2005 Cassini/MIMI Magnetospheric Imaging Instrument

MIMI STANDARD DATA PRODUCTS AND ARCHIVE VOLUME SOFTWARE INTERFACE SPECIFICATION

(MIMI Archive Volumes SIS) SIS ID: IO-AR-006

Version 2.2 rev. May 4, 2005

Jerry W. Manweiler, Ph.D. W. Rasmuss Fundamental Technologies, Lawrence Lawrence, KS 66046

and

S. Joy

University of California, Los Angeles Los Angeles, CA 90095-1567

2004 Cassini/MIMI Magnetospheric Imaging Instrument

MIMI STANDARD DATA PRODUCTS ARCHIVE VOLUMES SOFTWARE INTERFACE SPECIFICATION (MIMI Archive Volumes SIS)

Version 2.2 rev. May 4, 2005

Approved:

S. M. Krimigis Principal Investigator

Diane Conner

Cassini Archive Data Engineer

Ray Walker PDS Discipline Node Manager Date

Date

Date

1. Preface	
1.1. Distribution List	
1.2. Document Change Log	5
1.3. TBD Items	
1.4. Acronyms and Abbreviations	
1.5. Glossary	9
1.6. Content Overview	
1.7. Scope	10
1.8. Applicable Documents	11
1.9. Audience	11
2. Volume Generation	11
2.1. Data Production and Transfer Methods	11
2.2. Volume Creation	
2.3. Volume Validation	
2.4. Labeling and Identification	
3. Archive Volume Contents	
3.1. Root Directory Contents	
3.2. INDEX Directory Contents.	
3.3. CATALOG Directory Contents	
3.4. DATA (Standard Products) Directory Contents and Naming Conventions	
3.4.1. Required Files	
3.4.2. DATA / LEMMS_ACCUMULATION RATES Directory Contents	
3.4.3. DATA / LEMMS_FINE_ACCUMULATION_RATES Directory Contents	
3.4.4. DATA / LEMMS_PULSE_HEIGHT_ANALYSIS Directory Contents	
3.4.5. DATA / CHEMS_ACCUMULATION_RATES Directory Contents	
3.4.6. DATA / CHEMS_PULSE_HEIGHT_ANALYSIS Directory Contents	
3.4.7. DATA / CHEMS_SCIENCE_RATES Directory Contents	
3.4.8. DATA / INCA_ACCUMULATION_RATES Directory Contents	
3.4.9. DATA / INCA_IMAGES Directory Contents	
3.4.10. DATA / INCA_PULSE_HEIGHT_ANALYSIS Directory Contents	
3.4.11. File Naming Conventions.	
3.5. BROWSE Directory Contents and Naming Conventions.	
3.5.1. Required Files	
3.5.2. BROWSE Directory Contents	
3.5.3. File Naming Conventions	
3.6. EXTRAS Directory Contents and Naming Conventions	22
4. Reference Volume	22
4.1. Root Directory Contents	23
4.2. CATALOG Directory Contents	23
4.3. DOCUMENT Directory Contents	24
4.3.1. INSTRUMENT_PAPER subdirectory	24
4.3.2. MIMI_VOLUME_DESCRIPTION subdirectory	
4.4. GEOMETRY Directory Contents	
4.5. Calibration Directory Contents	26
4.5.1. Algorithm File	26
4.5.2. Data Calibration File	
4.5.3. INCA_IMAGES subdirectory	28

5. Archive Volume Format	28
5.1. Disk Format	28
5.2. File Formats	28
5.2.1. Delimited Field File Formats	28
5.2.2. General Data Product Format	30
5.2.3. MIMI LEMMS Data Product Formats	30
5.2.4. MIMI CHEMS Data Product Formats	34
5.2.5. MIMI INCA Data Product Formats	36
5.2.6. MIMI BROWSE Data Product Formats	40
6. Reference Volume Format	43
6.1. Disk Format	43
6.2. File Formats	43
6.2.1. Document File Formats	43
6.2.2. Catalog File Formats	43
6.2.3. Delimited Field File Formats	43
6.2.4. General Calibration Product Format	44
6.2.5. INCA Image Segment Calibration File	45
6.2.6. INCA Flux Factor Matrix Calibration Files	46
7. Sample Data Product Labels	48
7.1. MIMI LEMMS	48
7.1.1. MIMI LEMMS Rates	48
7.1.2. MIMI CHEMS	113
7.1.3. MIMI INCA	
7.1.4. MIMI KP BROWSE	155
8. Support Staff and Cognizant Persons	166
Appendix A. Directory Structure for Archive Volumes	167
Appendix B. Using the Purpose Field in MIMI Data Products	169
Appendix C. LEMMS Look Angle Diagram	172

List Of Tables:

Table 1: Distribution List	5
Table 2: Document Change History	5
Table 3: TBD Items	8
Table 4: Acronyms and Abbreviations	8
Table 5: Spacecraft Science Data Products in MIMI Data Sets	10
Table 6: Relationship Between Data Sets, Standard Data Product ID, and Archive Volumes	13
Table 7: Root Directory Contents	14
Table 8: Index Directory Contents	14
Table 9: Catalog Directory Contents	15
Table 10: LEMMS_ACCUMULATION_RATES Data Directory Contents	16
Table 11: LEMMS_FINE_ACCUMULATION_RATES Data Directory Contents	17
Table 12: LEMMS_PULSE_HEIGHT_ANALYSIS Data Directory Contents	17
Table 13: CHEMS_ACCUMULATION_RATES Data Directory Contents	17
Table 14: CHEMS_PULSE_HEIGHT_ANALYSIS Data Directory Contents	18
Table 15: CHEMS_SCIENCE_RATES Data Directory Contents	18
Table 16: INCA_ACCUMULATION_RATES Data Directory Contents	18
Table 17: INCA_IMAGES Data Directory Contents	19
Table 18: INCA_PULSE_HEIGHT_ANALYSIS Data Directory Contents	19
Table 19: BROWSE Directory Contents	20
Table 20: CHEMS Browse Plots Contents	21
Table 21: INCA Browse Plots Contents	21
Table 22: LEMMS Browse Plots Contents	21
Table 23: Root Directory Contents	23
Table 24: Catalog Directory Contents	23
Table 25: Document Directory Contents	24
Table 26: MIMI_VOLUME_DESCRIPTION_FILES Subdirectory Contents	24
Table 27: Geometry Directory Contents	25
Table 28: Calibration Directory Contents	26
Table 29: MIMI Data Product Record Header Format	30
Table 30: LEMMS Rates Data File Contents and Structure	30
Table 31: LEMMS Fine Rate Data File Contents and Structure	33
Table 32: LEMMS PHA Data File Contents and Structure	33
Table 33: CHEMS Accumulator Rates Data File Contents and Structure	34

Table 34: CHEMS Science Rates Data File Contents and Structure	35
Table 35: CHEMS PHA Data File Contents and Structure	
Table 36: INCA Rates Data File Contents and Structure	37
Table 37: INCA PHA Data File Contents and Structure	37
Table 38: MIMI/INCA Image Description Format	
Table 39: BROWSE Data File Contents and Structure	40
Table 40: MIMI Calibration Product Record Format	45
Table 41: INCA Image Segment File Record Format	45
Table 42: INCA 8x8 Flux Factor Matrix File Field Descriptions	46
Table 43: INCA 16x16 Flux Factor Matrix File Field Descriptions	46
Table 44: INCA 32x32 Flux Factor Matrix File Field Descriptions	46
Table 45: INCA 64x64 Flux Factor Matrix File Field Descriptions	47
Table 46: MIMI Archive Collection Support Staff	166
Table 47: MIMI Data Product Record Purposes	169
Table 48: MIMI Calibration Data Record Purposes	
Table 49: MIMI Calibration Data Record Data_Types	170
Table 50: MIMI Calibration Data Record Sensors	170
Table 51: MIMI Calibration Data Record Particles	170

1. Preface

This document describes the contents and types of volumes belonging to all of the three MIMI data sets.

Table 1: Distribution List		
Name	Email	
S. Joy	sjoy@igpp.ucla.edu	
Tom Armstrong	armstrong@ftecs.com	
Jerry W. Manweiler	Manweiler@ftecs.com	
Don Mitchell	Don.Mitchell@jhuapl.edu	
S.M. Krimigis	Tom.Krimigis@jhuapl.edu	
Stefano Livi	Stefano.Livi@jhuapl.edu	
Norbert Krupp	Krupp@linmpi.mpg.de	
Doug Hamilton	Douglas.c.hamilton@umail.umd.edu	
Iannis Dandouras	Iannis.Dandouras@cesr.fr	
Scott Bolton	Scott.J.Bolton@jpl.nasa.gov	
Diane Conner	Diane.Conner@jpl.nasa.gov	
Robert Mitchell	Robert.Mitchell@jpl.nasa.gov	
Ray Walker	rwalker@igpp.ucla.edu	
Tom Yunck	Tom.Yunck@jpl.nasa.gov	

1.1. Distribution List

1.2. Document Change Log

Table 2: Document Change History			
Change	Date	Affected Portions	
Initial Draft	03/12/2002	All	
Major Revision, Added Data Product Formats	05/28/2002	All	
Removed Coordinate System Column in Data Product Formats, Revised Data Product Fields and Limits, Allowed for Different LEMMS Priority Counters, Finalized Number of Data Products, Removed Many Items from TBD List	06/26/2002		
Added Format and Data Versions to Data Product Naming Convention	8/9/2002	File Naming Conventions	
Filled in TBD Items in Data Product Contents and Structure		Data Product Contents and Structure	

Table 2: Document Change History			
Change	Date	Affected Portions	
dded Exposure Factors to INCA Image Data Product ontents and Structure		INCA Image Data Product Contents and Structure	
Added CHEMS Science Rates Data Product		All	
Added Document ID: IO-AR-006	8/15/2002	Cover Page	
Changed Signature Page		Changed Signature Page	
Referenced Cassini Archive Plan Document		Applicable Documents	
Changed – before UNCALIBRATED in data set id to _		Labeling and Identification	
Removed Messed up Album Structure Diagram		Appendix A	
Miscellaneous Clarifications	9/5/2002	All	
Filled In Geometry Directory Contents	9/5./2002	GEOMETRY Directory Contents	
Added stuff about the creation of the reference volume		Volume Creation and Validation	
Added Section: Reference Volume Contents	9/5/2002	Reference Volume Contents	
Filled In Reference Volume Contents Section	9/25/2002	Reference Volume Contents	
Changed section about data transfer to PDS	10/1/02	Data production and transfer methods	
Changed everything to present tense	10/2/02	All	
TBD Items	10/2/02	TBD items	
Changed data product formats to have header	10/11/02		
Changed Validation Section	10/16/02		
Changed LEMMS record formats to have three look angles instead of one	1/6/03	LEMMS Data Product	
Filled in CHEMS Science Rates Data Product	1/13/03	CHEMMS Data Products	
Fixed inconsistencies	1/17/03	All	
Added Sample PDS Labels	1/17/03	Section 6	
Removed references to special values such as NA and TOL	1/17/03	All	
Added Phi and Theta offsets to Inca Image formats	3/24/2003	INCA Image format	
Clarified INCA image format	4/9/2003	NCA Image Format	
Added PDF format for documents	4/9/2003	Reference Volume	
Changed Duration for INCA images in record header	07/21/2003	Header Format	
Changed geometry directory contents, changed LEMMS look angle fields in LEMMS data product formats, separated microsectors in LEMMS fine rates into separate records	08/12/2003	Geometry directory section	
Fixed Grammatical Errors, Reviewed	01/19/2004	All	
Inserted MIMI Calibration descriptions, fixed grammatical errors, reviewed and modified content descriptions as necessary	01/28/2004	All	
Modified Calibration description to include a separate passband calibration file which includes the passbands for all three instruments	3/11/04	Calibration Section	

ChangeDateReorganizaton of INCA IMAGE file structureCorrection of errors identified by S. Joy and other specific format changes with some major revision of label format and file organization5/6/0Reformat of Calibration products.12/2Final cleanup of SIS2/10	
Reorganizaton of INCA IMAGE file structure 5/6/0 Correction of errors identified by S. Joy and other specific format changes with some major revision of label format and file organization 5/6/0 Reformat of Calibration products. 12/2 Final cleanup of SIS 12/2	25/04 Calibration Section
specific format changes with some major revision of label format and file organization 12/2 Reformat of Calibration products. 12/2 Final cleanup of SIS 12/2	25/04 Calibration Section
Final cleanup of SIS	
	All
Minor spelling corrections 2/10	
Addition of Key Parameter data details Addition of Browse Plot information	0/05 All BROWSE BROWSE
Corrects to adjust to current PDS standards and 3/15	/05 1.1, 2.4, 3.2, 3.3, 3.5, 3.5.1, 3.5.2,
references. Adjustments to current PDS PPI naming conventions.	3.5.2.1 thru 3, 3.5.3, 4.2, 4.3, 4,3.1 thru 4
	4.3.2, 4.5, 5, 5.2.1
Correction of various minor issues and preparation for 4/19 final signatures	0/05 Cover Page, 1.1, 1.6, 2.4(Table 6)
Modification of Label examples to match production 4/26 values	5/05 7
Modification of Data Set ID's 5/4/0	05 2.4
Modification of KP Label 5/13	9/05 7.4.1
Final list of changes for the SIS 6/6/0	05
Update Standard Data Product ID's	Section 2.4:Table 6
Change names for CO_INSTHOST.CAT -> INSTHOST.CAT	Section 3.3:Table 9, Section 4.2: Table 24 Section 3.3:Table 9, Section 4.2: Table 24
CASSINI_MISSION.CAT -> MISSION.CAT	Section 3.3: Table 9, Section 4.2: Table 24
CO_MIMI_PERS.CAT -> PERSON.CAT	Section 3.3:Table 9, Section 4.2: Table 24 Section 3.3:Table 9, Section 4.2: Table 24
Added PROJREF.CAT and description	Section 3.3: Table 9, Section 4.2: Table 24
Drop MIMI_COMMANDS document	Section 3.3: Table 3, Section 4.2: Table 24 Section 4.3: Table 25
Footnote regarding Instrument Paper	Section 4.3.1
Delete 4.3.2 – MIMI_COMMANDS director	Section 4.3.2 (4.3.3 becomes 4.3.2)
Delete DOCSUBDIRINFO.TXT	Section 4.3.2 (previously 4.3.3)
Update field names in data record header	Section 4.5.2 (previously 4.5.5) Sections 5.2.2: Table 29
Change 4E5 to 4.E5	Section 5.2.2: Table 29
Update CHEMS PHA field names	Section 5.2.4: Table 35
Update INCA PHA field names	Section 5.2.5: Table 37
Show lines in BROWSE fields table	Section 5.2.6: Table 39
Update Calibration table fields	Section 6.2.4: Table 40
Update all sample labels	Section 7 all tables
Appendix A Changes (letter case, directory)	Appendix A

1.3. TBD Items

Items that are currently TBD or not finalized, but need to be defined in the next few months:

Table 3: TBD Items			
Item	Section	Pages	

1.4. Acronyms and Abbreviations

Table 4: Acronyms and Abbreviations			
Acronym	cronym Definition		
ASCII	American Standard Code for Information Interchange		
CD-R	Compact Disc - Recordable Media		
CD-ROM	Compact Disc - Read-Only Memory		
DVD	Digital Versatile Disc		
GB	Gigabyte(s)		
GSFC	Goddard Space Flight Center		
ISO	International Standards Organization		
JHU/APL	Johns Hopkins University / Applied Physics Laboratory		
JPL	Jet Propulsion Laboratory		
MB	Megabyte(s)		
MIMI	Magnetospheric Imaging Instrument		
NSSDC	National Space Science Data Center		
PDB	Project Database		
PDS	Planetary Data System		
PHS	Product Handling Software		
PPI	Planetary Data System, Planetary Plasma Interactions Node		
SDVT	Science Data Validation Team		
SIS	Software Interface Specification		
TBD	To Be Determined		
РНА	Pulse Height Analysis		
UCLA	University of California, Los Angeles		

1.5. Glossary

- Archive An archive consists of one or more Data Sets along with all the documentation and ancillary information needed to understand and use the data. An archive is a logical construct independent of the medium on which it is stored.
- **Archive Volume** An Archive Volume is a single physical media (CDROM, DVD, 9-track tape, etc.) used to permanently store files within the PDS archive. Archive Volumes may only be created on media approved by the PDS as meeting archive quality standards.
- Archive Volume Set A collection of one or more Archive Volumes used to store a single Data Set or collection of related Data Sets.
- **Catalog Information** High-level descriptive information about a Data Set (e.g., mission description, spacecraft description, instrument description), expressed in Object Description Language (ODL), which is suitable for loading into a PDS catalog.
- **Data Product** A labeled grouping of data resulting from a scientific observation, usually stored in one file. A product label identifies, describes, and defines the structure of the data. An example of a Data Product is a planetary image, a spectral table, or a time series table.
- **Data Set** A Data Set is a collection of Data Products from a single instrument that have a common data processing level, together with supporting documentation and ancillary files.
- **Standard Data Product** A Data Product generated in a predefined way using well-understood procedures, processed in "pipeline" fashion. Data Products that are generated in a non-standard way are sometimes called *special Data Products*.

1.6. Content Overview

The Magnetospheric Imaging Instrument (MIMI) aboard the Cassini spacecraft is an instrument comprised of three different sensors: the Low Energy Magnetospheric Measurement System (LEMMS), the Charge/Energy Mass Spectrometer (CHEMS), and the Imaging Neutral Camera (INCA). The primary focus of MIMI's mission is to study Saturn's magnetosphere, but measurements will also be taken at Earth, Jupiter, and Titan.

MIMI is a complex instrument that produces comparatively large amounts of data. The combination of these factors presents many challenges in distributing, archiving and using the data. Because of the complexity of the instrument, calibration data and calibration techniques will be highly dynamic. Together these factors make it impractical to distribute new data when calibration improves. The solution to this problem is to provide tables of decommutated data in the instrument's units as spacecraft science data products and calibration data and algorithms as ancillary data products. Thus, as the calibration improves only the calibration needs to be redistributed. This methodology holds true for all data products except for the images produced by the INCA instrument. The calculation of flux from the raw counts contained in the image is a highly complex problem requiring knowledge of instrument characteristics, geometry, and spacecraft orientation that prevents the general use of the above outlined methodology for the distribution of data. Instead for the INCA images, there are two sets of data products produced: the raw counts contained within the images and the fluxes generated from the images. No specific calibration data is provided except that calibration data which is wholly independent of geometry and spacecraft orientation and is fairly static in nature. In addition, programs that work with the raw counts in the INCA images will be archived to allow the final users an understanding of the algorithms used in the production of the final flux matrices.

The complexity of MIMI also means that a large body of documentation including detailed diagrams and other non-text elements is required to understand and use the spacecraft science data products. Once again, redistributing all of this documentation with each volume is impractical, so this body of documentation is available on a single volume, called a reference volume, and only redistributed when documents are updated, added or removed. However, each volume contains metadata to locate and utilize the data products in the volume and pointers to other resources that the user may find helpful.

Each one of the three sensors produces two types of data, accumulator rates (RATE) and pulse height analysis (PHA) data. The LEMMS sensor produces two types of RATE data, low time resolution data for all detectors and high time resolution data for a set of priority counters. The low time resolution data is accumulated over subsectors and the high time resolution data is accumulated over microsectors. These two time resolutions of LEMMS data are contained in separate data products. The low time resolution data is referred to simply as rate data while the high time resolution data is referred to as fine rate data. CHEMS also produces two different types of rate data, accumulator rates and science rates. Accumulator rates differ from science rates in that the accumulator rates are an indicator for the overall health of the instrument allowing for specific time ordered, mass ordered, and other instrument specific studies to be undertaken. The science rates are generated from calculations from the onboard MIMI DPU. The science rates are already categorized in terms of mass and level of coincidence. The science rates provide the most direct measurement of the chemical composition and energy spectra measured by the CHEMS instrument. In addition to RATE and PHA data, INCA also produces images. The INCA images are represented as two dimensional arrays of values. Thus, there are nine easily identified data products grouped into PDS data sets by sensor. Table 5 shows the maximum amount of data per day per data product. Table 5 also shows the total maximum size of data products per day for each data set.

Table 5: Spacecraft Science Data Products in MIMI Data Sets				
Sensor	Data Type	Maximum (MB / Day)	Sensor Total (MB / Day)	
	Accumulator Rates	15		
LEMMS	Fine Accumulator Rates	25	70	
РНА		30		
CHEMS	Accumulator Rates	7	459	
	Science Rates	2		
	РНА	450		
	Accumulator Rates	4		
INCA	РНА	300	414	
	Images	110		

1.7. Scope

This specification applies to all archive volumes containing MIMI data products for the duration of its mission.

1.8. Applicable Documents

- Planetary Science Data Dictionary Document, August 28, 2002, Planetary Data System, JPL D-7116, Rev. E
- Planetary Data System Standards Reference, August 1, 2003, Version 3.6. JPL D-7669, Part 2.
- Cassini/MIMI Data Analysis Center, *Level 1A File Layouts*, December 2 2003, Revision 18, SRS-98-203.
- Magnetosphere Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan, In press Space Science Review, S.M Krimigis et al.
- Cassini/Huygens Program Archive Plan for Science Data, PD 699-068, JPL D-159576
- Planetary Data Systems Archive Preparation Guide, January 20, 2005, JPL D-31225, Version 0.05012

1.9. Audience

This specification is useful to those who wish to understand the format and content of the MIMI PDS data product archive collection. Typically, these individuals would be scientists, data analysts, or software engineers.

2. Volume Generation

2.1. Data Production and Transfer Methods

The MIMI standard product archive collection is produced by the MIMI instrument team in cooperation with the PDS Planetary Plasma Interactions (PPI) Node at the University of California, Los Angeles (UCLA). The MIMI team is funded by NASA through the Cassini Project office and the PPI activities are funded by the NASA Planetary Data System.

The MIMI team produces the individual data files and the associated detached PDS labels for each of the standard data products defined in section 1.6 above. Data files are all commaseparated variable, ASCII files containing all data of the appropriate type for the time interval contained in the data product. Data products are individually compressed (gzipped) and placed on an FTP server at **Fundamental Technologies**, **LLC. Fundamental Technologies** will at regular intervals:

- 1.) Submit the gzipped version of the PDS data to the PDS data reception site via FTP protocols.
- 2.) Checks the size of the gzipped version of the data product against the size of the gzipped product on the **Fundamental Technologies** FTP site

- 3.) Sends a notification to at least one person at the PPI node and at least one person at **Fundamental Technologies** that includes the name and version of the file, when it was downloaded and its unzipped size.
- 4.) **Fundamental Technologies** creates an entry into the Cassini Archive and Tracking System (CATS) based upon the completion of a submission which might contain multiple transfers of products.

2.2. Volume Creation

PPI collects the data files and labels provided by the MIMI team onto archive volumes. Each archive volume contains all MIMI data available for the time interval covered by the archive volume. Once all of the data files, labels, and ancillary data files are organized onto an archive volume, PPI adds all of the PDS required files (AAREADME, INDEX, ERRATA, etc.) and produces the physical media. The MIMI team maintains an internet accessible version of the reference volume which is cloned automatically at the PPI node and burned to media when needed.

2.3. Volume Validation

The MIMI team and PPI node validate volumes in two ways. Before any volumes are produced a peer review panel validates the structure and content of the archive and reference volumes. Once volume production begins, automated software validates each volume and the peer review panel spot checks volumes as desired.

The peer review panel consists of members of the instrument team, the PPI and Central Nodes of the PDS, and at least two outside scientists actively working in the field of energetic particles research. The PDS personnel are responsible for validating that the volume(s) are fully compliant with PDS standards. The instrument team and outside science reviewers are responsible for verifying the content of the data set, the completeness of the documentation, and the usability of the data in its archive format. The peer review process is a two part process. First, the panel reviews this document and verifies that a volume produced to this specification will be useful. Next, the panel reviews a specimen volume to verify that the volume meets this specification and is indeed acceptable.

Once automated production begins, software provided by the MIMI team produces a summary of each data product and software provided by the PPI node verifies that the all files required by PDS are present and that the files themselves conform to PDS standards. If an error is detected by either of the above programs, the error is corrected, if possible, before the volume is produced. If an error in a data file is uncorrectable, (i.e., an error in the downlink data file) the error is described in the cumulative errata file that is included on each volume in the volume set.

2.4. Labeling and Identification

Each MIMI standard data product archive volume bears a unique volume identifier (volume_id) of the form COMIMI_nnnn where CO identifies the spacecraft (Cassini Orbiter), MIMI identifies the instrument, and nnnn is a sequential number assigned to each volume. The volume_id is used as the label for the physical medium on which the data are stored.

PDS data set names conform to the following format: CASSINI E/J/S/SW MIMI <sensor name> SENSOR UNCALIBRATED DATA V<major version>.<minor version>. For example, version one of the LEMMS data set is named CASSINI E/J/S/SW MIMI LEMMS SENSOR UNCALIBRATED DATA V1.0.

