HV | 00BB HV 0083 Mass | 0085 Mass | | | 32TUA2 00B5,10,04,3A,10,01 | 32TUB2 00B5,10,04,3A,10,01 | 00B5 10 PEAK________ Sector | 00B5 10 PEAK________ Sector 04 4_______ ITSIs/step | 04 4_______ ITSIs/step 3A 58_____ Step/sector | 3A 58_____ Step/sector 10 _______ Next sector | 10 _______ Next sector 01 1_____ Sectors/mode | 01 1_____ Sectors/mode FF end-flag | FF end-flag | | | 32TUA0 00C5 | 32TUB0 1BC5 I3 | 00C5 PEAK SENSOR | 1BBD 86 Sensors FF | FF | | 32TUA1 00BB __,__,__ H.V. | 32TUB1 00BB __,__,__ H.V. | 00BB __ PEAK ENERGY STEP | 00BB __ PEAK ENERGY STEP __ | __ __ | __ FF | FF | | | 32TUA3 083 06,07,08,09,0A,0B,0C,0D,0E,|32TUB3 0085 06,07,08,09,0A,0B,0C,0D,0E, 0F,10,11,12,13,14,15,16,17,| 0F,10,11,12,13,14,15,16,17, 18,19,1A,1B,1C,1D,1E,1F,20,| 18,19,1A,1B,1C,1D,1E,1F,20, 21,22,23,24,25,26,27,28,29,| 21,22,23,24,25,26,27,28,29, 2A,2B,2C,2D,2E,2F,30,31,32,| 2A,2B,2C,2D,2E,2F,30,31,32, 33,34,35,36,37,38,39,3A,3B,| 33,34,35,36,37,38,39,3A,3B, 3C,3D,3E,3F | 3C,3D,3E,3F 0083 MASS STEPS 6-63 | 0085 MASS STEPS 6-63 | | LOGARITHMIC COMPRESSION ALGORITHM ------------------INPUT------------------- ---OUTPUT--- Number Overflow 16-bit Accumulator Telemetry of counts MSB LSB MSB LSB ___________ _____ ___________________ ___________ 0-15 0 0000 0000 0000 abcd 0000 abcd 16-31 0 0000 0000 0001 abcd 0001 abcd 32-63 0 0000 0000 001a bcdX 0010 abcd 64-127 0 0000 0000 01ab cdXX 0011 abcd 128-255 0 0000 0000 1abc dXXX 0100 abcd 256-511 0 0000 0001 abcd XXXX 0101 abcd 512-1023 0 0000 001a bcdX XXXX 0110 abcd 1024-2047 0 0000 01ab cdXX XXXX 0111 abcd 2048-4095 0 0000 1abc dXXX XXXX 1000 abcd 4096-8191 0 0001 abcd XXXX XXXX 1001 abcd 8192-16383 0 001a bcdX XXXX XXXX 1010 abcd 16384-32767 0 01ab cdXX XXXX XXXX 1011 abcd 32768-65535 0 1abc dXXX XXXX XXXX 1100 abcd N > 65536 1 abcd XXXX XXXX XXXX 1101 abcd X = don't care