PDS data set identifiers (dsid) are abbreviated versions of the data set names formed according to the PDS formation rule for the DATA_SET_ID keyword (Section 6.4, PDS Standards Reference Version 3.6, dated August 1, 2003, http://pds.jpl.nasa.gov/stdrefnew/). For example, the dsid for the data set above is CO-E/J/S/SW-MIMI-2-LEMMS-UNCALIB-V1.0.

Table 6: Relationship Between Data Sets, Standard Data Product ID, and Archive Volumes			
Data Set ID	Standard Data Product ID	Single Product Volume Files	Multi-Product Volume Files
	MIMI_LEMMS_PHA	LPHA0_199925300_0000.CSV	LPHA0_199925300_0000.CSV, LPHA0_199925400_0000.CSV, LPHA0_199925500_0000.CSV, LPHA0_199925600_0000.CSV, LPHA0_199925700_0000CSV
CO-E/J/S/SW-MIMI- 2-LEMMS- UNCALIB-V1.0	MIMI_LEMMS_ACC	LACC0_199925300_0000.CSV	LACC0_199925300_0000.CSV, LACC0_199925400_0000.CSV, LACC0_199925500_0000CSV, LACC0_199925600_0000CSV, LACC0_199925700_0000CSV
	MIMI_LEMMS_FRT LFRT0_199925300_0000.CSV		LFRT0_199925300_0000.CSV, LFRT0_199925400_0000.CSV, LFRT0_199925500_0000CSV, LFRT0_199925600_0000CSV, LFRT0_199925700_0000CSV
CO-E/J/S/SW-MIMI- 2-CHEMS-	MIMI_CHEMS_PHA	CPHA0_199925300_0000.CSV	CPHA0_199925300_0000.CSV, CPHA0_199925400_0000.CSV, CPHA0_199925500_0000CSV, CPHA0_199925600_0000CSV, CPHA0_199925700_0000.CSV
UNCALIB-V1.0	MIMI_CHEMS_ACC	CACC0_199925300_0000.CSV	CACC0_199925300_0000.CSV, CACC0_199925400_0000.CSV, CACC0_199925500_0000.CSV, CACC0_199925600_0000.CSV, CACC0_199925700_0000.CSV
	MIMI_CHEMS_SCI	CSCI0_199925300_0000.CSV	CSCI0_199925300_0000.CSV, CSCI0_199925400_0000.CSV, CSCI0_199925500_0000.CSV, CSCI0_199925600_0000.CSV, CSCI0_199925700_0000.CSV
	MIMI_INCA_PHA	IPHA0_199925300_0000.CSV	IPHA0_199925300_0000.CSV, IPHA0_199925400_0000.CSV, IPHA0_199925500_0000.CSV, IPHA0_199925600_0000.CSV, IPHA0_199925700_0000.CSV
CO-E/J/S/SW-MIMI- 2-INCA-UNCALIB- V1.0	MIMI_INCA_ACC	IACC0_199925300_0000.CSV	IACC0_199925300_0000.CSV, IACC0_199925400_0000.CSV, IACC0_199925500_0000.CSV, IACC0_199925500_0000.CSV, IACC0_199925600_0000.CSV, IACC0_199925700_0000.CSV

MIMI_INCA_IMG IIMG0_199925300_0000.CSV	IIMG0_199925300_0000.CSV, IIMG0_199925400_0000.CSV, IIMG0_199925500_0000.CSV, IIMG0_199925600_0000.CSV, IIMG0_199925700_0000.CSV,
--	---

3. Archive Volume Contents

This section describes the contents of the MIMI standard product archive collection volumes, including the file names, file contents, file types, and organizations responsible for providing the files. The complete directory structure is shown in Appendix A. All the ancillary files described herein appear on each MIMI archive volume, except where noted.

3.1. Root Directory Contents

The following files are contained in the root directory, and are produced by the PPI Node at UCLA. With the exception of the hypertext file and its label, all of these files are required by the PDS Archive Volume organization standards.

Table 7: Root Directory Contents		
File Name	File Contents	File Provided By
AAREADME.TXT	This file completely describes the Volume organization and contents (PDS label attached).	PPI Node
AAREADME.HTM	Hypertext version of AAREADME.TXT (top level of HTML interface to the Archive Volume).	PPI Node
AAREADME.LBL	A PDS detached label that describes AAREADME.HTM.	PPI Node
ERRATA.TXT	A cumulative listing of comments and updates concerning all MIMI Standard Data Products on all MIMI Volumes in the Volume set published to date.	PPI Node
VOLDESC.CAT	A description of the contents of this Volume in a PDS format readable by both humans and computers.	PPI Node

3.2. INDEX Directory Contents

The following files are contained in the INDEX directory and are produced by the PDS PPI Node. The INDEX.TAB file contains a listing of all data products on the archive volume. In addition, there is a cumulative index file (CUMINDEX.TAB) file that lists all data products in the MIMI archive volume set to date. The index and index information (INDXINFO.TXT) files are required by the PDS volume standards. The index tables include both required and optional columns. The cumulative index file is also a PDS requirement; however, this file is not reproduced on each data volume. An online and web accessible cumulative index file is maintained at the PPI Node while archive volumes are being produced. Only the last archive volume in the volume series will contain a cumulative index file.

Table 8: Index Directory Contents		
File Name	File Contents	File Provided By

Table 8: Index Directory Contents		
File Name	File Contents	File Provided By
CUMINDEX.TAB	A table listing all MIMI Data Products in the MIMI Archive volume	PPI Node
CUMINDEX.LBL	A PDS detached label that describes CUMINDEX.TAB	PPI Node
INDXINFO.TXT	A description of the contents of this directory	PPI Node
INDEX.TAB	A table listing all MIMI Data Products on this Volume	PPI Node
INDEX.LBL	A PDS detached label that describes INDEX.TAB	PPI Node

3.3. CATALOG Directory Contents

The completed PDS templates in the CATALOG directory provide a top-level understanding of the Cassini/MIMI mission and its data products. The information necessary to create the files is provided by the MIMI team and formatted into standard template formats by the PPI Node. The files in this directory are coordinated with PDS data engineers at both the PPI and the PDS Central Nodes.

Table 9: Catalog Directory Contents		
File Name	File Contents	File Provided By
CATINFO.TXT	A description of the contents of this directory	PPI Node
CO_MIMI_CHEMS_DS.CAT	PDS Data Set catalog description of the data for the CHEMS sensor	MIMI Team
CO_MIMI_INCA_DS.CAT	PDS Data Set catalog description of the data for the INCA sensor	MIMI Team
CO_MIMI_LEMMS_DS.CAT	PDS Data Set catalog description of the data for the LEMMS sensor	MIMI Team
CO_MIMI_REF.CAT	MIMI-related references mentioned in other *.CAT files	MIMI Team
INST.CAT	PDS instrument catalog description of the MIMI instrument	MIMI Team
INSTHOST.CAT	PDS instrument host (spacecraft) catalog description of the Cassini spacecraft	Cassini Project
MISSION.CAT	PDS mission catalog description of the Cassini mission	Cassini Project
PERSON.CAT	PDS personnel catalog description of MIMI Team members and other persons involved with generation of MIMI Data Products	MIMI Team
PROJREF.CAT	Cassini Project related references	Project/PPI Node

3.4. DATA (Standard Products) Directory Contents and Naming Conventions

The DATA directory contains the actual Data Products produced by the MIMI team. All Archive Volumes will have the following subdirectories: LEMMS_ACCUMULATION_RATES,

LEMMS_FINE_ACCUMULATION_RATES, LEMMS_PULSE_HEIGHT_ANALYSIS, CHEMS_ACCUMULATION_RATES, CHEMS_PULSE_HEIGHT_ANALYSIS, CHEMS_SCIENCE_RATES, INCA_ACCUMULATION_RATES, INCA_PULSE_HEIGHT_ANALYSIS INCA_IMAGES.

3.4.1. Required Files

In the top level of the DATA directory there is a file called DATAINFO.TXT that is an ASCII text description describing the data organization. In the subdirectories beneath the DATA directory there is a file named INFO.TXT that is an ASCII text description of the directory contents. Every file in the DATA path of an Archive Volume is described by a PDS label. Text documentation files have internal (attached) PDS labels and data files have external (detached) labels. Detached PDS label files have the same root name as the file they describe but have the suffix ".LBL".

The file SPICE_FURNISH.TXT is included at the top level of the DATA directory to provide the user a SPICE Furnish Kernel file that can be loaded. This file identifies the best understood list of those SPICE kernels that should be loaded as of the submission of the volume in order to fully process and understand the data received from the instrument.

3.4.2. DATA / LEMMS_ACCUMULATION RATES Directory Contents

LEMMS Accumulation Rates data contains the counts of the particles measured by the detector broken into channels. Channels are defined based upon the underlying detectors and logic as described in Krimigis, et al, 2004. The highest time resolution of this data is based upon the definition of a spin whether an actual spacecraft spin or a virtualized spacecraft spin. The highest time resolution of the data is then derived by the total amount of time of a spin dived by 256. Each spin is comprised of 16 sectors and each sector is comprised of 16 subsectors. The highest time resolution of LEMMS Accumulation Rates data products then is the total time allocated to a single subsector.

Table 10: LEMMS_ACCUMULATION_RATES Data Directory Contents		
File Name	File Contents	File(s) Provided By
LACC*.CSV	LEMMS accumulation rate data file.	MIMI
LACC*.LBL	PDS label for rate data file of same base name.	MIMI

3.4.3. DATA / LEMMS_FINE_ACCUMULATION_RATES Directory Contents

LEMMS Fine Accumulation Rates data contains the counts of the particles measured by a subset of channels. The list of channels included in the Fine Accumulation Rates data product is programmable and does vary over the life of the mission. The highest time resolution of the fine rate data is based upon dividing a subsector into 16 additional bins called microsectors. Hence for any of these channels the highest accumulation time resolution is 1/4096 of a spacecraft spin. In general, the accumulation time resolution for fine rates is 1/2048 of a spacecraft spin – collecting data over two microsectors.

Table 11: LEMMS_FINE_ACCUMULATION_RATES Data Directory Contents		
File Name	File Contents	File(s) Provided By
LFRT*.CSV	LEMMS fine accumulation rate data file.	MIMI
LFRT*.LBL	PDS label for fine rate data file of same base name.	MIMI

3.4.4. DATA / LEMMS_PULSE_HEIGHT_ANALYSIS Directory Contents

LEMMS Pulse Height Analysis data contains a subset of the total data set describing the particles observed for each of the A, E1, and F1 detectors. The counts for each detector are broken into 256 bins. The bins are then combined into a subset of 128 channels where the logarithmic energy passbands are evenly divided.

Table 12: LEMMS_PULSE_HEIGHT_ANALYSIS Data Directory Contents		
File Name	File Contents	File(s) Provided By
LPHA*.CSV	LEMMS pulse height analysis data file.	MIMI
LPHA*.LBL	PDS label for PHA data file of same base name.	MIMI

3.4.5. DATA / CHEMS_ACCUMULATION_RATES Directory Contents

CHEMS Accumulation Rates data contains the counts detected by the CHEMS telescopes. The counts are divided into DPPS steps which are energy dependent. The CHEMS Accumulation Rates data is to be used for the purposes of calibration and to determine the health of the CHEMS instrument.

Table 13: CHEMS_ACCUMULATION_RATES Data Directory Contents		
File Name	File Contents	File(s) Provided By
CACC*.CSV	CHEMS accumulation rate data file.	MIMI
CACC*.LBL	PDS label for accumulator rate data file of same base name.	MIMI

3.4.6. DATA / CHEMS_PULSE_HEIGHT_ANALYSIS Directory Contents

CHEMS Pulse Height Analysis data contains the counts of the particles measured over a subset of the total data collected by the CHEMS instrument. This data set is used primarily for calibration and to determine the health of the instrument.

Table 14: CHEMS_PULSE_HEIGHT_ANALYSIS Data Directory Contents		
File Name	File Contents	File(s) Provided By
CPHA*.CSV	CHEMS pulse height analysis data file.	MIMI
CPHA*.LBL	PDS label for PHA data file of same base name.	MIMI

3.4.7. DATA / CHEMS_SCIENCE_RATES Directory Contents

CHEMS Science Rates data is the main data product of the CHEMS instrument. This data product characterizes the mass and mass/charge of the species counted based upon a predefined range value and whether a measurement has single, double, or triple coincidence. All calculations are performed in real time by the MIMI DPU aboard the spacecraft. The maximum time resolution of this data is a subsector per DPPS step with all 16 DPPS steps occurring over a single sector.

Table 15: CHEMS_SCIENCE_RATES Data Directory Contents		
File Name	File Contents	File(s) Provided By
CSCI*.CSV	CHEMS science rate data file.	MIMI
CSCI*.LBL	PDS label for science rate data file of same base name.	MIMI

3.4.8. DATA / INCA_ACCUMULATION_RATES Directory Contents

INCA Accumulation Rates data contains the counts of particles measured by the detector. The instrument can either be used to count all particles (charged or neutral) or else the detectors plates can have a potential applied and count neutral particles or else highly energetic charged particles. The maximum time resolution of accumulation of counts is a sector. In general this data is used to determine the health of the instrument.

Table 16: INCA_ACCUMULATION_RATES Data Directory Contents		
File Name	File Contents	File(s) Provided By
IACC*.CSV	INCA accumulation rate data file.	MIMI
IACC*.LBL	PDS label for rate data file of same base name.	MIMI

3.4.9. DATA / INCA_IMAGES Directory Contents

INCA Images are the main data product of the instrument showing the flux of particles either charged and neutral or just neutral. The images are presented as a table of counts which are multiplied by the appropriate flux factor matrix taken from the calibration volume to produce the flux of particles seen by the instrument during the observation time.

Table 17: INCA_IMAGES Data Directory Contents		
File Name	File Contents	File(s) Provided By
IIMG*.CSV	INCA image data file.	MIMI
IIMG*.LBL	PDS label for the image data file of same base name.	MIMI

3.4.10. DATA / INCA_PULSE_HEIGHT_ANALYSIS Directory Contents

INCA Pulse Height Analysis data contains the counts of the particles measured over a subset of the total data collected by the INCA instrument. This data set is used primarily for calibration and to determine the health of the instrument.

Table 18: INCA_PULSE_HEIGHT_ANALYSIS Data Directory Contents		
File Name	File Contents	File(s) Provided By
IPHA*.CSV	INCA pulse height analysis data file.	MIMI
IPHA*.LBL	PDS label for PHA data file of same base name.	MIMI

3.4.11. File Naming Conventions

Data products have names of the following form:

```
STTTF_YYYDDD_VVVV.CSV
```

where

S is for sensor (L for LEMMS, C for CHEMS, or I for INCA),

TTT is for data type (ACC or SCI for rates, FRT for fine rates, PHA for pulse height analysis, or IMG for images),

F is an index, starting with 0-9 and continuing to A-Z, that represents the format version of the file.

YYYYDDDHH is the start year and day of the data product,

VVVV is a numerical index, starting with 0000, that represents the data version of the file. Data used for testing purposes will set VVVV = 'TEST'.

The format and data versions of the file name allow for data formats to change with different phases of the mission and for data to be changed within a specific format. For example the LEMMS instrument has different numbers of priority counters during different phases of the mission. When this type of change is made the format version number will be incremented and the data version index will be reset to zero. When data is updated within a specific LEMMS format the data version number will be incremented. TEST data versions are used to represent test data. Therefore, files with TEST for the data version should not be used except in testing.

3.5. BROWSE Directory Contents and Naming Conventions

The BROWSE directory contains daily summary of the data in the form of Key Parameter data stored as a table file and daily browse plots of the Key Parameter summary data. The BROWSE plots are in the JPG format. Each plot shows sensor specific data derived from the Key Parameter summary data tables. The plots are stored in the subdirectories labeled with the sensors name. The BROWSE directory contains the following instrument data product subdirectories: LEMMS_PLOT, CHEMS_PLOT, and INCA_PLOT.

3.5.1. Required Files

In the top level of the BROWSE directory there is a file called BRWSINFO.TXT that is an ASCII text description describing BROWSE directory files and subdirectory structure. In the subdirectories beneath the BROWSE directory there is a file named INFO.TXT that is an ASCII text description of the directory contents. Every file in the BROWSE path of an Archive Volume is described by a PDS label. Text documentation files have internal (attached) PDS labels and data files have external (detached) labels. Detached PDS label files have the same root name as the file they describe but have the suffix ".LBL".

3.5.2. BROWSE Directory Contents

The BROWSE directory contains the summary Key Parameter (KP) data for the MIMI instrument. The KP data is an interpolated data set calculated at a 60 second cadence (at each minute boundary). The data is calculated from the PDS volume data products and converted into flux with units of 1/(cm^2*sr*sec*KeV). This data provides a basic measurement of the overall inputs received from each sensor on the instrument. The channels included in the data set are based upon those channels which are expected to provide useful and comparative measurements within the overall channel sets for each sensor and between each sensor.

The KP data generated is calculated as a "first look" data product that does not include significant reduction of the data for effects such as instrument efficiencies, background elimination, high data rates due to non particle related effects (such as glint off of the antenna boom), obscuration, etc. This data is not considered to be at a high enough quality to be archived as it's own data product nor is acceptable to be used in publications. Instead, the KP data is there to guide the researcher into particular areas of the observations that are of interest.

Table 19: BROWSE Directory Contents		
File Name	File Contents	File(s) Provided By
MIMI_KP_*.TAB	MIMI Key Parameter data	MIMI
MIMI_KP_*.LBL	PDS label for KP data file of same base name.	MIMI

3.5.2.1. CHEMS Browse Plots Directory Contents

Four daily browse plots are provided for the CHEMS sensor showing the detection of specific ions for specified ionization states. Each plot has four curves representing the observed flux groups by Data Processing Steps: Curve 1 – DPPS 0-7, Curve 2 – DPPS 8-15, Curve 3 – DPPS 15-23, Curve 4 – DPPS 24-31.

Table 20: CHEMS Browse Plots Contents			
File Name	File Contents	File(s) Provided By	
CHEMS_KP_HEP*.JPG	Daily plot of Singly Ionized Helium flux	MIMI	
CHEMS_KP_HEPP*.JPG	Daily plot of Doubly Ionized Helium flux	MIMI	
CHEMS_KP_HP*. JPG	Daily plot of Singly Ionized Hydrogen flux	MIMI	
CHEMS_KP_OP*. JPG	Daily plot of Singly Ionized Oxygen flux	MIMI	
CHEMS_KP_HEP*.LBL	PDS Label for CHEMS flux plot	MIMI	
CHEMS_KP_HEPP*.LBL	PDS Label for CHEMS flux plot	MIMI	
CHEMS_KP_HP*.LBL	PDS Label for CHEMS flux plot	MIMI	
CHEMS_KP_OP*.LBL	PDS Label for CHEMS flux plot	MIMI	

3.5.2.2. INCA Browse Plots Directory Contents

A single daily browse plot is provided for the INCA sensor showing the summation of the Hydrogen flux observed by all pixels of the sensor for specific Time Of Flight (TOF) values. Each plot has eight curves one for each TOF value. A secondary curve is provided at the lower portion of the plot identifying whether the INCA instrument is in ION or NEUTRAL mode.

Table 21: INCA Browse Plots Contents		
File Name	File Contents	File(s) Provided By
INCA_KP_ *. JPG	Daily plot of Hydrogen flux	MIMI
INCA_KP_*.LBL	PDS Label for INCA flux plot	MIMI

3.5.2.3. LEMMS Browse Plots Directory Contents

Two daily browse plots are provided for the LEMMS sensor showing the detection of electrons and ions. The electron plots show thirteen curves of various energy measurements for both types of electron detection methods: eight C channels representing magnetically deflected electrons and five E channels measuring electron flux into the sensor. A secondary set of curves is provided in the lower portion of the graph plotting the anisotropy measurement of the C5 channel (1.0 – C5_Min/C5_Max) and a plot of the scanning mode of the LEMMS table (either scanning (1) or not scanning (0)). The ion plots show fourteen curves of various energy measurements ions detected from the low energy and high energy telescopes: nine A channels and five P channels. A secondary set of curves is provided in the lower portion of the graph plotting the anisotropy measurement of the A5 channel ($1.0 - A5_Min/A5_Max$) and a plot of the scanning mode of the graph plotting the anisotropy measurement of the A5 channel ($1.0 - A5_Min/A5_Max$) and a plot of the scanning mode of the graph plotting the anisotropy measurement of the A5 channel ($1.0 - A5_Min/A5_Max$) and a plot of the scanning mode of the LEMMS table (either scanning mode of the LEMMS table (either scanning (1) or not scanning (0)).

Table 22: LEMMS Browse Plots Contents		
File Name	File Contents	File(s) Provided By
LEMMS_KP_ELEC*. JPG	Daily plot of electron flux	MIMI

LEMMS_KP_ION*. JPG	Daily plot of ion flux	MIMI
LEMMS_KP_ELEC*.LBL	PDS Label for LEMMS flux plot	MIMI
LEMMS_KP_ION*.LBL	PDS Label for LEMMS flux plot	MIMI

3.5.3. File Naming Conventions

Browse Key Parameter data products names have the following form:

```
MIMI_KP_YYYDDD_VVVV.TAB
```

where

YYYYDDD is the start year and day of the data product,

VVVV is a numerical index, starting with 0000, that represents the data version of the file. Data used for testing purposes will set VVVV = TEST.

The data versions of the file name allow for data to be reprocessed during the mission. When data is updated the data version number will be incremented. TEST data versions are used to represent test data. Therefore, files with TEST for the data version should not be used except in testing.

The BROWSE data plots of the Key Parameter data are stored in the subdirectories for each instrument. Graphical files stored within these subdirectories have the following file name convention:

CHEMS_PLOT:	CHEMS_KP_HEP_YYYYDDD_VVVV.JPG
	CHEMS_KP_HEPP_YYYDDD_VVVV.JPG
	CHEMS_KP_HP_YYYDDD_VVVV.JPG
	CHEMS_KP_OP_YYYYDDD_VVVV.JPG
INCA_PLOT:	INCA_KP_YYYYDDD_VVVV.JPG
LEMMS_PLOT:	LEMMS_KP_ION_YYYYDDD_VVVV.JPG
	LEMMS_KP_ELEC_YYYYDDD_VVVV.JPG

3.6. EXTRAS Directory Contents and Naming Conventions

The EXTRAS directory contains useful files that are helpful in using the Archive volume but they are not specifically required for use with the Archive volume.

4. Reference Volume

The reference volume contains documents and data used to interpret the data products on the archive volumes. **Fundamental Technologies, LLC** maintains an online, FTP accessible, master version of the reference volume which is mirrored by the PPI node of PDS. **Fundamental Technologies, LLC** updates the master version as needed and software at the PPI node automatically updates the mirror at the PPI node within one week of changes to the master. The following sections describe the contents of each of the top level directories of the reference volume.

4.1. Root Directory Contents

The following files are contained in the root directory, and are produced by the PPI Node at UCLA. With the exception of the hypertext file and its label, all of these files are required by the PDS Archive Volume organization standards.

Table 23: Root Directory Contents		
File Name	File Contents	File Provided By
AAREADME.TXT	This file completely describes the Volume organization and contents (PDS label attached).	PPI Node
AAREADME.HTM	Hypertext version of AAREADME.TXT (top level of HTML interface to the Archive Volume).	PPI Node
AAREADME.LBL	A PDS detached label that describes AAREADME.HTM.	PPI Node
ERRATA.TXT	A cumulative listing of comments and updates concerning all MIMI Standard Data Products on all MIMI Volumes in the Volume set published to date.	PPI Node
VOLDESC.CAT	A description of the contents of this Volume in a PDS format readable by both humans and computers.	PPI Node

4.2. CATALOG Directory Contents

The completed PDS templates in the CATALOG directory provide a top-level understanding of the Cassini/MIMI mission and its data products. The information necessary to create the files is provided by the MIMI team and formatted into standard template formats by the PPI Node. The files in this directory are coordinated with PDS data engineers at both the PPI and the PDS Central Nodes.

Table 24: Catalog Directory Contents		
File Name	File Contents	File Provided By
CATINFO.TXT	A description of the contents of this directory	PPI Node
CO_MIMI_CHEMS_DS.CAT	PDS Data Set catalog description of the data for the CHEMS sensor	MIMI Team
CO_MIMI_INCA_DS.CAT	PDS Data Set catalog description of the data for the INCA sensor	MIMI Team
CO_MIMI_LEMMS_DS.CAT	PDS Data Set catalog description of the data for the LEMMS sensor	MIMI Team
CO_MIMI_REF.CAT	MIMI-related references mentioned in other *.CAT files	MIMI Team
INST.CAT	PDS instrument catalog description of the MIMI instrument	MIMI Team
INSTHOST.CAT	PDS instrument host (spacecraft) catalog description of the Cassini spacecraft	Cassini Project
MISSION.CAT	PDS mission catalog description of the Cassini mission	Cassini Project

Table 24: Catalog Directory Contents		
File Name	File Contents	File Provided By
PERSON.CAT	PDS personnel catalog description of MIMI Team members and other persons involved with generation of MIMI Data Products	MIMI Team
PROJREF.CAT	Cassini Project related references	Project/PPI Node

4.3. DOCUMENT Directory Contents

The document directory contains documentation that is considered to be either necessary or simply useful for users to understand the archive data set. These documents are not necessarily appropriate for inclusion in the PDS catalog. Documents may be included in multiple forms (ASCII, PDF, MS Word, HTML with image file pointers, etc.). PDS standards require that any documentation deemed required for use of the data be available in some ASCII format. HTML with a minimal amount of Mark Up is acceptable as an ASCII format in addition to plain text. The following files are contained in the DOCUMENT directory and are produced or collected by the PPI Node.

Table 25: Document Directory Contents		
File Name	File Contents	File Provided By
DOCINFO.TXT	A description of the contents of this directory	PPI
INSTRUMENT_PAPER	A directory containing a copy of KRIMIGISETAL2004 (To be included upon receipt of permission from the publisher)	MIMI Team
MIMI_VOLUME_DESCRIPTION	A directory containing this document.	MIMI Team
Other Document Directories	Any additional documents that are deemed useful in understanding the MIMI instrument.	MIMI Team, PPI

4.3.1. INSTRUMENT_PAPER subdirectory

This directory contains multiple copies of the Instrument paper (KRIMIGISETAL2004) in a variety of formats: Microsoft Word (.doc extension), Adobe Acrobat Reader (.pdf extention), HyperText Layout (.html extension). (This document is to be included upon receipt of permission from the publisher)

4.3.2. MIMI_VOLUME_DESCRIPTION subdirectory

This directory contains multiple copies of the MIMI volume description (this file) in a variety of formats: Microsoft Word (.doc extension), Adobe Acrobat Reader (.pdf extention), HyperText Layout (.html extension).

Table 26: MIMI_VOLUME_DESCRIPTION_FILES Subdirectory Contents					
Tuble 20. MIMI_VOLOME_DESCRITION_FILES Suburectory Contents					
File Name File Contents File Provided By					

MIMI_VOLUME_DESCRIPTION.DOC	MIMI Volume Description (MIMI SIS MS Word format)	MIMI Team
MIMI_VOLUME_DESCRIPTION.HTM	MIMI Volume Description (MIMI SIS HTML MIMI Team format)	
MIMI_VOLUME_DESCRIPTION.PDF	MIMI Volume Description (MIMI SIS ADOBE Acrobat Reader PDS format)	MIMI Team
HEADER.HTM	MIMI_VOLUME_DESCRIPTION.HTM header and style definition file	MIMI Team
DIRSTRUCT.JPG	Graphical representation of Reference and Data directories in alternative image format	MIMI Team
LEMMSLOOK.JPG	Graphical representation of LEMMS look direction geometry	MIMI Team
Other Document labels	Detached PDS labels for any additional documents/files	PPI

4.4. GEOMETRY Directory Contents

This directory contains three ancillary data products, one for each sensor. These ancillary data products are CSV files with one line containing column headers. Each CSV file contains one or more vector (Cartesian spacecraft coordinates) and scalar values. The vectors represent specific aspects of the sensor such as the center of the field of view of the sensor. The scalars represent specific single value items such as the half angle of the conical aperture of the low energy end of the LEMMS sensor. Each vector or scalar value has its own line in the CSV file. The first column in the line is a description of the value. In the case of vectors, the next three columns are the X, Y and Z values respectively. In the case of a scalar values the second column is simply the value. For the sake of easy parsing lines containing scalar values are padded to four columns. The geometry data for CHEMS and INCA are constant, but, the geometry data for LEMMS contains a variable called "look_angle" representing the turn table position which is contained within the data products. All values in the tables are contained within double quotation marks except for those values that are empty (NULL). For those values that are derived from trigonometric functions, the function names are used instead of a specific numeric value so that the user can specify the desired precision.

Table 27: Geometry Directory Contents				
File Name	File Contents	File Provided By		
GEOMINFO.TXT	A description of the contents of this directory	PPI		
CHEMS_GEOMETRY.CSV	CHEMS Instrument geometry description	MIMI Team, PPI		
INCA_GEOMETRY.CSV	INCA Instrument geometry description	MIMI Team, PPI		
LEMMS_GEOMETRY.CSV	LEMMS Instrument geometry description	MIMI Team, PPI		
CHEMS_GEOMETRY.LBL	PDS Label for CHEMS instrument geometry description	MIMI Team, PPI		
INCA_GEOMETRY.LBL	PDS Label for INCA instrument geometry description	MIMI Team, PPI		
LEMMS_GEOMETRY.LBL	PDS Labor for LEMMS instrument geometry description	MIMI Team, PPI		

4.5. Calibration Directory Contents

The calibration directory has two types of files Algorithms (*_ALG_*.TXT) and Calibration Data (*.CSV). Algorithm files contain brief descriptions of how to obtain useful, physical quantities from the data products. The Calibration Data file is formatted as a CSV file with the quantities required to execute the algorithms in the Algorithms subdirectory. Included with each text file are attached PDS labels.

Table 28: Calibration Directory Contents					
File Name	File Contents	File Provided By			
CALINFO.TXT	A description of the contents of this directory	PPI Node			
CACC*_ALGO_*.TXT	CHEMS accumulation algorithm file	MIMI			
CPHA*_ ALGO _*. TXT	CHEMS pulse height analysis algorithm file	MIMI			
CSCI*_ ALGO _*. TXT	CHEMS science rates algorithm file	MIMI			
IACC*_ ALGO _*. TXT	INCA accumulation algorithm file	MIMI			
IIMG*_ ALGO _*. TXT	INCA image rates algorithm file	MIMI			
IPHA*_ ALGO _*. TXT	INCA pulse height analysis algorithm file	MIMI			
LACC*_ ALGO _*. TXT	LEMMS Accumulation algorithm file	MIMI			
LFRT*_ ALGO _*. TXT	LEMMS fine rates accumulation algorithm file	MIMI			
LPHA*_ ALGO _*. TXT	LEMMS pulse height analysis algorithm file	MIMI			
MIMI_CALIBRATION_VVVV.CSV	Calibration data for all instruments	MIMI			
MIMI_CALIBRATION_VVVV.LBL	PDS Label for MIMI calibration file	MIMI			
IIMG_FACTOR_SEGMENTS_VVVV.CSV	Time segment information for INCA image calibration files	MIMI			
IIMG_FACTOR_SEGMENTS_VVVV.LBL	PDS Label for INCA segment file	МІМІ			

4.5.1. Algorithm File

A single algorithm file is provided to enable the conversion of the Level 1A data products into Level 2 data products. In general, the highest version numbered file should be used. Older versions are present for completeness and validation. The algorithm file contains an ASCII text only description of how to calculate useful, physical values from each column of a data product type. The algorithm file contains brief descriptions with step by step instructions on how to produce higher level data products. The algorithms are not intended to fully explain the physical meaning of the calibration, but, to provide a handy reference for people who already have a working understanding of the science and the instrument. Algorithm file names obey the following format:

MIMI_ALGO_VVVV.TXT

where

VVVV is a numerical index, starting with 0000, that represents the data version of the file. Data used for testing will have VVVV = 'TEST'.

The algorithm file contains references into the both the data calibration file and instrument data files to specific fields using a shorthand notation. The shorthand notation is:

<purpose>:<data_type>:<sensor>:<channel:channelID>:<mpv> or

<purpose>:<data_type>:<sensor>:<channel:channelID>:<delta>

where:

<purpose> is given by the type of calculation

<data_type> is based upon the original source of data

<Sensor> identifies the sensor whose data we are working with

<channel:channelID> identifies the specific or general set of channels and channel ID's to use

<mpv> is the Midpoint Value

<delta> is the Passband delta value.

An example algorithm for the calculation of flux using the LEMMS accumulation rates:

FLUX EQUATION:

flux = (count-background)/(duration*geom_fact*passband *factor)

RESULT VARIABLES:

flux: the result of the calibration in nucleon/(cm^2*sec*sr*KeV)

INPUT VARIABLES FROM A DATA PRODUCT:

Count = LACC:dp:sci:(detector_channel), a count from a LEMMS accumulation data product

duration = Endtime – Starttime, Duration is a calculated value from two data product columns

Endtime = LACC:dp:sci:End_Ephemeris_s, the ending time of the measurement in seconds

Starttime = LACC:dp:sci:Start_Ephemeris_s, the starting time of the measurement in seconds

INPUT VARIABLES FROM A CALIBRATION FILE:

Passband = Energy: ACC:LEMMS:(Channel:ID):(Particle):Delta, Passband is the derived energy passband delta for the specific channel of the LEMMS sensor in KeV

geom_fact = GEOM_FACTOR:ACC:LEMMS:(Channel:ID):(Particle):Midpoint_Value, the geometrical factor is in cm^2*sr

VARIBLES TO BE PROVIDED BY DATA USERS:

factor: a catch all scaling factor used to account for obscuration by parts of the spacecraft and other phenomenon that cause count rates to be lower than they should be based on geometrical factors and pass bands. Factor will vary with turntable position and with spacecraft position/attitude. Using a factor of 1.0 will produces fluxes not corrected for obscuration and other factors of this nature.

background: a catch all offset used to account for glint off the magnetometer boom, background and other sources of events that should not be considered. Using a background of 0.0 will produce fluxes not corrected for this phenomenon.

4.5.2. Data Calibration File

The calibration data for each sensor of the MIMI instrument have been compiled into a single file. Each calibration data file for the instrument represents a revision. In general, the highest version numbered file should be used. Older versions are present for completeness and validation. The calibration data file is a CSV file, see section 6 for details.

MIMI_CALIBRATION_VVVV.CSV

where

VVVV is an index, starting with 0000, that represents the data version of the file. Data used for testing will have VVVV = 'TEST'.

4.5.3. INCA_IMAGES subdirectory

The calibration data for the conversion of the INCA image count rate data into flux images is contained with in the INCA_IMAGES subdirectories. For each segment of operations a subdirectory is created that contains the INCA_IMAGES flux conversion matrices. As of this writing there are three operations segments of the INCA mission: postFlightv34, postJupiter, and preJupiter. The REAME.TXT file contains the current list of segments along with the starting and ending times of each segment in the form of a standard ASCII date/time string, e.g. 1997-244T00:00:00.000. This file also contains the revision history of the flux factor matrix subdirectories and associated data values.

4.5.3.4. INCA_IMAGES_(SEGMENT) subdirectory structure and files

The various subdirectories for each segment contain two subdirectories of flux factor matrices for when the spacecraft is in spinning mode and when the spacecraft is in staring mode. The files contained within these subdirectories are the flux factor matrices that are used to convert the raw image data contained in the INCA_IMAGES data product into fluxes. The file naming convention used for these files is as follows:

XXxXX_tofY.csv where XX is the matrix size (8, 16, 32, or 64) and Y is the time of flight (0-7).

5. Archive Volume Format

This section describes the format of MIMI standard product archive volumes. Data that comprise the MIMI standard product archives will be formatted in accordance with Planetary Data System specifications [Planetary Science Data Dictionary, 2002; PDS Archive Preparation Guide, 2005; PDS Standards Reference, 2005].

5.1. Disk Format

Disk formats for the archive volumes will conform to the PDS standard for the applicable media. At present, the plan is to archive MIMI data on DVD-R media. The PDS standard for DVD-R media disk format is ISO-UDF Bridge.

5.2. File Formats

The following section describes file formats for the kinds of files contained on Archive Volumes.

5.2.1. Delimited Field File Formats

Delimited field, ASCII data files (.CSV suffix) exist in the DATA and INDEX directories. These files are formatted for direct reading into many database management systems on various computers. In the MIMI application of the delimited field format, fields are separated by commas.

Records vary in length in bytes but will have a fixed number of fields. Missing data are represented by empty fields. All delimited field files are described by detached PDS labels

All data files in the MIMI Standard Product Archive Collection have PDS labels [Planetary Science Data Dictionary, 2002; PDS Standards Reference, 2005. These labels are all detached from the data files (same file name prefix, .LBL suffix).

A PDS label, whether embedded or detached from its associated file, provides descriptive information about the associated file. The PDS label is an object-oriented structure consisting of sets of 'keyword = value' declarations. The object that the label refers to (e.g., IMAGE, TABLE, etc.) is denoted by a statement of the form:

 $^{object} = location$

in which the carat character (^, also called a pointer in this context) indicates where to find the object. In a PDS label, the location denotes the name of the file containing the object, along with the starting record or byte number, if there is more than one object in the file. For example:

^HEADER = ("98118.TAB",1) ^TABLE = ("98118.TAB",1025 <BYTES>)

indicates that the HEADER object begins at record 1 and that the TABLE object begins at byte 1025 of the file 98118.TAB. The file 98118.TAB must be located in the same directory as the detached label file.

Below is a list of the possible formats for the ^object definition in labels in this product.

^object = n
^object = n <BYTES>
^object = "filename.ext"
^object = ("filename.ext", n)
^object = ("filename.ext", n <BYTES>)

where

 \mathbf{n} is the starting record or byte offset of the object, counting from the beginning of the file (record 1, byte 1),

<BYTES> indicates that the number given is in units of bytes (the default is records),

filename is the up-to-27-character, alphanumeric upper-case file name,

ext is the up-to-3-character upper-case file extension.

All detached labels contain 80-byte fixed-length records, with a carriage return character (ASCII 13) in the 79th byte and a line feed character (ASCII 10) in the 80th byte. This allows the files to be read by the MacOS, DOS, Windows, UNIX, OS2, and VMS operating systems.

5.2.2. General Data Product Format

All MIMI data products are CSV files that contain a series of homogenous records. Records consist of a record header followed by data. Each file contains one line of column headers. Column headers apply to the first line in a record and are the same as the field name in the tables below. Blank fields indicate that the field is not applicable in the context of the record, the data is not available, is out of tolerance, or is otherwise not suitable for archiving. The record header format is as follows. The Purpose field usually contains SCI, meaning the record contains data intended for use as science data. For a partial list of possible values for the Purpose field, see Appendix B. It should be noted that purpose codes can be added as specific needs are identified without fully reprocessing earlier data files.

Table 29: MIMI Data Product Record Header Format				
Field Name	Туре	Units	Range	
			facivalid minualid may min maan	
PURPOSE	string	n/a	[scivalid, minvalid, max, min, mean,]	
START_EPHEMERIS_S	float	seconds	[-7.0E7-1.5E9]	
END_EPHEMERIS_S	float	seconds	[-7.0E7-1.5E9]	
SPIN_COUNTER	integer	n/a	[0-16383]	
SECTOR	integer	n/a	[0-15]	
START_SECTOR_SCLOCK_MAJOR	integer	n/a	[0- 400000000]	
SUBSECTOR	Integer	n/a	[0-15]	
MICROSECTORS_COVERED	integer	n/a	[0-1024]	
SPIN_PERIOD_S	float	seconds	[680-3072]	
STARING	integer	n/a	[0-1]	

5.2.3. MIMI LEMMS Data Product Formats

There are three data products covering any given time in the LEMMS data set: One contains subsector accumulations for all of the LEMMS detectors, one contains microsector accumulations for the LEMMS priority detectors and one contains PHA data. The microsector accumulations are referred to as fine rates to indicate their high time resolution. The three tables below show the formats of the records for each of the three data products. The number of priority counters in the rates and fine rates data products and which channels are used as priority counters can vary based upon the mission needs. Each set of priority counters is reflected in a new format version of the data product.

Table 30: LEMMS Rates Data File Contents and Structure				
Field Name	l Name Type Units Range			
Header	See Table 29: MIMI Data Product Record Header Format			
Channel_A0	integer	n/a	[0-4E5]	

Table 30: LEMMS Rates Data File Contents and Structure

Field Name	Туре	Units	Range
	-51		
Channel_A1	integer	n/a	[0-4.E5]
Channel_A2	integer	n/a	[0-4.E5]
Channel_A3	integer	n/a	[0-4.E5]
Channel_A4	integer	n/a	[0-4.E5]
Channel_A5	integer	n/a	[0-4.E5]
Channel_A6	integer	n/a	[0-4.E5]
Channel_A7	integer	n/a	[0-4.E5]
Channel_A8	integer	n/a	[0-4.E5]
Channel_B0	integer	n/a	[0-4.E5]
Channel_B1	integer	n/a	[0-4.E5]
Channel_B2	integer	n/a	[0-4.E5]
Channel_B3	integer	n/a	[0-4.E5]
Channel_BE	integer	n/a	[0-4.E5]
Channel_C0	integer	n/a	[0-4.E5]
Channel_C1	integer	n/a	[0-4.E5]
Channel_C2	integer	n/a	[0-4.E5]
Channel_C3	integer	n/a	[0-4.E5]
Channel_C4	integer	n/a	[0-4.E5]
Channel_C5	integer	n/a	[0-4.E5]
Channel_C6	integer	n/a	[0-4.E5]
Channel_C7	integer	n/a	[0-4.E5]
Channel_AS	integer	n/a	[0-4.E5]
Channel_BS	integer	n/a	[0-4.E5]
Channel_ES	integer	n/a	[0-4.E5]
Channel_E2_F2S	integer	n/a	[0-4.E5]
Channel_FS	integer	n/a	[0-4.E5]
Channel_E0	integer	n/a	[0-4.E5]
Channel_E1	integer	n/a	[0-4.E5]
Channel_E2	integer	n/a	[0-4.E5]
Channel_E3	integer	n/a	[0-4.E5]
Channel_E4	integer	n/a	[0-4.E5]
Channel_E5	integer	n/a	[0-4.E5]

Table 30: LEMMS Rates Data File Contents and Structure

Field Name	Туре	Units	Range
Channel_E6	integer	n/a	[0-4.E5]
Channel_E7	integer	n/a	[0-4.E5]
Channel_G1	integer	n/a	[0-4.E5]
Channel_P1	integer	n/a	[0-4.E5]
Channel_P2	integer	n/a	[0-4.E5]
Channel_P3	integer	n/a	[0-4.E5]
Channel_P4	integer	n/a	[0-4.E5]
Channel_P5	integer	n/a	[0-4.E5]
Channel_P6	integer	n/a	[0-4.E5]
Channel_P7	integer	n/a	[0-4.E5]
Channel_P8	integer	n/a	[0-4.E5]
Channel_P9	integer	n/a	[0-4.E5]
Channel_H1	integer	n/a	[0-4.E5]
Channel_H2	integer	n/a	[0-4.E5]
Channel_H3	integer	n/a	[0-4.E5]
Channel_H4	integer	n/a	[0-4.E5]
Channel_H5	integer	n/a	[0-4.E5]
Channel_Z1	integer	n/a	[0-4.E5]
Channel_Z2	integer	n/a	[0-4.E5]
Channel_Z3	integer	n/a	[0-4.E5]
Channel_D1	integer	n/a	[0-4.E5]
Channel_D2	integer	n/a	[0-4.E5]
Channel_D3	integer	n/a	[0-4.E5]
Channel_D41	integer	n/a	[0-4.E5]
Priority_Counter_0_XX_Sum	integer	n/a	[0-4.E5]
Priority_Counter_1_YY_Sum	integer	n/a	[0-4.E5]
Priority_CounterSum	integer	n/a	[0-4.E5]
Priority_Counter_N_ZZ_Sum	integer	n/a	[0-4.E5]
Center_Look_Angle_degrees <cr><lf></lf></cr>	float	degrees	[0.000000-360.000000]

Table 31: LEMMS Fine Rate Data File Contents and Structure

Field Name	Туре	Units	Range
Header	See Tab	ole 29: MIMI	Data Product Record Header Format
Microsector	integer	n/a	[0-15]
XX	integer	n/a	[0-40000]
YY	integer	n/a	[0-40000]
	integer	n/a	[0-40000]
ZZ (nth priority counter)	integer	n/a	[0-40000]
Center_Look_Angle_degrees	float	degrees	[0.00000-360.000000]
<cr><lf></lf></cr>			

Table 32: LEMMS PHA Data File Contents and Structure				
Field Name	Туре	Units	Range	
Header	See Tab	ole 29: MIMI	Data Product Record Header Format	
Detector_A_Bin_0	integer	n/a	[0-65534]	
	•••	•••		
Detector_A_Bin_63	integer	n/a	[0-65534]	
Detector_E_Bin_0	integer	n/a	[0-65534]	
	•••	•••	•••	
Detector_E_Bin_63	integer	n/a	[0-65534]	
Detector_F1_Bin_0	integer	n/a	[0-65534]	
	•••	•••		
Detector_F1_Bin_63	integer	n/a	[0-65534]	
Center_Look_Angle_degrees <cr><lf></lf></cr>	float	degrees	[0.000000-360.000000]	

5.2.4. MIMI CHEMS Data Product Formats

There are three data products covering any given time in the CHEMS data set: two containing RATE data for the CHEMS detectors and one containing PHA data. Each of these files is homogeneous with respect to record format. The three tables below show the formats of the records for each of the data products.

Table 33: CHEMS Accumulator Rates Data File Contents and Structure				
Field Name	Туре	Units	Range	
Header	See Tat	ole 29: MIMI	Data Product Record Header Format	
DPPS_Level	integer	n/a	[0-2147483646]	
Start_Head_1	integer	n/a	[0-2147483646]	
Start_Head_2	integer	n/a	[0-2147483646]	
Start_Head_3	integer	n/a	[0-2147483646]	
Start_Sum	integer	n/a	[0-2147483646]	
Stop_Head_1	integer	n/a	[0-2147483646]	
Stop_Head_2	integer	n/a	[0-2147483646]	
Stop_Head_3	integer	n/a	[0-2147483646]	
Stop_Sum	integer	n/a	[0-2147483646]	
Energy_Head_1	integer	n/a	[0-2147483646]	
Energy_Head_2	integer	n/a	[0-2147483646]	
Energy_Head_3	integer	n/a	[0-2147483646]	
Energy_Sum	integer	n/a	[0-2147483646]	
DCR_Head_1	integer	n/a	[0-2147483646]	
DCR_Head_2	integer	n/a	[0-2147483646]	
DCR_Head_3	integer	n/a	[0-2147483646]	
DCR_Sum	integer	n/a	[0-2147483646]	
TCR_Head_1	integer	n/a	[0-2147483646]	
TCR_Head_2	integer	n/a	[0-2147483646]	
TCR_Head_3	integer	n/a	[0-2147483646]	
TCR_Sum	integer	n/a	[0-2147483646]	
UFSR	integer	n/a	[0-2147483646]	
URSR	integer	n/a	[0-2147483646]	
<cr><lf></lf></cr>				

Table 34: CHEMS Science Rates Data File Contents and Structure

Field Name	Туре	Units	Range		
Header	See Table 29: MIMI Data Product Record Header Form				
DPPS_Level	integer	n/a	[0-31]		
Range_0_Tele_1	integer	n/a	[0-65534]		
Range_0_Tele_2	integer	n/a	[0-65534]		
Range_0_Tele_3	integer	n/a	[0-65534]		
Range_0_Sum	integer	n/a	[0-196602]		
Range_1_Tele_1	integer	n/a	[0-65534]		
Range_1_Tele_2	integer	n/a	[0-65534]		
Range_1_Tele_3	integer	n/a	[0-65534]		
Range_1_Sum	integer	n/a	[0-196602]		
Range_2_Tele_1	integer	n/a	[0-65534]		
Range_2_Tele_2	integer	n/a	[0-65534]		
Range_2_Tele_3	integer	n/a	[0-65534]		
Range_2_Sum	integer	n/a	[0-196602]		
Range_3_Tele_1	integer	n/a	[0-65534]		
Range_3_Tele_2	integer	n/a	[0-65534]		
Range_3_Tele_3	integer	n/a	[0-65534]		
Range_3_Sum	integer	n/a	[0-196602]		
Range_4_Tele_1	integer	n/a	[0-65534]		
Range_4_Tele_2	integer	n/a	[0-65534]		
Range_4_Tele_3	integer	n/a	[0-65534]		
Range_4_Sum	integer	n/a	[0-196602]		
Range_5_Tele_1	integer	n/a	[0-65534]		
Range_5_Tele_2	integer	n/a	[0-65534]		
Range_5_Tele_3	integer	n/a	[0-65534]		
Range_5_Sum	integer	n/a	[0-196602]		
Range_6_Tele_1	integer	n/a	[0-65534]		
Range_6_Tele_2	integer	n/a	[0-65534]		
Range_6_Tele_3	integer	n/a	[0-65534]		
Range_6_Sum	integer	n/a	[0-196602]		
He_Plus_Doubles	integer	n/a	[0-65534]		
He_Plus_Triples	integer	n/a	[0-65534]		
He_Plus_2_Doubles	integer	n/a	[0-65534]		
He_Plus_2_Triples	integer	n/a	[0-65534]		
O_Plus_Doubles_Tele_1	integer	n/a	[0-65534]		
O_Plus_Doubles_Tele_2	integer	n/a	[0-65534]		
O_Plus_Doubles_Tele_3	integer	n/a	[0-65534]		
O_Plus_Triples_Tele_1	integer	n/a	[0-65534]		

Table 34: CHEMS Science Rates Data File Contents and Structure

	1		
Field Name	Туре	Units	Range
O_Plus_Triples_Tele_2	integer	n/a	[0-65534]
O_Plus_Triples_Tele_3	integer	n/a	[0-65534]
O_Plus_2_Doubles	integer	n/a	[0-65534]
O_Plus_2_Triples	integer	n/a	[0-65534]
CNO_over_4_and_T	integer	n/a	[0-65534]
Energy_Underflow	integer	n/a	[0-65534]
Energy_Overflow	integer	n/a	[0-65534]
TOF_Underflow	integer	n/a	[0-65534]
TOF_Overflow	integer	n/a	[0-65534]
Mass_Overflow	integer	n/a	[0-65534]
M_Over_Q_Underflow	integer	n/a	[0-65534]
M_Over_Q_Overflow	integer	n/a	[0-65534]
O_Plus_Doubles_Sum	integer	n/a	[0-196602]
O_Plus_Triples_Sum	integer	n/a	[0-196602]
<cr><lf></lf></cr>			

Table 35: CHEMS PHA Data File Contents and Structure					
Field	Туре	Units	Range		
Header	See Tab	ole 29: MIMI	Data Product Record Header Format		
Index_in_Sector	integer	n/a	[0-30000]		
DPPS_Level	integer	n/a	[0-31]		
Energy	integer	n/a	[0-1023]		
Time_of_Flight	integer	n/a	[0-1023]		
Solid_State_Detector	integer	n/a	[0-3]		
Start_Micro_Channel_Plate	integer	n/a	[0-3]		
Range	integer	n/a	[0-6]		
<cr><lf></lf></cr>					

5.2.5. MIMI INCA Data Product Formats

There are three data product types for the INCA sensor. Two of these types, the RATE and PHA data have records on one line but the format of IMAGE data products is more complicated. The three tables below show the format of the records for the RATE, PHA and IMAGE data products respectively.

Table 36: INCA Rates Data File Contents and Structure

Field Name	Туре	Units	Range
Header	See Tal	ble 29: MIMI	Data Product Record Header Format
Start_Fast	integer	n/a	[0-1E7]
Start_Pulse	integer	n/a	[0-1E7]
Start_Coincidence	integer	n/a	[0-1E7]
Stop_Fast	integer	n/a	[0-1E7]
Stop_Pulse	integer	n/a	[0-1E7]
Full	integer	n/a	[0-1E7]
Coincidence	integer	n/a	[0-1E7]
Time	integer	n/a	[0-1E7]
Stop_Coincidence	integer	n/a	[0-1E7]
Events_Received	integer	n/a	[0-1E7]
Events_Processed	integer	n/a	[0-1E7]
<cr><lf></lf></cr>	_		

Table 37: INCA PHA Data File Contents and Structure					
Field Name	Туре	Units	Range		
Header	See Tabl	e 29: MIMI Dat	a Product Record Header Format		
Index_in_Four_Subsectors	Integer	n/a	[0-500]		
Coincidence	integer	n/a	[0-1]		
Start_Stop	integer	n/a	[0-1]		
Pulse_Height_Front	integer	n/a	[0-255]		
Pulse_Height_Rear	integer	n/a	[0-255]		
Time_of_Flight	integer	n/a	[0-65535]		
Azimuth	integer	n/a	[0-63]		
Elevation	integer	n/a	[0-47]		
Mass_Range	integer	n/a	[0-31]		
<cr><lf></lf></cr>					

The INCA image files consist of a line of column headers then alternating image descriptions and image data. One line of image data consists of 64 counts followed by 64 exposure factors. The data for one image consists of 64 lines. Thus when, viewed in a spreadsheet, there will be a 64 by 64 region representing the counts next to a 64 by 64 region representing exposure factors. If images are smaller than 64 by 64 the right most columns are padded with empty fields and only those rows that apply are included within the file.

Table 38: MIMI/INCA Image Description Format

Field Name	Туре	Units	Range
Header	See Tal	ble 29: MIMI Dat	a Product Record Header Format
Type_ID	integer	n/a	[0-65535]
Row_ID	integer	n/a	[0-63]
Num_Rows	integer	n/a	[8-64]
Num_Cols	integer	n/a	[8-64]
Compression_Bits	integer	n/a	[0-65535]
Compression_Method	string	n/a	[None, Fast, Rice]
Log_Compressed	integer	n/a	[0-1]
Theta_Offset	integer	n/a	[0-31]
Phi_Offset	integer	n/a	[0-61]
High_Resolution	string	n/a	[Spatial, Time, m-TOF]
Charged	integer	n/a	[0-1]
Species	string	n/a	[H, He, CNO, Heavy, Other, All]
TOF	integer	n/a	[0-7]
Col_0	integer	n/a	[0-65535]
Col_1	integer	n/a	[0-65535]
Col_2	integer	n/a	[0-65535]
Col_3	integer	n/a	[0-65535]
Col_4	integer	n/a	[0-65535]
Col_5	integer	n/a	[0-65535]
Col_6	integer	n/a	[0-65535]
Col_7	integer	n/a	[0-65535]
Col_8	integer	n/a	[0-65535]
Col_9	integer	n/a	[0-65535]
Col_10	integer	n/a	[0-65535]
Col_11	integer	n/a	[0-65535]
Col_12	integer	n/a	[0-65535]
Col_13	integer	n/a	[0-65535]
Col_14	integer	n/a	[0-65535]
Col_15	integer	n/a	[0-65535]
Col_16	integer	n/a	[0-65535]
Col_17	integer	n/a	[0-65535]
Col_18	integer	n/a	[0-65535]
Col_19	integer	n/a	[0-65535]

Table 38: MIMI/INCA Image Description Format

Field Name	Туре	Units	Range
Col_20	integer	n/a	[0-65535]
Col_21	integer	n/a	[0-65535]
Col_22	integer	n/a	[0-65535]
Col_23	integer	n/a	[0-65535]
Col_24	integer	n/a	[0-65535]
Col_25	integer	n/a	[0-65535]
Col_26	integer	n/a	[0-65535]
Col_27	integer	n/a	[0-65535]
 Col_28	integer	n/a	[0-65535]
 Col_29	integer	n/a	[0-65535]
 Col_30	integer	n/a	[0-65535]
Col_31	integer	n/a	[0-65535]
Col_32	integer	n/a	[0-65535]
Col_33	integer	n/a	[0-65535]
Col_34	integer	n/a	[0-65535]
Col_35	integer	n/a	[0-65535]
Col_36	integer	n/a	[0-65535]
Col_37	integer	n/a	[0-65535]
Col_38	integer	n/a	[0-65535]
Col_39	integer	n/a	[0-65535]
Col_40	integer	n/a	[0-65535]
Col_41	integer	n/a	[0-65535]
Col_42	integer	n/a	[0-65535]
Col_43	integer	n/a	[0-65535]
Col_44	integer	n/a	[0-65535]
Col_45	integer	n/a	[0-65535]
Col_46	integer	n/a	[0-65535]
Col_47	integer	n/a	[0-65535]
Col_48	integer	n/a	[0-65535]
Col_49	integer	n/a	[0-65535]
Col_50	integer	n/a	[0-65535]
Col_51	integer	n/a	[0-65535]
Col_52	integer	n/a	[0-65535]
Col_53	integer	n/a	[0-65535]

	Table 38: MIMI/INCA Image Description Format					
Field Name	Туре	Units	Range			
Col_54	integer	n/a	[0-65535]			
Col_55	integer	n/a	[0-65535]			
Col_56	integer	n/a	[0-65535]			
Col_57	integer	n/a	[0-65535]			
Col_58	integer	n/a	[0-65535]			
Col_59	integer	n/a	[0-65535]			
Col_60	integer	n/a	[0-65535]			
Col_61	integer	n/a	[0-65535]			
Col_62	integer	n/a	[0-65535]			
Col_63	integer	n/a	[0-65535]			
<cr><lf></lf></cr>						

5.2.6. MIMI BROWSE Data Product Formats

There is a single data product covering any given time in the BROWSE data set. The product contains the values of each channel interpolated to the sixty second cadence of the KP data. The channel sets included within the KP data set are provided to show as best a relative comparison between the products produced by each sensor as possible. The data set identifies fill or missing data by the value of -9999. The following table identifies the characteristics of each included channel within the KP data.

Table 39: BROWSE Data File Contents and Structure				
Field Name	Туре	Units	Range	
UTC	character	time	n/a	
LEMMS_A0	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_A1	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_A2	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_A3	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_A4	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_A5	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_A6	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_A7	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_A8	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_C0	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_C1	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	

Table 39: BROWSE Data File Contents and Structure				
Field Name	Туре	Units	Range	
LEMMS_C2	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_C3	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_C4	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_C5	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_C6	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_C7	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_P1	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_P2	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_P3	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_P4	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_P5	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_E0	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_E1	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_E2	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_E3	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_E4	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
LEMMS_C5_Anisotropy	real	n/a	[-9999, 0.0-1.0]	
LEMMS_A5_Anisotropy	real	n/a	[-9999, 0.0-1.0]	
LEMMS_Scanning	character	n/a	[yes, no]	
CHEMS_H_Plus_DPPS_0_7	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
CHEMS_H_Plus_DPPS_8_15	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
CHEMS_H_Plus_DPPS_16_23	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
CHEMS_H_Plus_DPPS_24_31	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
CHEMS_He_Plus_DPPS_0_7	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
CHEMS_He_Plus_DPPS_8_15	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
CHEMS_He_Plus_DPPS_16_23	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
CHEMS_He_Plus_DPPS_24_31	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
CHEMS_He_Plus_2_DPPS_0_7	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
CHEMS_He_Plus_2_DPPS_8_15	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
CHEMS_He_Plus_2_DPPS_16_23	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
CHEMS_He_Plus_2_DPPS_24_31	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
CHEMS_O_Plus_DPPS_0_7	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	

Table 39: BROWSE Data File Contents and Structure				
Field Name	Туре	Units	Range	
CHEMS_O_Plus_DPPS_8_15	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
CHEMS_O_Plus_DPPS_16_23	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
CHEMS_O_Plus_DPPS_24_31	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
INCA_H_TOF_0	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
INCA_H_TOF_1	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
INCA_H_TOF_2	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
INCA_H_TOF_3	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
INCA_H_TOF_4	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
INCA_H_TOF_5	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
INCA_H_TOF_6	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
INCA_H_TOF_7	real	1/(cm^2*sr*sec*KeV)	[-9999, 0.0-1.0e8]	
INCA_Mode	character	n/a	[neutral, ion]	

5.2.6.5. CHEMS/INCA/LEMMS Daily BROWSE Plots format

All CHEMS/INCA/LEMMS daily plots are stored in the JPEG bit-mapped graphics format as specified in the JPEG specifications and W3C white papers at the following locations: www.jpeg.org/ and www.w3.org/Graphics/JPEG/jfif.txt.

6. Reference Volume Format

This section describes the format of MIMI standard product archive volumes. Data that comprise the MIMI standard product archives will be formatted in accordance with Planetary Data System specifications [Planetary Science Data Dictionary, 2002; PDS Standards Reference, 2003].

6.1. Disk Format

Disk formats for the archive volumes will conform to the PDS standard for the applicable media. At present, the plan is to archive MIMI data on DVD-R media. The PDS standard for DVD-R media disk format is ISO-UDF Bridge.

6.2. File Formats

The following section describes file formats for the kinds of files contained on reference Volume.

6.2.1. Document File Formats

Document files with the .TXT suffix exist throughout the archive volume. These files are ASCII files with embedded PDS labels. All document files contain variable-length, 80-byte maximum records; with a carriage return character (ASCII 13) in the 79th byte and a line feed character (ASCII 10) in the 80th byte. This allows the files to be read by the MacOS, DOS, Windows, UNIX, OS2, and VMS operating systems. All documents that do not include the .TXT extension are described by detached PDS labels.

However, the documents in the reference volume contain formatting and figures that cannot be rendered as pure ASCII text. These documents will be provided in formats that support graphics, such as HTML, MS Word, PDF, etc. The PDS requirement that all documentation critical to the understanding of the data set be provided in ASCII text form will be met by the inclusion of HTML formatted documents.

6.2.2. Catalog File Formats

Catalog files (suffix .CAT) exist in the Root and Catalog directories. They are formatted in an object-oriented structure consisting of sets of 'keyword = value' declarations. All files are ASCII and conform to the same structure standards (line length, line terminator) as the PDS label files described in the previous section.

6.2.3. Delimited Field File Formats

Delimited field, ASCII data files (.CSV suffix) exist in the CALIBRATION directory. These files are formatted for direct reading into many database management systems on various computers. In the MIMI application of the delimited field format, fields are separated by commas. Records vary in length in bytes but will have a fixed number of fields. Missing data are represented by empty fields. All delimited field files are described by detached PDS labels

All data files in the MIMI Standard Product Archive Collection have PDS labels [Planetary Science Data Dictionary, 2002; PDS Archive Preparation Guide, 2005; PDS Standards Reference, 2005]. These labels are all detached from the data files (same file name prefix, .LBL suffix).

A PDS label, whether embedded or detached from its associated file, provides descriptive information about the associated file. The PDS label is an object-oriented structure consisting of sets of 'keyword = value' declarations. The object that the label refers to (e.g., IMAGE, TABLE, etc.) is denoted by a statement of the form:

 $^{object} = location$

in which the carat character (^, also called a pointer in this context) indicates where to find the object. In a PDS label, the location denotes the name of the file containing the object, along with the starting record or byte number, if there is more than one object in the file. For example:

^HEADER = ("98118.TAB",1) ^TABLE = ("98118.TAB",1025 <BYTES>)

indicates that the HEADER object begins at record 1 and that the TABLE object begins at byte 1025 of the file 98118.TAB. The file 98118.TAB must be located in the same directory as the detached label file.

Below is a list of the possible formats for the ^object definition in labels in this product.

```
^object = n
^object = n <BYTES>
^object = "filename.ext"
^object = ("filename.ext", n)
^object = ("filename.ext", n <BYTES>)
```

where

 \mathbf{n} is the starting record or byte offset of the object, counting from the beginning of the file (record 1, byte 1),

<BYTES> indicates that the number given is in units of bytes (the default is records),

filename is the up-to-8-character, alphanumeric upper-case file name,

ext is the up-to-3-character upper-case file extension.

All detached labels contain 80-byte fixed-length records, with a carriage return character (ASCII 13) in the 79th byte and a line feed character (ASCII 10) in the 80th byte. This allows the files to be read by the MacOS, DOS, Windows, UNIX, OS2, and VMS operating systems.

6.2.4. General Calibration Product Format

All MIMI calibration products are either text files with embedded PDS labels that contain algorithms or else CSV files with detached PDS labels that contain a series of homogenous records. CSV Records consist of one line of column headers. Column headers apply to the first line in a record and are the same as the field name in the tables below. Blank fields indicate that the field is not applicable in the context of the record, the data is not available, is out of tolerance,

or is otherwise not suitable for archiving. The record header format is as follows. The Purpose field identifies the type of calibration data. For a partial list of possible values for the Purpose field, see Appendix B. It should be noted that purpose codes can be added as specific needs are identified without fully reprocessing earlier data files. The Start Ephemeris Time and Duration identify the starting and ending times that this calibration file is applicable.

The main calibration file (MIMI_CALIBRATION_XXXX.CSV) is used to contain all the calibration information represented by the three MIMI detectors and are collected within a single file for ease of understanding the various dynamics ranges available from the instrument.

 Table 40: MIMI Calibration Product Record Format

		•	
Field Name	Туре	Units	Range
			[ENERGY, ENERGY/CHARGE, MASS, MASS/CHARGE, GEOM_FACTOR,
			EFFICIENCY, FOV, E/NUC_A,
Purpose	String	n/a	E/NUC_B]
Data_Type	String	n/a	[ACC, FRT, PHA, IMG, SCI]
Sensor	String	n/a	[LEMMS, CHEMS, INCA]
Channel	String	n/a	Alphabetical values
Channel_Index	Integer	n/a	[0-63]
		,	[e,P,He,C,O,Fe,Xray,ALL, He+, He++,
Particle	String	n/a	O+, O++, H, O]
Start_Year	Integer	n/a	[1997-2030]
Start_DDOY	Integer	n/a	[0.000 – 365.99999999]
Stop_Year	Integer	n/a	[1997-2030]
Stop_DDOY	Integer	n/a	[0.000 – 365.99999999]
			[KeV, KeV/e, amu, amu/e, cm^2*sr, NA,
Units	String	n/a	degrees]
Low	Float	n/varied	[0-1E5]
Hi	Float	varied	[0-1E5]
Delta	Float	varied	[0-1E5]
Midpoint_Value	Float	varied	[0-1E3]

6.2.5. INCA Image Segment Calibration File

The INCA image segment calibration file identifies the time segments for which the INCA flux factor matrices cover.

Table 41: INCA Image Segment File Record Format			
Field Name	Туре	Units	Range
Start_Year	Integer	n/a	[1997 – 2030]

Table 41: INCA Image Segment File Record Format

Field Name	Туре	Units	Range
Start_DDOY	Float	n/a	[0.000 - 365.99999999]
End_Year	Integer	n/a	[1997 – 2030]
End_DDOY	Float	n/a	[0.000 – 365.99999999]
Segment_Name	String	n/a	[postFlightv34, postJupiter]

6.2.6. INCA Flux Factor Matrix Calibration Files

There are three flux factor calibration files for the INCA Images. Each of the files is based upon the spatial resolution used at the time of observation as well as the programmed TOF (time of flight) value used during the observation. The flux factor calibration files do not contain headers.

Table 42: INCA 8x8 Flux Factor Matrix File Field Descriptions			
Field Name	Туре	Units	Range
col 0	Integer	NA	[0 – 1E8]
col_1	Integer	NA	[0 – 1E8]
	Integer	NA	[0 – 1E8]
col_7	Integer	NA	[0 – 1E8]

Table 43: INCA 16x16 Flux Factor Matrix File Field Descriptions			
Field Name	Туре	Units	Range
col 0	Integer	NA	[0 – 1E8]
col_1	Integer	NA	[0 – 1E8]
	Integer	NA	[0 – 1E8]
col_15	Integer	NA	[0 – 1E8]

Table 44: INCA 32x32 Flux Factor Matrix File Field Descriptions			
Field Name	Туре	Units	Range
col 0	Integer	NA	[0 – 1E8]
col_1	Integer	NA	[0 – 1E8]
	Integer	NA	[0 – 1E8]
col_31	Integer	NA	[0 – 1E8]

Table 45: INCA 64x64 Flux Factor Matrix File Field Descriptions			
Field Name	Туре	Units	Range
col 0	Integer	NA	[0 – 1E8]
col_1	Integer	NA	[0 – 1E8]
	Integer	NA	[0 – 1E8]
col_63	Integer	NA	[0 – 1E8]

7. Sample Data Product Labels

7.1. MIMI LEMMS

7.1.1. MIMI LEMMS Rates

Sample File 1: LACC0_2000340_0000.LBL PDS_VERSION_ID = PDS3 DATA_SET_ID = "CO-E/J/S/SW-MIMI-2-LEMMS-UNCALIB-V1.0" = "LACC0_2000340_0000" PRODUCT_ID = "MIMI_LEMMS_ACC" STANDARD_DATA_PRODUCT_ID PRODUCT_TYPE PRODUCT_VERSION = "DATA" = 0 PRODUCT_CREATION_TIME = 2005-123T16:28:05.000 = STREAM RECORD_TYPE INTERCHANGE FORMAT = ASCIT FILE_RECORDS = 14992 START_TIME = "2000-340T00:00:00" = "2000-340T23:59:59" STOP TIME NATIVE_START_TIME = "29246464.183189" = "29332863.183214" NATIVE_STOP_TIME SPACECRAFT_CLOCK_START_COUNT = "1/1354666282.146" SPACECRAFT_CLOCK_STOP_COUNT = "1/1354752682.043" = "CASSINI ORBITER" INSTRUMENT_HOST_NAME INSTRUMENT_HOST_ID = "CO" = "\$PHASE_NAME" MISSION_PHASE_NAME = \$ORBIT_NUM ORBIT_NUMBER TARGET_NAME = "SOLAR WIND" = "MAGNETOSPHERIC IMAGING INSTRUMENT" INSTRUMENT NAME = "MIMI" INSTRUMENT ID = " DESCRIPTION 1-2 subsector accumulations for the LEMMS sensor of the MIMI instrument on the Cassini spacecraft" ^HEADER = ("LACC0_2000340_0000.CSV", 1 <BYTES>)
^SPREADSHEET = ("LACC0_2000340_0000.CSV", 1049 <BYTES>) OBJECT = HEADER RECORDS = 1 BYTES = 1048 HEADER_TYPE = SPREADSHEET DESCRIPTION = " This file contains a single row of column headings (text strings enclosed within double quotes) separated by commas." END_OBJECT = HEADER OBJECT = SPREADSHEET ROWS = 14997 FIELDS = 72 = 857 ROW_BYTES FIELD_DELIMITER = COMMA OBJECT = FIELD = "PURPOSE" NAME FIELD_NUMBER = 1 DATA_TYPE = CHARACTER BYTES = 32 = " DESCRIPTION The PURPOSE field identifies the purpose or function of the data contained in current row. Valid entries include: SCI - normal science data values VALID MIN - the inclusive or exclusive minimum value allowed for this column VALID MAX - the inclusive or exclusive maximum value allowed for this column MIN - the minimum value for this column present in this product MAX - the maximum value for this column present in this product

MEAN - the mean of the values in this column in this product, this value will be rounded for integer columns STDEV - the standard deviation of the values in this column in this product, this value will be rounded for integer columns" END_OBJECT = FIELD OBJECT = FIELD = "START_EPHEMERIS_S" NAME FIELD_NUMBER = 2 = SECOND UNTT DATA_TYPE = ASCII_REAL BYTES = 20 VALID_MINIMUM = -71063936 VALID MAXIMUM = 757339265 DESCRIPTION = ' The J2000 ephemeris time in seconds at the beginning of the time period for this record." END OBJECT = FIELD OBJECT = FIELD NAME = "END_EPHEMERIS_S" FIELD_NUMBER = 3 = SECOND UNIT DATA TYPE = ASCII_REAL BYTES = 20 = -71063936 VALID MINIMUM = 757339265 VALID_MAXIMUM DESCRIPTION = " The J2000 ephemeris time in seconds at the end of the time period for this record." END OBJECT = FIELD OBJECT = FIELD = "SPIN_COUNTER" NAME FIELD_NUMBER = 4 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 16383 DESCRIPTION = " MIMI always organizes time by Spins, when Cassini is not in spin mode, MIMI uses a commanded virtual spin period. This column is a counter that increments with each spin or virtual spin. This counter resets when MIMI undergoes certain operations like shutdown, and is not sufficiently large that it will not roll over." END OBJECT = FIELD OBJECT = FIELD NAME = "SECTOR" FIELD NUMBER = 5 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 15 = " DESCRIPTION Each spin is divided into 16 sectors. Sectors have no meaning with regard to pointing. They are nothing more or less than segments of time. This column contains the zero based index of the sector. Sectors have special significance in that the beginning of a sector is the only time that MIMI records the SCLOCK. All other times must be calculated based on the subsector, and, where appropriate, microsector values provided below. Times in this product were calculated in this manner." END_OBJECT = FIELD OBJECT = FIELD = "START_SECTOR_SCLOCK_MAJOR" NAME FIELD_NUMBER = б UNTT = COUNT = ASCII_INTEGER DATA_TYPE BYTES = 10 VALID_MINIMUM = 0 = 400000000 VALID_MAXIMUM DESCRIPTION = ' The value of the Spacecraft clock at the beginning of Sector during which this record occurred. This, combined with subsector, and microsector where appropriate, is the monotonic timestamp for the each record. All other times are calculated from this time representation." END_OBJECT = FIELD OBJECT = FIELD

NAME = "SUBSECTOR" FIELD NUMBER = 7 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 15 - " DESCRIPTION Each sector is divided into 16 subsectors. Subsectors have no meaning as far as pointing. They are nothing more or less than segments of time.' END_OBJECT = FIELD OBJECT = FIELD NAME = "MICROSECTORS_COVERED" FIELD_NUMBER = 8 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID MINIMUM = 2 VALID_MAXIMUM = 1024= " DESCRIPTION Each subsector is divided into 16 microsectors. Microsectors have no meaning as far as pointing. They are nothing more or less than segments of time. This column is the number of microsectors over which this record was recorded, i.e. 16 for one subsector, 32 for two subsectors, 256 for one sector, etc." END_OBJECT = FIELD OBJECT = FIELD NAME = "SPIN_PERIOD_S" FIELD_NUMBER = 9 = SECOND UNIT DATA_TYPE = ASCII_REAL BYTES = 20 VALID_MINIMUM = 680 VALID_MAXIMUM = 3072DESCRIPTION = " The spacecraft spin period in seconds. If the spacecraft is not in spin mode, this is the virtual spin period used by the MIMI sensor to determine the timing of data colection. This value is not very reliable. It represents the 'nominal' spin period. When the spin period is changing, it will not be very accurate. END_OBJECT = FTELDOBJECT = FIELD = "STARING" NAME FIELD_NUMBER = 10 = ASCII_INTEGER DATA_TYPE BYTES = 10 = 0 VALID_MINIMUM VALID_MAXIMUM = 1 DESCRIPTION = " 0 if the spacecraft is in spin mode, 1 if the not in spin mode." END_OBJECT = FIELD = FTELDOBJECT = "CHANNEL_A0" NAME = 11 FIELD_NUMBER = ASCII_INTEGER DATA_TYPE = 10 BYTES VALID_MINIMUM = 0 VALID MAXIMUM = 4E5DESCRIPTION = " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END_EPHEMERIS_S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." $= \overline{F}IELD$ END OBJECT = FIELD OBJECT NAME = "CHANNEL A1" FIELD NUMBER = 12 = ASCII INTEGER DATA TYPE BYTES = 10VALID MINIMUM = 0VALID MAXIMUM = 4E5= " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record)."

END_OBJECT = FIELD OBJECT = FIELD = "CHANNEL_A2" NAME = 13 FIELD NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 4E5= " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END_EPHEMERIS_S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." END OBJECT = FIELD OBJECT = FIELD = "CHANNEL_A3" NAME FIELD NUMBER = 14 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 4E5DESCRIPTION = " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." $= \overline{F}IELD$ END OBJECT OBJECT = FIELD = "CHANNEL_A4" NAME = 15 FIELD NUMBER DATA $\overline{T}YPE$ = ASCII INTEGER BYTES = 10 = 0 VALID MINIMUM VALID MAXIMUM = 4E5DESCRIPTION = " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." = FIELD END OBJECT OBJECT = FIELD = "CHANNEL_A5" NAME FIELD NUMBER = 16 DATA $\overline{T}YPE$ = ASCII INTEGER BYTES = 10 VALID_MINIMUM VALID_MAXIMUM = 0 = 4E5DESCRIPTION = " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record)." $= \overline{F}IELD$ END OBJECT OBJECT = FIELD = "CHANNEL_A6" NAME FIELD NUMBER = 17 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 4 E.5DESCRIPTION = " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." $= \overline{F}IELD$ END OBJECT OBJECT = FIELD = "CHANNEL A7" NAME = 18 FIELD NUMBER DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 4E5DESCRIPTION - " This field contains the counts sampled by the indicated LEMMS channel

over the duration derived from either the END_EPHEMERIS_S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S (of this record)." $= \overline{F}IELD$ END OBJECT OBJECT = FIELD NAME = "CHANNEL A8" = 19 FIELD NUMBER = ASCII INTEGER DATA $\overline{T}YPE$ BYTES = 10VALID MINIMUM = 0 VALID MAXIMUM = 4E5= " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record)." $= \overline{F}IELD$ END OBJECT = FIELD OBJĒCT NAME = "CHANNEL BO" FIELD NUMBER = 20 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 4E5= ' DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END_EPHEMERIS_S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." END OBJECT $= \overline{F}IELD$ = FIELD OBJECT = "CHANNEL B1" NAME FIELD NUMBER = 21 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 4E5= " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." END OBJECT $= \overline{F}IELD$ OBJECT = FIELD = "CHANNEL B2" NAME FIELD NUMBER = 22 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 4E5= " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." $= \overline{F}IELD$ END OBJECT OBJECT = FIELD = "CHANNEL_B3" NAME = 23 FIELD NUMBER DATA $\overline{T}YPE$ = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0VALID MAXIMUM = 4E5= " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record)." END OBJECT $= \overline{F}IELD$ OBJECT = FIELD NAME = "CHANNEL_BE" FIELD NUMBER = 24 DATA TYPE = ASCII INTEGER = 10 BYTES = 0 VALID MINIMUM

VALID MAXIMUM = 4E5DESCRIPTION = " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END_EPHEMERIS_S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S (of this record)." $= \overline{F}IELD$ END OBJECT OBJECT = FIELD = "CHANNEL CO" NAME FIELD NUMBER = 25 DATA TYPE = ASCII INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 4E5= " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." $= \overline{F}IELD$ END OBJECT OBJECT = FIELD = "CHANNEL_C1" NAME FIELD NUMBER = 26 DATA $\overline{T}YPE$ = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 4E5DESCRIPTION = " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S (of this record)." $= \overline{F}IELD$ END OBJECT OBJECT = FIELD NAME = "CHANNEL C2" = 27 FIELD NUMBER DATA TYPE = ASCII_INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 4E5DESCRIPTION = " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S (of this record)." $= \overline{F}IELD$ END OBJECT OBJECT = FIELD NAME = "CHANNEL_C3" FIELD NUMBER = 28 DATA TYPE = ASCII INTEGER = 10 BYTES VALID MINIMUM = 0 VALID MAXIMUM = 4 E.5DESCRIPTION _ " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." $= \overline{F}IELD$ END OBJECT OBJECT = FIELD = "CHANNEL C4" NAME FIELD NUMBER = 29 DATA TYPE = ASCII_INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 4E5DESCRIPTION = " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END_EPHEMERIS_S - $\ensuremath{\mathsf{-}}$ START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." END OBJECT $= \overline{F}IELD$ OBJECT = FIELD = "CHANNEL C5" NAME FIELD NUMBER = 30

DATA TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 4E5DESCRIPTION = " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END_EPHEMERIS_S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S (of this record)." = FIELD END OBJECT OBJECT = FIELD = "CHANNEL C6" NAME FIELD NUMBER = 31 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 4E5= " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record)." END OBJECT $= \overline{F}IELD$ OBJECT = FIELD = "CHANNEL_C7" NAME FIELD NUMBER = 32 DATA $\overline{T}YPE$ = ASCII_INTEGER BYTES = 10VALID MINIMUM = 0 VALID MAXIMUM = 4E5= " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." END OBJECT $= \overline{F}IELD$ OBJECT = FIELD = "CHANNEL AS" NAME = 33 FIELD NUMBER data Type = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0VALID MAXIMUM = 4E5DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." END OBJECT $= \overline{F}IELD$ OBJECT = FIELD = "CHANNEL_BS" NAME FIELD NUMBER = 34 DATA $\overline{T}YPE$ = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 4E5DESCRIPTION = " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S (of this record)." = FIELD END OBJECT OBJECT = FIELD NAME = "CHANNEL_ES" FIELD NUMBER = 35 DATA $\overline{T}YPE$ = ASCII INTEGER BYTES = 10 = 0 VALID_MINIMUM VALID MAXIMUM = 4E5= " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S (of this record)." END OBJECT $= \overline{F}IELD$

OBJECT = FIELD = "CHANNEL_E2_F2S" NAME FIELD_NUMBER = 36 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 4E5DESCRIPTION = " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END_EPHEMERIS_S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S (of this record)." $= \overline{F}IELD$ END OBJECT OBJECT = FIELD = "CHANNEL FS" NAME = 37 FIELD NUMBER DATA $\overline{T}YPE$ = ASCII INTEGER = 10 BYTES VALID MINIMUM = 0 = 4E5VALTD MAXIMUM DESCRIPTION = " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." $= \overline{F}IELD$ END OBJECT OBJECT = FIELD = "CHANNEL EO" NAME FIELD NUMBER = 38 DATA $\overline{T}YPE$ = ASCII INTEGER = 10 BYTES = 0 VALID MINIMUM VALID MAXIMUM = 4E5DESCRIPTION = " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record)." $= \overline{F}IELD$ END OBJECT OBJECT = FIELD = "CHANNEL E1" NAME FIELD NUMBER = 39 DATA TYPE = ASCII_INTEGER $BYTE\overline{S}$ = 10 VALID MINIMUM = 0 VALID MAXIMUM = 4E5= " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." END OBJECT $= \overline{F}IELD$ = FIELD OBJECT = "CHANNEL E2" NAME FIELD NUMBER = 40 DATA TYPE = ASCII INTEGER BYTES = 10VALID MINIMUM = 0 VALID MAXIMUM = 4E5= " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." $= \overline{F}IELD$ END OBJECT OBJECT = FIELD NAME = "CHANNEL E3" FIELD NUMBER = 41 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 4E5DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -

START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." $= \overline{F}IELD$ END OBJECT OBJECT = FIELD NAME = "CHANNEL E4" = 42 FIELD NUMBER DATA TYPE = ASCII INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 4E5= " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END_EPHEMERIS_S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." = FIELD END OBJECT OBJECT = FIELD = "CHANNEL E5" NAME = 43 FIELD NUMBER DATA $\overline{T}YPE$ = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 4E5DESCRIPTION = " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." = FIELD END OBJECT = FIELD OBJECT = "CHANNEL E6" NAME FIELD NUMBER = 44 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 4E5DESCRIPTION = " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record)." $= \overline{F}IELD$ END OBJECT OBJECT = FIELD = "CHANNEL_E7" NAME FIELD NUMBER = 45 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 4E5DESCRIPTION = " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS S (of this record)." OBJECT = FIELD END OBJECT OBJECT = FIELD NAME = "CHANNEL G1" FIELD NUMBER = 46 DATA $\overline{T}YPE$ = ASCII INTEGER BYTES = 10VALID MINIMUM = 0 VALID MAXIMUM = 4E5DESCRIPTION - " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record)." $= \overline{F}IELD$ END OBJECT OBJĒCT = FIELD = "CHANNEL P1" NAME = 47 FIELD NUMBER DATA $\overline{T}YPE$ = ASCII INTEGER = 10 BYTES = 0 VALID MINIMUM = 4E5VALID MAXIMUM

```
DESCRIPTION
                              =
    This field contains the counts sampled by the indicated LEMMS channel
    over the duration derived from either the END_EPHEMERIS_S -
    START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous
    record) - START EPHEMERIS S (of this record)."
END OBJECT
                              = \overline{F}IELD
                              = FIELD
OBJECT
  NAME
                              = "CHANNEL P2"
  FIELD NUMBER
                              = 48
  DATA TYPE
                              = ASCII INTEGER
                              = 10
  BYTES
  VALID MINIMUM
                              = 0
  VALID MAXIMUM
                              = 4E5
                              = "
  DESCRIPTION
    This field contains the counts sampled by the indicated LEMMS channel
    over the duration derived from either the \texttt{END\_EPHEMERIS\_S} -
    START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record)."
                             = \overline{F}IELD
END OBJECT
OBJECT
                              = FTELD
  NAME
                              = "CHANNEL P3"
  FIELD NUMBER
                              = 49
                              = ASCII INTEGER
  DATA TYPE
  BYTES
                              = 10
                             = 0
  VALID MINIMUM
  VALID MAXIMUM
                              = 4E5
                              = "
  DESCRIPTION
    This field contains the counts sampled by the indicated LEMMS channel
    over the duration derived from either the END EPHEMERIS S -
    START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous
    record) - START EPHEMERIS S (of this record)."
END OBJECT
                              = \overline{F}IELD
OBJECT
                              = FIELD
  NAME
                             = "CHANNEL P4"
  FIELD NUMBER
                             = 50
  DATA \overline{T}YPE
                              = ASCII INTEGER
  BYTES
                              = 10
                              = 0
  VALID MINIMUM
  VALID MAXIMUM
                              = 4E5
                             = "
  DESCRTPTION
    This field contains the counts sampled by the indicated LEMMS channel
    over the duration derived from either the \texttt{END\_EPHEMERIS\_S} -
    START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record)."
END OBJECT
                              = \overline{F}IELD
OBJECT
                              = FIELD
                              = "CHANNEL_P5"
  NAME
  FIELD NUMBER
                             = 51
  DATA TYPE
                              = ASCII INTEGER
  BYTES
                              = 10
                              = 0
  VALID MINIMUM
  VALID MAXIMUM
                              = 4E5
                              = "
  DESCRIPTION
    This field contains the counts sampled by the indicated LEMMS channel
    over the duration derived from either the END_EPHEMERIS S -
    START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous
    record) - START_EPHEMERIS_S (of this record)."
                              = FIELD
END OBJECT
OBJECT
                              = FIELD
                              = "CHANNEL_P6"
  NAME
  FIELD NUMBER
                              = 52
  DATA TYPE
                              = ASCII INTEGER
  BYTES
                              = 10
  VALID MINIMUM
                              = 0
  VALID MAXIMUM
                              = 4E5
  DESCRIPTION
                              = "
    This field contains the counts sampled by the indicated LEMMS channel
    over the duration derived from either the END EPHEMERIS S -
    START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record)."
                              = \overline{F}IELD
END OBJECT
OBJECT
                              = FIELD
                              = "CHANNEL_P7"
  NAME
                              = 53
  FIELD NUMBER
  DATA TYPE
                              = ASCII INTEGER
```

BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 4E5= " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END_EPHEMERIS_S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S (of this record)." $= \overline{F}IELD$ END OBJECT OBJECT = FIELD = "CHANNEL P8" NAME FIELD NUMBER = 54 DATA $\overline{T}YPE$ = ASCII_INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 4 E.5DESCRIPTION = " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S (of this record)." END OBJECT $= \overline{F}IELD$ OBJECT = FIELD = "CHANNEL P9" NAME = 55 FIELD NUMBER DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 4E5= " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." $= \overline{F}IELD$ END OBJECT OBJECT = FIELD = "CHANNEL_H1" NAME = 56 FIELD NUMBER DATA TYPE = ASCII INTEGER = 10 BYTES VALID MINIMUM = 0 = 4E5VALID MAXIMUM DESCRIPTION = " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." END OBJECT $= \overline{F}IELD$ OBJECT = FIELD NAME = "CHANNEL H2" = 57 FIELD NUMBER DATA $\overline{T}YPE$ = ASCII INTEGER BYTES = 10= 0 VALID MINIMUM VALID MAXIMUM = 4E5= " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record)." $= \overline{F}IELD$ END OBJECT = FIELD OBJĒCT NAME = "CHANNEL H3" FIELD NUMBER = 58 DATA TYPE = ASCII_INTEGER BYTES = 10 VALID MINIMUM = 0 = 4E5VALID MAXIMUM = ' DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END_EPHEMERIS_S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." $= \overline{F}IELD$ END OBJECT = FIELD OBJECT

NAME = "CHANNEL_H4" FIELD NUMBER = 59 DATA_TYPE = ASCII_INTEGER BYTES = 10VALID_MINIMUM = 0 VALID_MAXIMUM = 4E5= " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END_EPHEMERIS_S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S (of this record)." $= \overline{F}IELD$ END OBJECT OBJECT = FIELD = "CHANNEL_H5" NAME FIELD NUMBER = 60 DATA $\overline{T}YPE$ = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 4E5= " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record)." END OBJECT $= \overline{F}IELD$ OBJECT = FIELD NAME = "CHANNEL_Z1" FIELD NUMBER = 61 DATA $\overline{T}YPE$ = ASCII INTEGER = 10 BYTES VALID_MINIMUM = 0 = 4E5VALID MAXIMUM = " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." END OBJECT $= \overline{F}IELD$ OBJECT = FIELD = "CHANNEL_Z2" NAME = 62 FIELD NUMBER data Type = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 4E5DESCRIPTION = " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." END OBJECT $= \overline{F}IELD$ OBJECT = FTELD = "CHANNEL Z3" NAME FIELD NUMBER = 63 DATA TYPE = ASCII INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 4E5= " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." $= \overline{F}IELD$ END OBJECT OBJECT = FIELD = "CHANNEL_D1" NAME FIELD NUMBER = 64 DATA $\overline{T}YPE$ = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 4E5DESCRIPTION = " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous

record) - START EPHEMERIS S (of this record)." END OBJECT $= \overline{F}IELD$ OBJECT = FIELD NAME = "CHANNEL D2" FIELD NUMBER = 65 DATA TYPE = ASCII INTEGER = 10 BYTES VALID MINIMUM = 0 = 4 E.5VALID MAXIMUM = " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S (of this record)." END OBJECT $= \overline{F}IELD$ OBJECT = FIELD = "CHANNEL D3" NAME = 66 FIELD NUMBER DATA TYPE = ASCII_INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 4E5DESCRIPTION = " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END_EPHEMERIS_S - $\ensuremath{\mathsf{-}}$ START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." END OBJECT $= \overline{F}IELD$ OBJECT = FIELD = "CHANNEL D41" NAME = 67 FIELD_NUMBER DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 4E5= " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." $= \overline{F}IELD$ END OBJECT = FIELD OBJECT NAME = "PRIORITY COUNTER 0 A0 SUM" FIELD NUMBER = 68 DATA TYPE = ASCII INTEGER BYTES = 10= 0 VALID MINIMUM VALID MAXIMUM = 4E5= " DESCRIPTION This field contains a summation of the counts sampled by the indicated LEMMS channel over the duration indicated by the DURATION column." END OBJECT = FIELD OBJECT = FIELD = "PRIORITY_COUNTER_1_A1_SUM" NAME = 69 FIELD NUMBER DATA $\overline{T}YPE$ = ASCII INTEGER BYTES = 10VALID MINIMUM = 0 VALID MAXIMUM = 4E5= " DESCRIPTION This field contains a summation of the counts sampled by the indicated LEMMS channel over the duration indicated by the DURATION column.' = FIELD END OBJECT OBJECT = FIELD NAME = "PRIORITY_COUNTER_2_C0_SUM" FIELD NUMBER = 70 = ASCII INTEGER DATA TYPE BYTES = 10VALID MINIMUM = 0VALID MAXIMUM = 4E5= " DESCRIPTION This field contains a summation of the counts sampled by the indicated LEMMS channel over the duration indicated by the DURATION column." END OBJECT = FIELD = FIELD OBJECT

NAME	= "PRIORITY_COUNTER_3_C1_SUM"
FIELD NUMBER	= 71
DATA_TYPE	= ASCII_INTEGER
BYTES	= 10
VALID_MINIMUM	= 0
VALID_MAXIMUM	= 4E5
DESCRIPTION	= "
This field contains a s	summation of the counts sampled by the indicated
LEMMS channel over the	duration indicated by the DURATION column."
END_OBJECT	= FIELD
OBJECT	= FIELD
NAME	= "CENTER_LOOK_ANGLE_DEGREES"
FIELD_NUMBER	= 72
UNIT	= DEGREE
DATA_TYPE	= ASCII_REAL
BYTES	= 20
VALID_MINIMUM	= 0
VALID_MAXIMUM	= 360
DESCRIPTION	= "
The angle in degrees of	the LEMMS detector with the $-z$ axis of the
	ounter-clockwise about the y axis of the
spacecraft."	
END_OBJECT	= FIELD
END_OBJECT	= SPREADSHEET
END	

Sample File 2: LFRT0 2000340 0000.LBL		
PDS_VERSION_ID DATA_SET_ID PRODUCT_ID STANDARD_DATA_PRODUCT_ID PRODUCT_TYPE PRODUCT_VERSION PRODUCT_CREATION_TIME	<pre>= PDS3 = "CO-E/J/S/SW-MIMI-2-LEMMS-UNCALIB-V1.0" = "LFRT0_2000340_0000" = "MIMI_LEMMS_FRT" = "DATA"</pre>	
RECORD_TYPE	= STREAM = ASCII = 119929	
START_TIME STOP_TIME NATIVE_START_TIME NATIVE_STOP_TIME SPACECRAFT_CLOCK_START_COUNT SPACECRAFT_CLOCK_STOP_COUNT	= "1/1354666282.146"	
DESCRIPTION	<pre>= "CASSINI ORBITER" = "CO" = "\$PHASE_NAME" = \$ORBIT_NUM = "SOLAR WIND" = "MAGNETOSPHERIC IMAGING INSTRUMENT" = "MIMI" = " s for the LEMMS sensor of the MIMI instrument on</pre>	
<pre>^HEADER = ("LFRT0_2000340_0000.CSV", 1 <bytes>) ^SPREADSHEET = ("LFRT0_2000340_0000.CSV", 225 <bytes>)</bytes></bytes></pre>		
DESCRIPTION	<pre>= HEADER = 1 = 224 = SPREADSHEET = " gle row of column headings (text strings enclosed parated by commas." = HEADER</pre>	
OBJECT ROWS	= SPREADSHEET = 119934	

FIELDS = 16 ROW BYTES = 241 FIELD_DELIMITER = COMMA OBJECT = FIELD NAME = "PURPOSE" = 1 FIELD_NUMBER DATA_TYPE = CHARACTER BYTES = 32 DESCRIPTION = " The PURPOSE field identifies the purpose or function of the data contained in current row. Valid entries include: SCI - normal science data values VALID_MIN - the inclusive or exclusive minimum value allowed for this column VALID_MAX - the inclusive or exclusive maximum value allowed for this column MIN - the minimum value for this column present in this product MAX - the maximum value for this column present in this product MEAN - the mean of the values in this column in this product, this value will be rounded for integer columns STDEV - the standard deviation of the values in this column in this product, this value will be rounded for integer columns" END OBJECT = FIELD OBJECT = FIELD NAME = "START_EPHEMERIS_S" FIELD_NUMBER = 2 UNIT = SECOND DATA_TYPE = ASCII_REAL BYTES = 20 VALID_MINIMUM = -71063936= 757339265 VALID MAXIMUM = " DESCRIPTION The J2000 ephemeris time in seconds at the beginning of the time period for this record." END_OBJECT = FIELD OBJECT = FIELD NAME = "END_EPHEMERIS_S" FIELD_NUMBER = 3 = SECOND UNTT DATA_TYPE = ASCII_REAL BYTES = 20 VALID_MINIMUM = -71063936 = 757339265 VALID_MAXIMUM DESCRIPTION = " The J2000 ephemeris time in seconds at the end of the time period for this record." END OBJECT = FIELD OBJECT = FIELD NAME = "SPIN_COUNTER" = 4 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 = 16383 VALID MAXIMUM DESCRIPTION = " MIMI always organizes time by Spins, when Cassini is not in spin mode, MIMI uses a commanded virtual spin period. This column is a counter that increments with each spin or virtual spin. This counter resets when MIMI undergoes certain operations like shutdown, and is not sufficiently large that it will not roll over." END_OBJECT = FIELD OBJECT = FIELD NAME = "SECTOR" FIELD_NUMBER = 5 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 15 DESCRIPTION = " Each spin is divided into 16 sectors. Sectors have no meaning with regard to pointing. They are nothing more or less than segments of time. This column contains the zero based index of the sector. Sectors have special significance in that the beginning of a sector is the only time that MIMI records the SCLOCK. All other times must be

calculated based on the subsector, and, where appropriate, microsector values provided below. Times in this product were calculated in this manner." END OBJECT = FIELD OBJECT = FIELD NAME = "START_SECTOR_SCLOCK_MAJOR" FIELD_NUMBER = 6 UNTT = COUNT = ASCII_INTEGER DATA TYPE BYTES = 10 VALID MINIMUM = 0 VALID_MAXIMUM = 400000000 DESCRIPTION = " The value of the Spacecraft clock at the beginning of Sector during which this record occurred. This, combined with subsector, and microsector where appropriate, is the monotonic timestamp for the each record. All other times are calculated from this time representation." END_OBJECT = FIELD OBJECT = FIELD NAME = "SUBSECTOR" = 7 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID MINIMUM = 0 VALID_MAXIMUM = 15 = " DESCRIPTION Each sector is divided into 16 subsectors. Subsectors have no meaning as far as pointing. They are nothing more or less than segments of time." END_OBJECT = FIELD OBJECT = FIELD NAME = "MICROSECTORS_COVERED" = 8 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 2 VALID MAXIMUM = 1024DESCRIPTION = " Each subsector is divided into 16 microsectors. Microsectors have no meaning as far as pointing. They are nothing more or less than segments of time. This column is the number of microsectors over which this record was recorded, i.e. 16 for one subsector, 32 for two subsectors, 256 for one sector, etc." END_OBJECT = FIELD OBJECT = FIELD NAME = "SPIN_PERIOD_S" = 9 FIELD_NUMBER UNIT = SECOND DATA_TYPE = ASCII_REAL BYTES = 20 VALID_MINIMUM = 680VALID_MAXIMUM = 3072DESCRIPTION = The spacecraft spin period in seconds. If the spacecraft is not in spin mode, this is the virtual spin period used by the MIMI sensor to determine the timing of data colection. This value is not very reliable. It represents the 'nominal' spin period. When the spin period is changing, it will not be very accurate. END_OBJECT = FIELD OBJECT = FIELD = "STARING" NAME = 10 FIELD_NUMBER = ASCII_INTEGER DATA_TYPE BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 1 DESCRIPTION = " 0 if the spacecraft is in spin mode, 1 if the not in spin mode." END_OBJECT = FIELD OBJECT = FIELD NAME = "MICROSECTOR" FIELD_NUMBER = 11 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0

VALID MAXIMUM = 15 = " DESCRIPTION Each subsector is divided into 16 microsectors. microsectors have no meaning as far as pointing. They are nothing more or less than segments of time." END_OBJECT = FIELD = FTELDOBJECT NAME = "A0" FIELD_NUMBER = 12 DATA_TYPE = ASCII_INTEGER BYTES = 10VALID_MINIMUM = 0 VALID MAXIMUM = 40000 DESCRIPTION = " This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END_EPHEMERIS_S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S (of this record). $= \overline{F}IELD$ END OBJECT OBJECT = FTELD = "A1" NAME FIELD NUMBER = 13 DATA TYPE = ASCII INTEGER BYTES = 10= 0 VALID MINIMUM VALID MAXIMUM = 40000= " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record)." END OBJECT $= \overline{F}IELD$ OBJECT = FTELD NAME = "CO" FIELD NUMBER = 14 DATA $\overline{T}YPE$ = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 40000 = " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." END OBJECT $= \overline{F}IELD$ OBJECT = FIELD = "C1" NAME FIELD NUMBER = 15 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0VALID MAXIMUM = 40000 = " DESCRIPTION This field contains the counts sampled by the indicated LEMMS channel over the duration derived from either the END EPHEMERIS S -START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record)." = FIELD END OBJECT OBJECT = FIELD = "CENTER_LOOK_ANGLE_DEGREES" NAME FIELD NUMBER = 16 = DEGREE UNIT DATA TYPE = ASCII REAL BYTES = 2.0VALID MINIMUM = 0 VALID MAXIMUM = 360 DESCRIPTION = " The angle in degrees of the LEMMS detector with the -z axis of the spacecraft, measured counter-clockwise about the y axis of the spacecraft." END OBJECT = FIELD END OBJECT = SPREADSHEET END

Sample File 3: LPHA0_2000340_0000.LBL PDS_VERSION_ID = PDS3 = "CO-E/J/S/SW-MIMI-2-LEMMS-UNCALIB-V1.0" DATA_SET_ID PRODUCT_ID = "LPHA0_2000340_0000" = "MIMI_LEMMS_PHA" STANDARD_DATA_PRODUCT_ID = "DATA" PRODUCT_TYPE PRODUCT_VERSION = 0 PRODUCT CREATION TIME = 2005-123T16:27:38.000 RECORD_TYPE = STREAM INTERCHANGE FORMAT = ASCII = 7045 FILE_RECORDS = "2000-340T00:00:00" START_TIME STOP_TIME = "2000-340T23:59:59" = "29246464.183189" NATIVE_START_TIME NATIVE_STOP_TIME = "29332863.183214" SPACECRAFT_CLOCK_START_COUNT = "1/1354666282.146" SPACECRAFT_CLOCK_STOP_COUNT = "1/1354752682.043" INSTRUMENT_HOST_NAME = "CASSINI ORBITER" INSTRUMENT_HOST_ID = "CO" = "\$PHASE_NAME" MISSION_PHASE_NAME ORBIT NUMBER = \$ORBIT NUM TARGET_NAME = "SOLAR WIND" INSTRUMENT_NAME INSTRUMENT_ID = "MAGNETOSPHERIC IMAGING INSTRUMENT" = "MIMI" = " DESCRIPTION (P)ulse (H)eight (A)nalysis data for the LEMMS sensor of the MIMI instrument on the Cassini spacecraft' = ("LPHA0_2000340_0000.CSV", 1 <BYTES>) = ("LPHA0_2000340_0000.CSV", 4065 <BYTES>) ^HEADER ^SPREADSHEET OBJECT = HEADER RECORDS = 1 = 4064 BYTES = SPREADSHEET HEADER_TYPE DESCRIPTION = " This file contains a single row of column headings (text strings enclosed within double quotes) separated by commas." = HEADER END OBJECT OBJECT = SPREADSHEET = 7050ROWS = 203 FIELDS = 2298 ROW BYTES FIELD_DELIMITER = COMMA OBJECT = FIELD = "PURPOSE" NAME FIELD_NUMBER = 1 DATA TYPE = CHARACTER BYTES = 32 DESCRIPTION = " The PURPOSE field identifies the purpose or function of the data contained in current row. Valid entries include: SCI - normal science data values VALID MIN - the inclusive or exclusive minimum value allowed for this column VALID_MAX - the inclusive or exclusive maximum value allowed for this column MIN - the minimum value for this column present in this product MAX - the maximum value for this column present in this product MEAN - the mean of the values in this column in this product, this value will be rounded for integer columns STDEV - the standard deviation of the values in this column in this product, this value will be rounded for integer columns" END_OBJECT = FIELD OBJECT = FIELD = "START_EPHEMERIS_S" NAME FIELD_NUMBER = 2

UNIT = SECOND DATA TYPE = ASCII REAL BYTES = 20 VALID MINIMUM = -71063936 = 757339265 VALID_MAXIMUM DESCRIPTION = " The J2000 ephemeris time in seconds at the beginning of the time period for this record." END_OBJECT = FTELD OBJECT = FIELD = "END_EPHEMERIS_S" NAME FIELD_NUMBER = 3 UNIT = SECOND DATA TYPE = ASCII_REAL BYTES = 20 VALID_MINIMUM = -71063936VALID MAXIMUM = 757339265 = ' DESCRIPTION The J2000 ephemeris time in seconds at the end of the time period for this record." END_OBJECT = FIELD OBJECT = FTELDNAME = "SPIN_COUNTER" FIELD_NUMBER = 4 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 16383 = " DESCRIPTION MIMI always organizes time by Spins, when Cassini is not in spin mode, MIMI uses a commanded virtual spin period. This column is a counter that increments with each spin or virtual spin. This counter resets when MIMI undergoes certain operations like shutdown, and is not sufficiently large that it will not roll over." END_OBJECT = FIELD OBJECT = FIELD NAME = "SECTOR" FIELD_NUMBER = 5 DATA_TYPE = ASCII_INTEGER = 10 BYTES = 0 VALID_MINIMUM VALID_MAXIMUM = 15 DESCRIPTION = " Each spin is divided into 16 sectors. Sectors have no meaning with regard to pointing. They are nothing more or less than segments of time. This column contains the zero based index of the sector. Sectors have special significance in that the beginning of a sector is the only time that MIMI records the SCLOCK. All other times must be calculated based on the subsector, and, where appropriate, microsector values provided below. Times in this product were calculated in this manner." END_OBJECT = FTELDOBJECT = FTELDNAME = "START_SECTOR_SCLOCK_MAJOR" = б FIELD_NUMBER = COUNT UNIT DATA_TYPE = ASCII_INTEGER BYTES = 10 = 0 VALID_MINIMUM VALID_MAXIMUM = 400000000 DESCRIPTION = " The value of the Spacecraft clock at the beginning of Sector during which this record occurred. This, combined with subsector, and microsector where appropriate, is the monotonic timestamp for the each record. All other times are calculated from this time representation." END OBJECT = FTELDOBJECT = FIELD = "SUBSECTOR" NAME = 7 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 15 DESCRIPTION = " Each sector is divided into 16 subsectors. Subsectors have no meaning

as far as pointing. They are nothing more or less than segments of time. END_OBJECT = FIELD OBJECT = FIELD NAME = "MICROSECTORS_COVERED" FIELD_NUMBER = 8 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 2 VALID MAXIMUM = 1024 = " DESCRIPTION Each subsector is divided into 16 microsectors. Microsectors have no meaning as far as pointing. They are nothing more or less than segments of time. This column is the number of microsectors over which this record was recorded, i.e. 16 for one subsector, 32 for two subsectors, 256 for one sector, etc." END OBJECT = FIELD OBJECT = FIELD NAME = "SPIN_PERIOD_S" FIELD_NUMBER = 9 = SECOND UNIT DATA TYPE = ASCII_REAL BYTES = 20 VALID MINIMUM = 680 VALID_MAXIMUM = 3072 = " DESCRIPTION The spacecraft spin period in seconds. If the spacecraft is not in spin mode, this is the virtual spin period used by the MIMI sensor to determine the timing of data colection. This value is not very reliable. It represents the 'nominal' spin period. When the spin period is changing, it will not be very accurate. END OBJECT = FIELD OBJECT = FTELDNAME = "STARING" FIELD_NUMBER = 10 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 1 = " DESCRIPTION 0 if the spacecraft is in spin mode, 1 if the not in spin mode." END_OBJECT = FIELD OBJECT = FIELD = "DETECTOR_A_BIN_0" NAME FIELD_NUMBER = 11 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S (of this record). Detector A energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FTELD OBJECT = FIELD = "DETECTOR_A_BIN_1" NAME = 12 FIELD NUMBER DATA $\overline{T}YPE$ = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 = 65534 VALID MAXIMUM DESCRIPTION = " This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of $t\overline{h}$ is record). Detector A energy bins are logarithmically spaced.

See the MIMI_PASSBANDS calibration file for spacing deltas and min and max energies" END_OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR_A_BIN_2" FIELD_NUMBER = 13 DATA_TYPE = ASCII_INTEGER BYTES = 10 = 0 VALID_MINIMUM VALID_MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector A energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and $\texttt{max} \texttt{ energies}^{\overline{\textbf{u}}}$ END OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR A BIN 3" FIELD NUMBER = 14 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of $t\overline{h}$ is record). Detector A energy bins are logarithmically spaced. See the MIMI_PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FTELD = "DETECTOR A_BIN_4" NAME FIELD NUMBER = 15 DATA TYPE = ASCII INTEGER = 10 BYTES VALID MINIMUM = 0 = 65534 VALID MAXIMUM = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of $t\overline{h}$ is record). Detector A energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FTELD OBJECT = FIELD = "DETECTOR_A_BIN_5" NAME FIELD NUMBER = 16 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 65534 DESCRIPTION = " This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of $t\overline{h}$ is record). Detector A energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD

OBJECT = FIELD = "DETECTOR_A_BIN_6" NAME = 17 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector A energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD = "DETECTOR A_BIN_7" NAME FIELD NUMBER = 18 DATA $\overline{T}YPE$ = ASCII INTEGER BYTES = 10 = 0 VALID_MINIMUM VALID MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector A energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD = "DETECTOR_A_BIN_8" NAME = 19 FIELD NUMBER DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0VALID MAXIMUM = 65534 DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of $t\overline{h}$ is record). Detector A energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR A BIN 9" FIELD NUMBER = 20 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 65534 DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record). Detector A energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies $\overline{}$ END OBJECT = FIELD OBJECT = FIELD = "DETECTOR A BIN 10" NAME FIELD NUMBER = 21

```
DATA_TYPE
                             = ASCII_INTEGER
  BYTES
                             = 10
  VALID_MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR_A_BIN_11"
  NAME
                             = 22
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
                             = FIELD
END OBJECT
OBJECT
                             = FIELD
  NAME
                             = "DETECTOR A BIN 12"
  FIELD NUMBER
                             = 23
  DATA \overline{T}YPE
                             = ASCII_INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies \overline{\phantom{a}}
END OBJECT
                             = FIELD
OBJECT
                             = FTELD
                             = "DETECTOR_A_BIN_13"
  NAME
  FIELD NUMBER
                             = 24
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID_MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of this record). Detector A energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies \overline{\phantom{a}}
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
  NAME
                             = "DETECTOR A BIN 14"
                             = 25
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII INTEGER
                             = 10
  BYTES
                             = 0
  VALID MINIMUM
```

```
VALID MAXIMUM
                              = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR_A_BIN_15"
  NAME
                             = 26
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
                             = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S
(of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR A_BIN_16"
  NAME
                             = 27
  FIELD NUMBER
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
                             = 65534
  VALID MAXIMUM
                             = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
  NAME
                             = "DETECTOR A BIN 17"
                             = 28
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII INTEGER
                             = 10
  BYTES
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
                             = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies \overline{}
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR_A_BIN_18"
  NAME
                             = 29
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             _ "
     This field contains an array of counts observed within each of the 64
```

```
energy bins for detector A,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    \texttt{max} \texttt{ energies}^{\overline{\textbf{u}}}
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                             = "DETECTOR_A_BIN_19"
  NAME
  FIELD NUMBER
                             = 30
  DATA \overline{T}YPE
                              = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                              = 65534
  DESCRIPTION
                              = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S
     (of this record). Detector A
    energy bins are logarithmically spaced.
See the MIMI_PASSBANDS calibration file for spacing deltas and min and
    \texttt{max} \texttt{ energies}^{\overline{\textbf{u}}}
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                             = "DETECTOR_A_BIN_20"
  NAME
                              = 31
  FIELD NUMBER
  DATA TYPE
                              = ASCII INTEGER
  BYTES
                              = 10
                             = 0
  VALID MINIMUM
  VALID MAXIMUM
                             = 65534
                              = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START_EPHEMERIS_S or else
START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of t\overline{h} is record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                              = FIELD
OBJECT
                              = FTELD
                              = "DETECTOR_A_BIN_21"
  NAME
  FIELD NUMBER
                              = 32
  DATA TYPE
                              = ASCII INTEGER
  BYTES
                              = 10
                              = 0
  VALID MINIMUM
  VALID MAXIMUM
                              = 65534
                              = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S
     (of t\overline{h} is record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                              = "DETECTOR_A_BIN_22"
  NAME
  FIELD NUMBER
                             = 33
                              = ASCII INTEGER
  DATA TYPE
  BYTES
                              = 10
                             = 0
  VALID MINIMUM
  VALID MAXIMUM
                             = 65534
                              = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
```

```
START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                            = FIELD
                            = FIELD
OBJECT
                            = "DETECTOR A_BIN_23"
  NAME
                            = 34
  FIELD NUMBER
  DATA TYPE
                            = ASCII INTEGER
  BYTES
                           = 10
  VALID MINIMUM
                           = 0
  VALID MAXIMUM
                            = 65534
                            = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI_PASSBANDS calibration file for spacing deltas and min and
    max energies\overline{"}
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                            = "DETECTOR_A_BIN_24"
 NAME
                            = 35
  FIELD NUMBER
  DATA \overline{T}YPE
                            = ASCII INTEGER
  BYTES
                           = 10
                            = 0
  VALID MINIMUM
                            = 65534
  VALID MAXIMUM
  DESCRIPTION
                            = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S
     (of t\overline{h} is record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                           = "DETECTOR_A_BIN_25"
  NAME
  FIELD NUMBER
                            = 36
  DATA TYPE
                            = ASCII INTEGER
  BYTES
                            = 10
  VALID MINIMUM
                           = 0
  VALID MAXIMUM
                            = 65534
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S
     (of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                           = "DETECTOR_A_BIN_26"
  NAME
                           = 37
  FIELD NUMBER
  DATA \overline{T}YPE
                           = ASCII INTEGER
                           = 10
  BYTES
  VALID MINIMUM
                           = 0
  VALID MAXIMUM
                            = 65534
                            = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of t\overline{h} is record). Detector A
     energy bins are logarithmically spaced.
```

See the MIMI_PASSBANDS calibration file for spacing deltas and min and max energies" END_OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR_A_BIN_27" FIELD_NUMBER = 38 DATA_TYPE = ASCII_INTEGER BYTES = 10 = 0 VALID_MINIMUM VALID_MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector A energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and $\texttt{max} \texttt{ energies}^{\overline{\textbf{u}}}$ END OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR A BIN 28" FIELD NUMBER = 39 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of $t\overline{h}$ is record). Detector A energy bins are logarithmically spaced. See the MIMI_PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FTELD = "DETECTOR A_BIN_29" NAME FIELD NUMBER = 40 DATA TYPE = ASCII INTEGER = 10 BYTES VALID MINIMUM = 0 = 65534 VALID MAXIMUM = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of $t\overline{h}$ is record). Detector A energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD = "DETECTOR_A_BIN_30" NAME FIELD NUMBER = 41 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 65534 DESCRIPTION = " This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of $t\overline{h}$ is record). Detector A energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD

OBJECT = FIELD = "DETECTOR_A_BIN_31" NAME FIELD_NUMBER = 42 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector A energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR A_BIN_32" FIELD NUMBER = 43 DATA $\overline{T}YPE$ = ASCII INTEGER BYTES = 10 = 0 VALID_MINIMUM VALID MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector A energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD = "DETECTOR_A_BIN_33" NAME FIELD NUMBER = 44 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0VALID MAXIMUM = 65534 DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of $t\overline{h}$ is record). Detector A energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR A BIN 34" FIELD NUMBER = 45 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 65534 DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record). Detector A energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies $\overline{}$ END OBJECT = FIELD OBJECT = FIELD = "DETECTOR A BIN 35" NAME = 46 FIELD NUMBER

```
DATA_TYPE
                             = ASCII_INTEGER
  BYTES
                             = 10
  VALID_MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR_A_BIN_36"
  NAME
                             = 47
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
                             = FIELD
END OBJECT
OBJECT
                             = FIELD
  NAME
                             = "DETECTOR A BIN 37"
  FIELD NUMBER
                             = 48
  DATA \overline{T}YPE
                             = ASCII_INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies \overline{\phantom{a}}
END OBJECT
                             = FIELD
OBJECT
                             = FTELD
                             = "DETECTOR_A_BIN_38"
  NAME
                             = 49
  FIELD NUMBER
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID_MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of this record). Detector A energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies \overline{\phantom{a}}
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
  NAME
                             = "DETECTOR_A_BIN_39"
  FIELD NUMBER
                             = 50
  DATA \overline{T}YPE
                             = ASCII INTEGER
                             = 10
  BYTES
                             = 0
  VALID MINIMUM
```

```
VALID MAXIMUM
                              = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI_PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR_A_BIN_40"
  NAME
                             = 51
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
                             = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S
(of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR A_BIN_41"
  NAME
                             = 52
  FIELD NUMBER
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
                             = 65534
  VALID MAXIMUM
                             = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
  NAME
                             = "DETECTOR A BIN 42"
                             = 53
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII INTEGER
                             = 10
  BYTES
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
                             = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies \overline{}
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR_A_BIN_43"
  NAME
                             = 54
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             _ "
     This field contains an array of counts observed within each of the 64
```

```
energy bins for detector A,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    \texttt{max} \texttt{ energies}^{\overline{\textbf{u}}}
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                             = "DETECTOR_A_BIN_44"
  NAME
  FIELD NUMBER
                             = 55
  DATA \overline{T}YPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                              = 65534
  DESCRIPTION
                              = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S
     (of this record). Detector A
    energy bins are logarithmically spaced.
See the MIMI_PASSBANDS calibration file for spacing deltas and min and
    \texttt{max} \texttt{ energies}^{\overline{\textbf{u}}}
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                             = "DETECTOR_A_BIN_45"
  NAME
                              = 56
  FIELD NUMBER
  DATA TYPE
                              = ASCII INTEGER
  BYTES
                              = 10
                             = 0
  VALID MINIMUM
  VALID MAXIMUM
                             = 65534
                              = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START_EPHEMERIS_S or else
START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of t\overline{h} is record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                              = FIELD
OBJECT
                              = FTELD
                              = "DETECTOR_A_BIN_46"
  NAME
  FIELD NUMBER
                              = 57
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                              = 10
                              = 0
  VALID MINIMUM
  VALID MAXIMUM
                              = 65534
                              = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S
     (of t\overline{h} is record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                              = "DETECTOR_A_BIN_47"
  NAME
  FIELD NUMBER
                             = 58
                              = ASCII INTEGER
  DATA TYPE
  BYTES
                              = 10
                             = 0
  VALID MINIMUM
  VALID MAXIMUM
                             = 65534
                              = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
```

```
START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                            = FIELD
                            = FIELD
OBJECT
                            = "DETECTOR A_BIN_48"
  NAME
                            = 59
  FIELD NUMBER
  DATA TYPE
                            = ASCII INTEGER
  BYTES
                           = 10
  VALID MINIMUM
                           = 0
  VALID MAXIMUM
                            = 65534
                            = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI_PASSBANDS calibration file for spacing deltas and min and
    max energies\overline{"}
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                            = "DETECTOR_A_BIN_49"
 NAME
                            = 60
  FIELD NUMBER
  DATA \overline{T}YPE
                            = ASCII INTEGER
  BYTES
                           = 10
                            = 0
  VALID MINIMUM
                            = 65534
  VALID MAXIMUM
  DESCRIPTION
                            = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S
     (of t\overline{h} is record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                           = "DETECTOR_A_BIN_50"
  NAME
  FIELD NUMBER
                            = 61
                            = ASCII INTEGER
  DATA TYPE
  BYTES
                            = 10
  VALID MINIMUM
                           = 0
  VALID MAXIMUM
                            = 65534
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S
     (of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                           = "DETECTOR_A_BIN_51"
  NAME
                            = 62
  FIELD NUMBER
  DATA \overline{T}YPE
                           = ASCII INTEGER
                           = 10
  BYTES
  VALID MINIMUM
                           = 0
  VALID MAXIMUM
                            = 65534
                            = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of t\overline{h} is record). Detector A
     energy bins are logarithmically spaced.
```

See the MIMI_PASSBANDS calibration file for spacing deltas and min and max energies" END_OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR_A_BIN_52" FIELD_NUMBER = 63 DATA_TYPE = ASCII_INTEGER BYTES = 10 = 0 VALID_MINIMUM VALID_MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector A energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and $\texttt{max} \texttt{ energies}^{\overline{\textbf{u}}}$ END OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR A BIN 53" FIELD NUMBER = 64 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of $t\overline{h}$ is record). Detector A energy bins are logarithmically spaced. See the MIMI_PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FTELD= "DETECTOR A_BIN_54" NAME FIELD NUMBER = 65 DATA TYPE = ASCII INTEGER = 10 BYTES VALID MINIMUM = 0 = 65534 VALID MAXIMUM = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of $t\overline{h}$ is record). Detector A energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD = "DETECTOR_A_BIN_55" NAME FIELD NUMBER = 66 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 65534 DESCRIPTION = " This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of $t\overline{h}$ is record). Detector A energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD

OBJECT = FIELD = "DETECTOR_A_BIN_56" NAME FIELD_NUMBER = 67 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector A energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR A_BIN_57" FIELD NUMBER = 68 DATA $\overline{T}YPE$ = ASCII INTEGER BYTES = 10 = 0 VALID_MINIMUM VALID MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector A energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD = "DETECTOR_A_BIN_58" NAME FIELD NUMBER = 69 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0VALID MAXIMUM = 65534 DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of $t\overline{h}$ is record). Detector A energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR A BIN 59" FIELD NUMBER = 70 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 65534 DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector A, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record). Detector A energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies $\overline{}$ END OBJECT = FIELD OBJECT = FIELD = "DETECTOR A BIN 60" NAME = 71 FIELD NUMBER

```
DATA_TYPE
                             = ASCII_INTEGER
  BYTES
                             = 10
  VALID_MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR_A_BIN_61"
  NAME
                             = 72
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
                             = FIELD
END OBJECT
OBJECT
                             = FIELD
  NAME
                             = "DETECTOR A BIN 62"
                             = 73
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII_INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector A
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies \overline{\phantom{a}}
END OBJECT
                             = FIELD
OBJECT
                             = FTELD
                             = "DETECTOR A_BIN_63"
  NAME
                             = 74
  FIELD NUMBER
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID_MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector A,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of this record). Detector A energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies \overline{\phantom{a}}
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
  NAME
                             = "DETECTOR E BIN 0"
  FIELD NUMBER
                             = 75
  DATA \overline{T}YPE
                             = ASCII_INTEGER
                             = 10
  BYTES
                             = 0
  VALID MINIMUM
```

```
VALID MAXIMUM
                              = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR_E_BIN_1"
  NAME
                             = 76
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
                             = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S
(of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR E BIN 2"
  NAME
                             = 77
  FIELD NUMBER
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
                             = 65534
  VALID MAXIMUM
                             = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
  NAME
                             = "DETECTOR E BIN 3"
                             = 78
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII INTEGER
                             = 10
  BYTES
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
                             = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies \overline{}
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR_E_BIN_4"
  NAME
                             = 79
  FIELD NUMBER
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             _ "
     This field contains an array of counts observed within each of the 64
```

```
energy bins for detector E,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    \texttt{max} \texttt{ energies}^{\overline{\textbf{u}}}
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                             = "DETECTOR_E_BIN_5"
  NAME
  FIELD NUMBER
                             = 80
  DATA \overline{T}YPE
                              = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                              = 65534
                              - "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S
     (of this record). Detector E
    energy bins are logarithmically spaced.
See the MIMI_PASSBANDS calibration file for spacing deltas and min and
    \texttt{max} \texttt{ energies}^{\overline{\textbf{u}}}
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                             = "DETECTOR_E_BIN_6"
  NAME
                              = 81
  FIELD NUMBER
  DATA TYPE
                              = ASCII INTEGER
  BYTES
                              = 10
                             = 0
  VALID MINIMUM
  VALID MAXIMUM
                             = 65534
                              = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START_EPHEMERIS_S or else
START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of t\overline{h} is record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                              = FIELD
OBJECT
                              = FTELD
                              = "DETECTOR_E_BIN_7"
  NAME
  FIELD NUMBER
                              = 82
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                              = 10
                              = 0
  VALID MINIMUM
  VALID MAXIMUM
                              = 65534
                              = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S
     (of t\overline{h} is record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                              = "DETECTOR E BIN 8"
  NAME
  FIELD NUMBER
                             = 83
                              = ASCII INTEGER
  DATA TYPE
  BYTES
                              = 10
                             = 0
  VALID MINIMUM
  VALID MAXIMUM
                             = 65534
                              = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
```

```
START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                            = "DETECTOR E_BIN_9"
  NAME
                            = 84
  FIELD NUMBER
  DATA TYPE
                            = ASCII INTEGER
  BYTES
                           = 10
  VALID MINIMUM
                           = 0
  VALID MAXIMUM
                            = 65534
                            = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI_PASSBANDS calibration file for spacing deltas and min and
    max energies\overline{"}
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                            = "DETECTOR_E_BIN_10"
 NAME
                            = 85
  FIELD NUMBER
  DATA \overline{T}YPE
                            = ASCII INTEGER
  BYTES
                           = 10
                            = 0
  VALID MINIMUM
                            = 65534
  VALID MAXIMUM
                            = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S
     (of t\overline{h} is record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                           = "DETECTOR_E_BIN_11"
  NAME
  FIELD NUMBER
                            = 86
                            = ASCII INTEGER
  DATA TYPE
  BYTES
                            = 10
  VALID MINIMUM
                           = 0
  VALID MAXIMUM
                            = 65534
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S
     (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                           = "DETECTOR_E_BIN_12"
  NAME
                           = 87
  FIELD NUMBER
  DATA \overline{T}YPE
                           = ASCII INTEGER
                           = 10
  BYTES
  VALID MINIMUM
                           = 0
  VALID MAXIMUM
                            = 65534
                            = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of t\overline{h} is record). Detector E
     energy bins are logarithmically spaced.
```

See the MIMI_PASSBANDS calibration file for spacing deltas and min and max energies" END_OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR_E_BIN_13" FIELD_NUMBER = 88 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector E, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector E energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and $\texttt{max} \texttt{ energies}^{\overline{\textbf{u}}}$ END OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR E BIN 14" FIELD NUMBER = 89 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector E, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of $t\overline{h}$ is record). Detector E energy bins are logarithmically spaced. See the MIMI_PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FTELD = "DETECTOR E BIN 15" NAME FIELD NUMBER = 90 DATA TYPE = ASCII INTEGER = 10 BYTES VALID MINIMUM = 0 = 65534 VALID MAXIMUM = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector E, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of $t\overline{h}$ is record). Detector E energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FTELD OBJECT = FIELD = "DETECTOR E BIN 16" NAME = 91 FIELD NUMBER DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 65534 DESCRIPTION = " This field contains an array of counts observed within each of the 64 energy bins for detector E, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of $t\overline{h}$ is record). Detector E energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD

OBJECT = FIELD = "DETECTOR_E_BIN_17" NAME = 92 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field contains an array of counts observed within each of the 64 energy bins for detector E, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector E energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR E_BIN_18" FIELD NUMBER = 93 DATA $\overline{T}YPE$ = ASCII INTEGER BYTES = 10 = 0 VALID_MINIMUM VALID MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector E, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector E energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD = "DETECTOR E BIN 19" NAME = 94 FIELD NUMBER DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0VALID MAXIMUM = 65534 DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector E, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record). Detector ${\tt E}$ energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR E BIN 20" FIELD NUMBER = 95 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 65534 DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector E, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record). Detector ${\tt E}$ energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies $\overline{}$ END OBJECT = FIELD OBJECT = FIELD = "DETECTOR E BIN 21" NAME = 96 FIELD NUMBER

```
DATA_TYPE
                             = ASCII_INTEGER
  BYTES
                             = 10
  VALID_MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR_E_BIN_22"
  NAME
                             = 97
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
  NAME
                             = "DETECTOR E BIN 23"
  FIELD NUMBER
                             = 98
  DATA \overline{T}YPE
                             = ASCII_INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies \overline{\phantom{a}}
END OBJECT
                             = FIELD
OBJECT
                             = FTELD
                             = "DETECTOR E_BIN_24"
  NAME
                             = 99
  FIELD NUMBER
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID_MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of this record). Detector E energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies \overline{\phantom{a}}
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
  NAME
                             = "DETECTOR E BIN 25"
  FIELD NUMBER
                             = 100
  DATA \overline{T}YPE
                             = ASCII INTEGER
                             = 10
  BYTES
                             = 0
  VALID MINIMUM
```

```
VALID MAXIMUM
                              = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR_E_BIN_26"
  NAME
                             = 101
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
                             = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S
(of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR E_BIN_27"
  NAME
                             = 102
  FIELD NUMBER
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
                             = 65534
  VALID MAXIMUM
                             = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
  NAME
                             = "DETECTOR E BIN 28"
                             = 103
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII_INTEGER
                             = 10
  BYTES
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
                             = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies \overline{}
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR_E_BIN_29"
  NAME
                             = 104
  FIELD NUMBER
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             _ "
     This field contains an array of counts observed within each of the 64
```

```
energy bins for detector E,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    \texttt{max} \texttt{ energies}^{\overline{\textbf{u}}}
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                             = "DETECTOR_E_BIN_30"
  NAME
  FIELD NUMBER
                             = 105
  DATA \overline{T}YPE
                             = ASCII_INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                              = 65534
                              - "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S
     (of this record). Detector E
    energy bins are logarithmically spaced.
See the MIMI_PASSBANDS calibration file for spacing deltas and min and
    \texttt{max} \texttt{ energies}^{\overline{\textbf{u}}}
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                             = "DETECTOR_E_BIN_31"
  NAME
                              = 106
  FIELD NUMBER
  DATA TYPE
                              = ASCII INTEGER
  BYTES
                              = 10
                             = 0
  VALID MINIMUM
  VALID MAXIMUM
                             = 65534
                              = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START_EPHEMERIS_S or else
START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of t\overline{h} is record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                              = FIELD
OBJECT
                              = FTELD
                              = "DETECTOR_E_BIN_32"
  NAME
  FIELD NUMBER
                             = 107
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                              = 10
                             = 0
  VALID MINIMUM
  VALID MAXIMUM
                              = 65534
                              = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S
     (of t\overline{h} is record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                              = "DETECTOR_E_BIN_33"
  NAME
  FIELD NUMBER
                             = 108
                              = ASCII INTEGER
  DATA TYPE
  BYTES
                              = 10
                             = 0
  VALID MINIMUM
  VALID MAXIMUM
                             = 65534
                              = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
```

```
START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                            = "DETECTOR E_BIN_34"
  NAME
                            = 109
  FIELD NUMBER
  DATA TYPE
                            = ASCII INTEGER
  BYTES
                           = 10
  VALID MINIMUM
                           = 0
  VALID MAXIMUM
                            = 65534
                            = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI_PASSBANDS calibration file for spacing deltas and min and
    max energies\overline{"}
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                            = "DETECTOR_E_BIN_35"
 NAME
                            = 110
  FIELD NUMBER
  DATA \overline{T}YPE
                            = ASCII INTEGER
                           = 10
  BYTES
                            = 0
  VALID MINIMUM
                            = 65534
  VALID MAXIMUM
                            = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S
     (of t\overline{h} is record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
                            = FIELD
END OBJECT
OBJECT
                            = FIELD
                           = "DETECTOR_E_BIN_36"
  NAME
  FIELD NUMBER
                            = 111
                            = ASCII INTEGER
  DATA TYPE
  BYTES
                            = 10
  VALID MINIMUM
                           = 0
  VALID MAXIMUM
                            = 65534
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S
     (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                           = "DETECTOR_E_BIN_37"
  NAME
                           = 112
  FIELD NUMBER
  DATA \overline{T}YPE
                           = ASCII INTEGER
                           = 10
  BYTES
  VALID MINIMUM
                           = 0
  VALID MAXIMUM
                            = 65534
                            = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of t\overline{h} is record). Detector E
     energy bins are logarithmically spaced.
```

See the MIMI_PASSBANDS calibration file for spacing deltas and min and max energies" END_OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR_E_BIN_38" FIELD_NUMBER = 113 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector E, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector E energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and $\texttt{max} \texttt{ energies}^{\overline{\textbf{u}}}$ END OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR E BIN 39" FIELD NUMBER = 114 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector E, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of $t\overline{h}$ is record). Detector E energy bins are logarithmically spaced. See the MIMI_PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD = "DETECTOR E BIN 40" NAME = 115 FIELD NUMBER DATA TYPE = ASCII INTEGER = 10 BYTES VALID MINIMUM = 0 = 65534 VALID MAXIMUM = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector E, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of $t\overline{h}$ is record). Detector E energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD = "DETECTOR E BIN 41" NAME FIELD NUMBER = 116 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector E, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of $t\overline{h}$ is record). Detector E energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD

OBJECT = FIELD = "DETECTOR_E_BIN_42" NAME FIELD_NUMBER = 117 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field contains an array of counts observed within each of the 64 energy bins for detector E, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector E energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR E_BIN_43" FIELD NUMBER = 118 DATA $\overline{T}YPE$ = ASCII INTEGER BYTES = 10 = 0 VALID_MINIMUM VALID MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector E, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector E energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD = "DETECTOR_E_BIN_44" NAME FIELD NUMBER = 119 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 65534 DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector E, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record). Detector ${\tt E}$ energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR E BIN 45" FIELD NUMBER = 120DATA TYPE = ASCII INTEGER BYTES = 10 = 0 VALID MINIMUM VALID MAXIMUM = 65534 DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector E, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record). Detector ${\tt E}$ energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies $\overline{}$ END OBJECT = FIELD OBJECT = FIELD = "DETECTOR E BIN 46" NAME = 121 FIELD NUMBER

```
DATA_TYPE
                             = ASCII_INTEGER
  BYTES
                             = 10
  VALID_MINIMUM
                             = 0
  VALID MAXIMUM
                            = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR_E_BIN_47"
  NAME
                             = 122
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
                             = FIELD
END OBJECT
OBJECT
                             = FIELD
  NAME
                             = "DETECTOR E BIN 48"
                             = 123
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII_INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FTELD
                             = "DETECTOR E BIN 49"
  NAME
                             = 124
  FIELD NUMBER
  DATA TYPE
                            = ASCII INTEGER
  BYTES
                             = 10
  VALID_MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of this record). Detector E
energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies \overline{\phantom{a}}
END OBJECT
                             = FIELD
OBJECT
                            = FIELD
  NAME
                             = "DETECTOR E BIN 50"
  FIELD NUMBER
                             = 125
  DATA \overline{T}YPE
                             = ASCII INTEGER
                             = 10
  BYTES
                             = 0
  VALID MINIMUM
```

```
VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR_E_BIN_51"
  NAME
                             = 126
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
                             = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S
(of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR E BIN 52"
  NAME
                             = 127
  FIELD NUMBER
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
                             = 65534
  VALID MAXIMUM
                             = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
  NAME
                             = "DETECTOR E BIN 53"
  FIELD NUMBER
                             = 128
  DATA \overline{T}YPE
                             = ASCII_INTEGER
                             = 10
  BYTES
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
                             = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies \overline{}
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR_E_BIN_54"
  NAME
                             = 129
  FIELD NUMBER
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             _ "
     This field contains an array of counts observed within each of the 64
```

```
energy bins for detector E,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    \texttt{max} \texttt{ energies}^{\overline{\textbf{u}}}
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                             = "DETECTOR_E_BIN_55"
  NAME
  FIELD NUMBER
                             = 130
  DATA \overline{T}YPE
                             = ASCII_INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                              = 65534
                              - "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S
     (of this record). Detector E
    energy bins are logarithmically spaced.
See the MIMI_PASSBANDS calibration file for spacing deltas and min and
    \texttt{max} \texttt{ energies}^{\overline{\textbf{u}}}
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                             = "DETECTOR_E_BIN_56"
  NAME
                              = 131
  FIELD NUMBER
  DATA TYPE
                              = ASCII INTEGER
  BYTES
                             = 10
                             = 0
  VALID MINIMUM
  VALID MAXIMUM
                             = 65534
                              = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START_EPHEMERIS_S or else
START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of t\overline{h} is record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                              = FIELD
OBJECT
                              = FTELD
                              = "DETECTOR_E_BIN_57"
  NAME
  FIELD NUMBER
                             = 132
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                              = 10
                             = 0
  VALID MINIMUM
  VALID MAXIMUM
                              = 65534
                              = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S
     (of t\overline{h} is record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                              = "DETECTOR E BIN 58"
  NAME
  FIELD NUMBER
                             = 133
                              = ASCII INTEGER
  DATA TYPE
  BYTES
                              = 10
                             = 0
  VALID MINIMUM
  VALID MAXIMUM
                             = 65534
                              = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
```

```
START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                            = "DETECTOR E_BIN_59"
  NAME
                            = 134
  FIELD NUMBER
  DATA TYPE
                            = ASCII INTEGER
  BYTES
                           = 10
  VALID MINIMUM
                           = 0
  VALID MAXIMUM
                            = 65534
                            = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI_PASSBANDS calibration file for spacing deltas and min and
    max energies\overline{"}
END OBJECT
                            = FIELD
OBJĒCT
                            = FIELD
                            = "DETECTOR E_BIN_60"
 NAME
                            = 135
  FIELD NUMBER
  DATA \overline{T}YPE
                            = ASCII INTEGER
                           = 10
  BYTES
                            = 0
  VALID MINIMUM
                            = 65534
  VALID MAXIMUM
  DESCRIPTION
                            = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S
     (of t\overline{h} is record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                           = "DETECTOR_E_BIN_61"
  NAME
  FIELD NUMBER
                            = 136
  DATA TYPE
                            = ASCII INTEGER
  BYTES
                            = 10
  VALID MINIMUM
                           = 0
  VALID MAXIMUM
                            = 65534
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S
     (of this record). Detector E
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                           = "DETECTOR_E_BIN_62"
  NAME
                           = 137
  FIELD NUMBER
  DATA \overline{T}YPE
                           = ASCII INTEGER
                           = 10
  BYTES
  VALID MINIMUM
                           = 0
  VALID MAXIMUM
                            = 65534
                            = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector E,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of t\overline{h} is record). Detector E
     energy bins are logarithmically spaced.
```

See the MIMI_PASSBANDS calibration file for spacing deltas and min and max energies" END_OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR_E_BIN_63" FIELD_NUMBER = 138 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector E, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector E energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and $\texttt{max} \texttt{ energies}^{\overline{\textbf{u}}}$ END OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR F1 BIN 0" FIELD NUMBER = 139 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector E, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of $t\overline{h}$ is record). Detector E energy bins are logarithmically spaced. See the MIMI_PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD = "DETECTOR F1_BIN_1" NAME = 140 FIELD NUMBER DATA TYPE = ASCII INTEGER = 10 BYTES VALID MINIMUM = 0 = 65534 VALID MAXIMUM = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector F, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of $t\overline{h}$ is record). Detector F energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD = "DETECTOR F1 BIN 2" NAME = 141 FIELD NUMBER = ASCII INTEGER DATA TYPE BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 65534 DESCRIPTION = " This field contains an array of counts observed within each of the 64 energy bins for detector F, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of $t\overline{h}$ is record). Detector F energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD

OBJECT = FIELD = "DETECTOR_F1_BIN_3" NAME FIELD_NUMBER = 142 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field contains an array of counts observed within each of the 64 energy bins for detector F, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector F energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD = "DETECTOR F1_BIN_4" NAME FIELD NUMBER = 143 DATA $\overline{T}YPE$ = ASCII INTEGER BYTES = 10 = 0 VALID_MINIMUM VALID MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector F, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector F energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies $\overline{}$ END OBJECT = FIELD OBJECT = FIELD = "DETECTOR F1 BIN 5" NAME = 144 FIELD NUMBER DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0VALID MAXIMUM = 65534 DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector F, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of $t\overline{h}$ is record). Detector F energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR F1 BIN 6" FIELD NUMBER = 145DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 65534 DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector F, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record). Detector ${\tt F}$ energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies $\overline{}$ END OBJECT = FIELD OBJECT = FIELD = "DETECTOR F1 BIN 7" NAME = 146 FIELD NUMBER

```
DATA TYPE
                             = ASCII_INTEGER
  BYTES
                             = 10
  VALID_MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR_F1_BIN_8"
  NAME
                             = 147
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
  NAME
                             = "DETECTOR F1 BIN 9"
                             = 148
  FIELD NUMBER
  data \overline{\mathsf{T}}\mathsf{YPE}
                             = ASCII_INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies \overline{\phantom{a}}
END OBJECT
                             = FIELD
OBJECT
                             = FTELD
                             = "DETECTOR_F1_BIN_10"
  NAME
                             = 149
  FIELD NUMBER
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID_MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of this record). Detector F energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies \overline{\phantom{a}}
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
  NAME
                             = "DETECTOR_F1_BIN_11"
  FIELD NUMBER
                             = 150
  DATA \overline{T}YPE
                             = ASCII INTEGER
                             = 10
  BYTES
                             = 0
  VALID MINIMUM
```

```
VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of this record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR_F1_BIN_12"
  NAME
                             = 151
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
                             = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S
(of this record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR_F1_BIN_13"
  NAME
                             = 152
  FIELD NUMBER
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
                             = 65534
  VALID MAXIMUM
                             = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
  NAME
                             = "DETECTOR F1 BIN 14"
                             = 153
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII INTEGER
                             = 10
  BYTES
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
                             = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies \overline{}
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR_F1_BIN_15"
  NAME
                             = 154
  FIELD NUMBER
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             _ "
     This field contains an array of counts observed within each of the 64
```

```
energy bins for detector F,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    \texttt{max} \texttt{ energies}^{\overline{\textbf{u}}}
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                             = "DETECTOR_F1_BIN_16"
  NAME
  FIELD NUMBER
                             = 155
  DATA \overline{T}YPE
                             = ASCII_INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                              = 65534
                              - "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S
     (of this record). Detector F
    energy bins are logarithmically spaced.
See the MIMI_PASSBANDS calibration file for spacing deltas and min and
    \texttt{max} \texttt{ energies}^{\overline{\textbf{u}}}
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                             = "DETECTOR_F1_BIN_17"
  NAME
                              = 156
  FIELD NUMBER
  DATA TYPE
                              = ASCII INTEGER
  BYTES
                              = 10
                             = 0
  VALID MINIMUM
  VALID MAXIMUM
                             = 65534
                              = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START_EPHEMERIS_S or else
START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of t\overline{h} is record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                              = FIELD
OBJECT
                              = FTELD
                              = "DETECTOR_F1_BIN_18"
  NAME
  FIELD NUMBER
                             = 157
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                              = 10
                              = 0
  VALID MINIMUM
  VALID MAXIMUM
                              = 65534
                              = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S
     (of t\overline{h} is record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                              = "DETECTOR_F1_BIN_19"
  NAME
  FIELD NUMBER
                             = 158
                              = ASCII INTEGER
  DATA TYPE
  BYTES
                              = 10
                             = 0
  VALID MINIMUM
  VALID MAXIMUM
                             = 65534
                              = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
```

```
START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                            = "DETECTOR_F1_BIN_20"
  NAME
                            = 159
  FIELD NUMBER
  DATA TYPE
                            = ASCII INTEGER
  BYTES
                            = 10
  VALID MINIMUM
                            = 0
  VALID MAXIMUM
                            = 65534
                            = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI_PASSBANDS calibration file for spacing deltas and min and
    max energies\overline{"}
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                            = "DETECTOR_F1_BIN_21"
 NAME
                            = 160
  FIELD NUMBER
  DATA \overline{T}YPE
                            = ASCII INTEGER
                           = 10
  BYTES
                            = 0
  VALID MINIMUM
                            = 65534
  VALID MAXIMUM
                            = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S
     (of t\overline{h} is record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                            = "DETECTOR_F1_BIN_22"
  NAME
  FIELD NUMBER
                            = 161
                            = ASCII INTEGER
  DATA TYPE
  BYTES
                            = 10
  VALID MINIMUM
                            = 0
  VALID MAXIMUM
                            = 65534
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S
     (of t\overline{h} is record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                            = "DETECTOR_F1_BIN_23"
  NAME
                            = 162
  FIELD NUMBER
  DATA \overline{T}YPE
                            = ASCII INTEGER
                            = 10
  BYTES
  VALID MINIMUM
                           = 0
  VALID MAXIMUM
                            = 65534
                            = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of t\overline{h} is record). Detector F
     energy bins are logarithmically spaced.
```

See the MIMI_PASSBANDS calibration file for spacing deltas and min and max energies" END_OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR_F1_BIN_24" FIELD_NUMBER = 163 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector F, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector F energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and $\texttt{max} \texttt{ energies}^{\overline{\textbf{u}}}$ END OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR F1 BIN 25" FIELD NUMBER = 164 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector F, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of $t\overline{h}$ is record). Detector F energy bins are logarithmically spaced. See the MIMI_PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD = "DETECTOR F1 BIN 26" NAME = 165 FIELD NUMBER DATA TYPE = ASCII INTEGER = 10 BYTES VALID MINIMUM = 0 = 65534 VALID MAXIMUM = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector F, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of $t\overline{h}$ is record). Detector F energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD = "DETECTOR F1 BIN 27" NAME FIELD NUMBER = 166 DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector F, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of $t\overline{h}$ is record). Detector F energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD

OBJECT = FIELD = "DETECTOR_F1_BIN_28" NAME FIELD_NUMBER = 167 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field contains an array of counts observed within each of the 64 energy bins for detector F, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector F energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD = "DETECTOR_F1_BIN_29" NAME FIELD NUMBER = 168DATA $\overline{T}YPE$ = ASCII INTEGER BYTES = 10 = 0 VALID_MINIMUM VALID MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector F, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector F energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD = "DETECTOR F1 BIN 30" NAME FIELD NUMBER = 169DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0VALID MAXIMUM = 65534 DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector F, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of $t\overline{h}$ is record). Detector F energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR F1 BIN 31" FIELD NUMBER = 170DATA TYPE = ASCII INTEGER BYTES = 10 = 0 VALID MINIMUM VALID MAXIMUM = 65534 DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector F, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record). Detector ${\tt F}$ energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies $\overline{}$ END OBJECT = FIELD OBJECT = FIELD = "DETECTOR F1 BIN 32" NAME = 171 FIELD NUMBER

```
DATA TYPE
                             = ASCII_INTEGER
  BYTES
                             = 10
  VALID_MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR_F1_BIN_33"
  NAME
                             = 172
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
  NAME
                             = "DETECTOR F1 BIN 34"
  FIELD NUMBER
                             = 173
  DATA \overline{T}YPE
                             = ASCII_INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies \overline{\phantom{a}}
END OBJECT
                             = FIELD
OBJECT
                             = FTELD
                             = "DETECTOR_F1_BIN_35"
  NAME
                             = 174
  FIELD NUMBER
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID_MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of this record). Detector F energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies \overline{\phantom{a}}
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
  NAME
                             = "DETECTOR_F1_BIN_36"
  FIELD NUMBER
                             = 175
  DATA \overline{T}YPE
                             = ASCII INTEGER
                             = 10
  BYTES
                             = 0
  VALID MINIMUM
```

```
VALID MAXIMUM
                              = 65534
  DESCRIPTION
                              = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of this record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                             = "DETECTOR_F1_BIN_37"
  NAME
                             = 176
  FIELD NUMBER
  DATA \overline{T}YPE
                              = ASCII INTEGER
  BYTES
                              = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
                              = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S
(of this record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    \max \text{ energies}^{\overline{\textbf{u}}}
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                             = "DETECTOR_F1_BIN_38"
  NAME
                             = 177
  FIELD NUMBER
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
                             = 65534
  VALID MAXIMUM
                             = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                              = FIELD
OBJECT
                             = FIELD
  NAME
                             = "DETECTOR F1 BIN 39"
                             = 178
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII INTEGER
                             = 10
  BYTES
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
                             = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies \overline{}
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                              = "DETECTOR_F1_BIN_40"
  NAME
                             = 179
  FIELD NUMBER
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                              = 10
  VALID MINIMUM
                              = 0
  VALID MAXIMUM
                              = 65534
  DESCRIPTION
                              _ "
     This field contains an array of counts observed within each of the 64
```

```
energy bins for detector F,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    \texttt{max} \texttt{ energies}^{\overline{\textbf{u}}}
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                             = "DETECTOR_F1_BIN_41"
  NAME
  FIELD NUMBER
                             = 180
  DATA \overline{T}YPE
                              = ASCII_INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                              = 65534
                              = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S
     (of this record). Detector F
    energy bins are logarithmically spaced.
See the MIMI_PASSBANDS calibration file for spacing deltas and min and
    \texttt{max} \texttt{ energies}^{\overline{\textbf{u}}}
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                             = "DETECTOR_F1_BIN_42"
  NAME
                              = 181
  FIELD NUMBER
  DATA TYPE
                              = ASCII INTEGER
  BYTES
                              = 10
                             = 0
  VALID MINIMUM
  VALID MAXIMUM
                             = 65534
                              = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START_EPHEMERIS_S or else
START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of t\overline{h} is record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                              = FIELD
OBJECT
                              = FTELD
                              = "DETECTOR_F1_BIN_43"
  NAME
  FIELD NUMBER
                             = 182
  DATA TYPE
                             = ASCII INTEGER
  BYTES
                              = 10
                              = 0
  VALID MINIMUM
  VALID MAXIMUM
                              = 65534
                              = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S
     (of t\overline{h} is record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
END OBJECT
                              = FIELD
OBJECT
                              = FIELD
                              = "DETECTOR_F1_BIN_44"
  NAME
  FIELD NUMBER
                             = 183
                              = ASCII INTEGER
  DATA TYPE
  BYTES
                              = 10
                             = 0
  VALID MINIMUM
  VALID MAXIMUM
                             = 65534
                              = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
```

```
START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                            = "DETECTOR_F1_BIN_45"
  NAME
                            = 184
  FIELD NUMBER
  DATA TYPE
                            = ASCII INTEGER
  BYTES
                            = 10
  VALID MINIMUM
                            = 0
  VALID MAXIMUM
                            = 65534
                            = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI_PASSBANDS calibration file for spacing deltas and min and
    max energies\overline{"}
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                            = "DETECTOR_F1_BIN_46"
 NAME
                            = 185
  FIELD NUMBER
  DATA \overline{T}YPE
                            = ASCII INTEGER
                           = 10
  BYTES
                            = 0
  VALID MINIMUM
                            = 65534
  VALID_MAXIMUM
                            = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S
     (of t\overline{h} is record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                            = "DETECTOR_F1_BIN_47"
  NAME
  FIELD NUMBER
                            = 186
                            = ASCII INTEGER
  DATA TYPE
  BYTES
                            = 10
  VALID MINIMUM
                            = 0
  VALID MAXIMUM
                            = 65534
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S
     (of t\overline{h} is record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                            = FIELD
OBJECT
                            = FIELD
                            = "DETECTOR_F1_BIN_48"
  NAME
                            = 187
  FIELD NUMBER
  DATA \overline{T}YPE
                            = ASCII INTEGER
                           = 10
  BYTES
  VALID MINIMUM
                           = 0
  VALID MAXIMUM
                            = 65534
                            = "
  DESCRIPTION
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of t\overline{h} is record). Detector F
     energy bins are logarithmically spaced.
```

See the MIMI_PASSBANDS calibration file for spacing deltas and min and max energies" END_OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR_F1_BIN_49" FIELD_NUMBER = 188 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector F, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector F energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and $\texttt{max} \texttt{ energies}^{\overline{\textbf{u}}}$ END OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR F1 BIN 50" FIELD NUMBER = 189DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector F, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of $t\overline{h}$ is record). Detector F energy bins are logarithmically spaced. See the MIMI_PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD = "DETECTOR F1 BIN 51" NAME = 190FIELD NUMBER DATA TYPE = ASCII INTEGER = 10 BYTES VALID MINIMUM = 0 = 65534 VALID MAXIMUM = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector F, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of $t\overline{h}$ is record). Detector F energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD = "DETECTOR F1 BIN 52" NAME = 191 FIELD NUMBER = ASCII INTEGER DATA TYPE BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 65534 DESCRIPTION = " This field contains an array of counts observed within each of the 64 energy bins for detector F, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of $t\overline{h}$ is record). Detector F energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD

OBJECT = FIELD = "DETECTOR_F1_BIN_53" NAME FIELD_NUMBER = 192 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field contains an array of counts observed within each of the 64 energy bins for detector F, accumulated over the time interval derived from either the END_EPHEMERIS_S - START_EPHEMERIS_S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector F energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD = "DETECTOR F1_BIN_54" NAME FIELD NUMBER = 193DATA $\overline{T}YPE$ = ASCII INTEGER BYTES = 10 = 0 VALID_MINIMUM VALID MAXIMUM = 65534 = " DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector F, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector F energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD = "DETECTOR F1 BIN 55" NAME FIELD NUMBER = 194DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0VALID MAXIMUM = 65534 DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector F, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of $t\overline{h}$ is record). Detector F energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies" END OBJECT = FIELD OBJECT = FIELD NAME = "DETECTOR F1 BIN 56" FIELD NUMBER = 195DATA TYPE = ASCII INTEGER BYTES = 10 = 0 VALID MINIMUM VALID MAXIMUM = 65534 DESCRIPTION This field contains an array of counts observed within each of the 64 energy bins for detector F, accumulated over the time interval derived from either the END EPHEMERIS S - START EPHEMERIS S or else START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record). Detector ${\tt F}$ energy bins are logarithmically spaced. See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies $\overline{}$ END OBJECT = FIELD OBJECT = FIELD = "DETECTOR F1 BIN 57" NAME = 196 FIELD NUMBER

```
DATA_TYPE
                             = ASCII_INTEGER
  BYTES
                             = 10
  VALID_MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END_EPHEMERIS_S - START_EPHEMERIS_S or else
     START_EPHEMERIS_S (of the next contiguous record) - START EPHEMERIS S
     (of this record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
                             = "DETECTOR_F1_BIN_58"
  NAME
                             = 197
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FIELD
  NAME
                             = "DETECTOR F1 BIN 59"
                             = 198
  FIELD NUMBER
  DATA \overline{T}YPE
                             = ASCII_INTEGER
  BYTES
                             = 10
  VALID MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S (of this record). Detector F
     energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies"
END OBJECT
                             = FIELD
OBJECT
                             = FTELD
                             = "DETECTOR_F1_BIN_60"
  NAME
                             = 199
  FIELD NUMBER
  DATA TYPE
                            = ASCII INTEGER
  BYTES
                             = 10
  VALID_MINIMUM
                             = 0
  VALID MAXIMUM
                             = 65534
  DESCRIPTION
                             = "
     This field contains an array of counts observed within each of the 64
     energy bins for detector F,
     accumulated over the time interval derived from either the
     END EPHEMERIS S - START EPHEMERIS S or else
     START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
     (of this record). Detector F
energy bins are logarithmically spaced.
    See the MIMI PASSBANDS calibration file for spacing deltas and min and
    max energies \overline{\phantom{a}}
END OBJECT
                             = FIELD
OBJECT
                            = FIELD
  NAME
                             = "DETECTOR_F1_BIN_61"
  FIELD NUMBER
                             = 200
  DATA \overline{T}YPE
                             = ASCII INTEGER
                             = 10
  BYTES
                             = 0
  VALID MINIMUM
```

```
VALID MAXIMUM
                                 = 65534
    DESCRIPTION
                                = "
       This field contains an array of counts observed within each of the 64
        energy bins for detector F,
        accumulated over the time interval derived from either the
        END_EPHEMERIS_S - START_EPHEMERIS_S or else
       START_EPHEMERIS_S (of the next contiguous record) - START_EPHEMERIS_S
        (of this record). Detector F
      energy bins are logarithmically spaced.
See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
  END OBJECT
                                = FIELD
  OBJECT
                                = FIELD
                                = "DETECTOR_F1_BIN_62"
    NAME
                                = 201
    FIELD NUMBER
    DATA TYPE
                                = ASCII INTEGER
    BYTES
                                = 10
    VALID MINIMUM
                                = 0
    VALID MAXIMUM
                                = 65534
                                = "
    DESCRIPTION
        This field contains an array of counts observed within each of the 64
       energy bins for detector F,
       accumulated over the time interval derived from either the
       END EPHEMERIS S - START EPHEMERIS S or else
START EPHEMERIS S (of the next contiguous record) - START_EPHEMERIS_S
(of this record). Detector F
       energy bins are logarithmically spaced.
      See the MIMI PASSBANDS calibration file for spacing deltas and min and
      \texttt{max} \texttt{ energies}^{\overline{\textbf{u}}}
  END OBJECT
                                 = FIELD
  OBJECT
                                = FIELD
                                = "DETECTOR_F1_BIN_63"
    NAME
    FIELD NUMBER
                                = 202
    DATA TYPE
                                = ASCII INTEGER
    BYTES
                                = 10
    VALID MINIMUM
                                = 0
                                = 65534
    VALID MAXIMUM
                                = "
    DESCRIPTION
       This field contains an array of counts observed within each of the 64
        energy bins for detector F,
        accumulated over the time interval derived from either the
       END EPHEMERIS S - START EPHEMERIS S or else
       START EPHEMERIS S (of the next contiguous record) - START EPHEMERIS S (of this record). Detector F
       energy bins are logarithmically spaced.
      See the MIMI PASSBANDS calibration file for spacing deltas and min and max energies"
  END OBJECT
                                = FIELD
  OBJECT
                                = FIELD
    NAME
                                = "CENTER LOOK ANGLE DEGREES"
                                = 203
    FIELD NUMBER
    UNTT
                                = DEGREE
    DATA TYPE
                                = ASCII REAL
                                = 20
    BYTES
    VALID MINIMUM
                                = 0
    VALID MAXIMUM
                                = 360
                                = "
    DESCRIPTION
      The angle in degrees of the LEMMS detector with the -z axis of the
      spacecraft, measured counter-clockwise about the y axis of the spacecraft."
  END OBJECT
                                 = FIELD
END OBJECT
                                = SPREADSHEET
END
```

7.1.2. MIMI CHEMS

Sample File 4: CPHA0_2000340_0000.LBL		
PDS_VERSION_ID	= PDS3	
DATA_SET_ID	<pre>= "CO-E/J/S/SW-MIMI-2-CHEMS-UNCALIB-V1.0"</pre>	
PRODUCT_ID	= "CPHA0_2000340_0000"	
STANDARD_DATA_PRODUCT_ID	= "MIMI_CHEMS_PHA"	

PRODUCT_TYPE = "DATA" PRODUCT_VERSION = 0 PRODUCT_CREATION_TIME = 2005 - 123T16:25:03.000RECORD_TYPE = STREAM INTERCHANGE_FORMAT = ASCII = 1905FILE RECORDS START_TIME = "2000-340T00:00:00" = "2000-340T23:59:59" STOP_TIME = "29246464.183189" NATIVE_START_TIME = "29332863.183214" NATIVE_STOP_TIME SPACECRAFT_CLOCK_START_COUNT = "1/1354666282.146" SPACECRAFT_CLOCK_STOP_COUNT = "1/1354752682.043" = "CASSINI ORBITER" INSTRUMENT_HOST_NAME INSTRUMENT_HOST_ID = "CO" = "\$PHASE_NAME" MISSION_PHASE_NAME ORBIT_NUMBER = \$ORBIT_NUM TARGET_NAME = "SOLAR WIND" = "MAGNETOSPHERIC IMAGING INSTRUMENT" INSTRUMENT_NAME INSTRUMENT ID = "MIMI" = " DESCRIPTION (P)ulse (H)eight (A)nalysis data for the CHEMMS sensor of the MIMI instrument on the Cassini spacecraft" = ("CPHA0_2000340_0000.CSV", 1 <BYTES>)
= ("CPHA0_2000340_0000.CSV", 279 <BYTES>) ^HEADER ^SPREADSHEET OBJECT = HEADER RECORDS = 1 BYTES = 278 HEADER TYPE = SPREADSHEET DESCRIPTION = " This file contains a single row of column headings (text strings enclosed within double quotes) separated by commas." END OBJECT = HEADER OBJECT = SPREADSHEET = 1910ROWS = 17 FIELDS ROW BYTES = 242 FIELD_DELIMITER = COMMA OBJECT = FIELD NAME = "PURPOSE" = 1 FIELD_NUMBER DATA_TYPE = CHARACTER BYTES = 32 = " DESCRIPTION The PURPOSE field identifies the purpose or function of the data contained in current row. Valid entries include: SCI - normal science data values VALID_MIN - the inclusive or exclusive minimum value allowed for this column VALID_MAX - the inclusive or exclusive maximum value allowed for this column MIN - the minimum value for this column present in this product MAX - the maximum value for this column present in this product MEAN - the mean of the values in this column in this product, this value will be rounded for integer columns STDEV - the standard deviation of the values in this column in this product, this value will be rounded for integer columns" END_OBJECT = FIELD OBJECT = FIELD NAME = "START_EPHEMERIS_S" FIELD_NUMBER = 2 = SECOND UNIT DATA_TYPE = ASCII_REAL = 20 BYTES VALID_MINIMUM = -71063936VALID_MAXIMUM = 757339265 = " DESCRIPTION The J2000 ephemeris time in seconds at the beginning of the time period for this record."

END_OBJECT = FIELD OBJECT = FTELD= "END_EPHEMERIS_S" NAME = 3 FIELD_NUMBER UNIT = SECOND DATA_TYPE = ASCII_REAL BYTES = 20 VALID_MINIMUM = -71063936= 757339265 VALID_MAXIMUM DESCRIPTION = The J2000 ephemeris time in seconds at the end of the time period for this record." END OBJECT = FIELD OBJECT = FTELDNAME = "SPIN_COUNTER" FIELD_NUMBER = 4 DATA TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 16383 DESCRIPTION MIMI always organizes time by Spins, when Cassini is not in spin mode, MIMI uses a commanded virtual spin period. This column is a counter that increments with each spin or virtual spin. This counter resets when MIMI undergoes certain operations like shutdown, and is not sufficiently large that it will not roll over." END OBJECT = FIELD OBJECT = FTELD = "SECTOR" NAME = 5 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 15 = " DESCRIPTION Each spin is divided into 16 sectors. Sectors have no meaning with regard to pointing. They are nothing more or less than segments of time. This column contains the zero based index of the sector. Sectors have special significance in that the beginning of a sector is the only time that MIMI records the SCLOCK. All other times must be calculated based on the subsector, and, where appropriate, microsector values provided below. Times in this product were calculated in this manner. END OBJECT = FIELD OBJECT = FIELD = "START_SECTOR_SCLOCK_MAJOR" NAME = б FIELD_NUMBER = COUNT UNIT DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 400000000 = " DESCRIPTION The value of the Spacecraft clock at the beginning of Sector during which this record occurred. This, combined with subsector, and microsector where appropriate, is the monotonic timestamp for the each record. All other times are calculated from this time representation." END_OBJECT = FIELD OBJECT = FIELD NAME = "SUBSECTOR" FIELD NUMBER = 7 = ASCII_INTEGER DATA_TYPE BYTES = 10VALID_MINIMUM = 0 VALID_MAXIMUM = 15 = " DESCRIPTION Each sector is divided into 16 subsectors. Subsectors have no meaning as far as pointing. They are nothing more or less than segments of time.' END OBJECT = FIELD OBJECT = FIELD NAME = "MICROSECTORS_COVERED" = 8 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10

VALID MINIMUM = 2 VALID_MAXIMUM = 1024= " DESCRIPTION Each subsector is divided into 16 microsectors. Microsectors have no meaning as far as pointing. They are nothing more or less than segments of time. This column is the number of microsectors over which this record was recorded, i.e. 16 for one subsector, 32 for two subsectors, 256 for one sector, etc." END_OBJECT = FIELD OBJECT = FIELD = "SPIN_PERIOD_S" NAME FIELD_NUMBER = 9 UNIT = SECOND DATA_TYPE = ASCII_REAL BYTES = 20 VALID_MINIMUM = 680 VALID MAXIMUM = 3072= ' DESCRIPTION The spacecraft spin period in seconds. If the spacecraft is not in spin mode, this is the virtual spin period used by the MIMI sensor to determine the timing of data colection. This value is not very reliable. It represents the 'nominal' spin period. When the spin period is changing, it will not be very accurate." END OBJECT = FIELD OBJECT = FIELD NAME = "STARING" FIELD_NUMBER = 10 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 1 = " DESCRIPTION 0 if the spacecraft is in spin mode, 1 if the not in spin mode." END_OBJECT = FIELD OBJECT = FIELD NAME = "INDEX_IN_SECTOR" FIELD NUMBER = 11 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 = 30000 VALID MAXIMUM = " DESCRIPTION Automatically generated number to guarantee uniqueness in conjunction with SCLOCK_S." END_OBJECT = FIELD OBJECT = FTELD = "DPPS_LEVEL" NAME FIELD NUMBER = 12 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 31 DESCRIPTION = ' This field represents the step level for the calculation of E/Q for the given duration." END_OBJECT = FIELD OBJECT = FTELDNAME = "ENERGY" = 13 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 = 1023 VALID_MAXIMUM = " DESCRIPTION This field represents an integerized or calibrated measurement of the energy deposited into the SSD during the measurement of the current PHA event." END OBJECT = FIELD OBJECT = FIELD NAME = "TIME_OF_FLIGHT" FIELD_NUMBER = 14 DATA_TYPE = ASCII_INTEGER BYTES = 10 = 0 VALID_MINIMUM VALID_MAXIMUM = 1023

DESCRIPTION = This field represents an integerized or calibrated measurement of the time of flight for the particle between the microplates for the current PHA event." END OBJECT = FIELD OBJECT = FIELD = "SOLID_STATE_DETECTOR" NAME FIELD_NUMBER = 15 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID MINIMUM = 0 VALID_MAXIMUM = 3 = " DESCRIPTION This field indicates which of the three SSD were used in the identification of the energy for this particular PHA event. A value of zero indicates that none of the SSD's where triggered in this event." END_OBJECT = FIELD OBJECT = FIELD NAME = "START_MICRO_CHANNEL_PLATE" FIELD_NUMBER = 16 DATA TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 3 = " DESCRIPTION This field indicates which of the three microchannel plates were used in the identification of the time of flight for this particular PHA event." END_OBJECT = FIELD OBJECT = FIELD NAME = "RANGE" FIELD_NUMBER = 17 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = б DESCRIPTION = " This field indicates which PHA range was identified by the CHEMS DPU for this PHA event. See the Calibration data for interpretation of the values of this field." END_OBJECT = FIELD END_OBJECT = SPREADSHEET END

Sample File 5: CACC0_2000340_0000.LBL		
PDS_VERSION_ID	= PDS3	
DATA_SET_ID PRODUCT_ID STANDARD DATA PRODUCT ID	<pre>= "CO-E/J/S/SW-MIMI-2-CHEMS-UNCALIB-V1.0" = "CACC0_2000340_0000" = "MIMI CHEMS ACC"</pre>	
PRODUCT_TYPE PRODUCT_VERSION	= "DATA" = 0	
PRODUCT_CREATION_TIME	= 2005-123T16:25:57.000	
RECORD_TYPE INTERCHANGE_FORMAT FILE RECORDS	= STREAM = ASCII = 14993	
_ START_TIME	= "2000-340T00:00:00"	
	= "2000-340T23:59:59" = "29246464.183189" = "29332863.183214"	
SPACECRAFT_CLOCK_START_COUNT		
 INSTRUMENT_HOST_NAME INSTRUMENT_HOST_ID	<pre>= "CASSINI ORBITER" = "CO"</pre>	

MISSION_PHASE_NAME = "\$PHASE_NAME" ORBIT_NUMBER = \$ORBIT_NUM TARGET_NAME = "SOLAR WIND" INSTRUMENT NAME = "MAGNETOSPHERIC IMAGING INSTRUMENT" = "MIMI" INSTRUMENT_ID DESCRIPTION = " Subsector accumulations for the CHEMMS sensor of the MIMI instrument on the Cassini spacecraft" ^HEADER = ("CACC0_2000340_0000.CSV", 1 <BYTES>) ^SPREADSHEET = ("CACC0_2000340_0000.CSV", 459 <BYTES>) OBJECT = HEADER RECORDS = 1 BYTES = 458 HEADER_TYPE = SPREADSHEET DESCRIPTION = " This file contains a single row of column headings (text strings enclosed within double quotes) separated by commas." END_OBJECT = HEADER OBJECT = SPREADSHEET ROWS = 14998FIELDS = 33 ROW_BYTES = 418 FIELD_DELIMITER = COMMA OBJECT = FIELD = "PURPOSE" NAME = 1 FIELD_NUMBER DATA_TYPE = CHARACTER = 32 BYTES = " DESCRIPTION The PURPOSE field identifies the purpose or function of the data contained in current row. Valid entries include: SCI - normal science data values VALID MIN - the inclusive or exclusive minimum value allowed for this column VALID MAX - the inclusive or exclusive maximum value allowed for this column MIN - the minimum value for this column present in this product MAX - the maximum value for this column present in this product MEAN - the mean of the values in this column in this product, this value will be rounded for integer columns STDEV - the standard deviation of the values in this column in this product, this value will be rounded for integer columns" END_OBJECT = FIELD OBJECT = FIELD NAME = "START_EPHEMERIS_S" FIELD_NUMBER = 2 UNIT = SECOND DATA_TYPE = ASCII_REAL BYTES = 20 = -71063936 VALID_MINIMUM = 757339265 VALID_MAXIMUM DESCRIPTION = " The J2000 ephemeris time in seconds at the beginning of the time period for this record." END_OBJECT = FIELD OBJECT = FTELD NAME = "END EPHEMERIS S" = 3 FIELD_NUMBER = SECOND UNIT DATA_TYPE = ASCII REAL BYTES = 20 VALID_MINIMUM = -71063936= 757339265 VALID MAXIMUM DESCRIPTION = The J2000 ephemeris time in seconds at the end of the time period for this record." END_OBJECT = FIELD OBJECT = FIELD = "SPIN_COUNTER" NAME FIELD_NUMBER = 4 = ASCII_INTEGER DATA_TYPE

BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 16383DESCRIPTION = " MIMI always organizes time by Spins, when Cassini is not in spin mode, MIMI uses a commanded virtual spin period. This column is a counter that increments with each spin or virtual spin. This counter resets when MIMI undergoes certain operations like shutdown, and is not sufficiently large that it will not roll over." END_OBJECT = FIELD OBJECT = FIELD NAME = "SECTOR" FIELD NUMBER = 5 DATA TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 15 = " DESCRIPTION Each spin is divided into 16 sectors. Sectors have no meaning with regard to pointing. They are nothing more or less than segments of time. This column contains the zero based index of the sector. Sectors have special significance in that the beginning of a sector is the only time that MIMI records the SCLOCK. All other times must be calculated based on the subsector, and, where appropriate, microsector values provided below. Times in this product were calculated in this manner." END OBJECT = FIELD OBJECT = FTELDNAME = "START_SECTOR_SCLOCK_MAJOR" FIELD_NUMBER = б = COUNT UNIT DATA TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 400000000 DESCRIPTION The value of the Spacecraft clock at the beginning of Sector during which this record occurred. This, combined with subsector, and microsector where appropriate, is the monotonic timestamp for the each record. All other times are calculated from this time representation." END_OBJECT = FIELD OBJECT = FIELD NAME = "SUBSECTOR" = 7 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 15 = " DESCRIPTION Each sector is divided into 16 subsectors. Subsectors have no meaning as far as pointing. They are nothing more or less than segments of time." END_OBJECT = FTELD OBJECT = FIELD = "MICROSECTORS_COVERED" NAME FIELD_NUMBER = 8 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 2 VALID_MAXIMUM = 1024= " DESCRIPTION Each subsector is divided into 16 microsectors. Microsectors have no meaning as far as pointing. They are nothing more or less than segments of time. This column is the number of microsectors over which this record was recorded, i.e. 16 for one subsector, 32 for two subsectors, 256 for one sector, etc." END_OBJECT = FIELD OBJECT = FIELD = "SPIN_PERIOD_S" NAME = 9 FIELD_NUMBER = SECOND UNIT DATA_TYPE = ASCII_REAL BYTES = 20 VALID_MINIMUM = 680 VALID_MAXIMUM = 3072

DESCRIPTION The spacecraft spin period in seconds. If the spacecraft is not in spin mode, this is the virtual spin period used by the MIMI sensor to determine the timing of data colection. This value is not very reliable. It represents the 'nominal' spin period. When the spin period is changing, it will not be very accurate. END_OBJECT = FIELD OBJECT = FIELD = "STARING" NAME FIELD_NUMBER = 10 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 1 = " DESCRIPTION 0 if the spacecraft is in spin mode, 1 if the not in spin mode." END OBJECT = FIELD OBJECT = FIELD NAME = "DPPS_LEVEL" FIELD_NUMBER = 11 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 = 2147483646 VALID_MAXIMUM DESCRIPTION - ' This field represents the step level for the calculation of E/Q for the given duration." END_OBJECT = FIELD OBJECT = FIELD = "START_HEAD_1" NAME FIELD_NUMBER = 12 = ASCII_INTEGER DATA_TYPE BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 2147483646 DESCRIPTION - " This field represents the total number of PHA events that triggered the head 1 start microplate." END_OBJECT = FIELD OBJECT = FTELDNAME = "START_HEAD_2" FIELD_NUMBER = 13 DATA_TYPE = ASCII_INTEGER = 10 BYTES VALID_MINIMUM = 0 VALID_MAXIMUM = 2147483646 DESCRIPTION = ' This field represents the total number of PHA events that triggered the head 2 start microplate." END_OBJECT = FIELD OBJECT = FIELD = "START_HEAD_3" NAME FIELD_NUMBER = 14 DATA_TYPE = ASCII_INTEGER = 10 BYTES VALID_MINIMUM = 0 = 2147483646 VALID MAXIMUM DESCRIPTION = ' This field represents the total number of PHA events that triggered the head 3 start microplate." END OBJECT = FIELD OBJECT = FIELD NAME = "START_SUM" FIELD_NUMBER = 15 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 = 2147483646 VALID_MAXIMUM DESCRIPTION = ' This field represents the total number of PHA events that triggered any of the start microplates." END_OBJECT = FIELD OBJECT = FIELD = "STOP_HEAD_1" NAME FIELD_NUMBER = 16

DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 2147483646 DESCRIPTION = ' This field represents the total number of PHA events that triggered the head 1 stop microplate." = FIELD END_OBJECT OBJECT = FIELD NAME = "STOP_HEAD_2" FIELD NUMBER = 17 DATA_TYPE = ASCII_INTEGER BYTES = 10VALID_MINIMUM = 0 VALID_MAXIMUM = 2147483646 DESCRIPTION = " This field represents the total number of PHA events that triggered the head 2 stop microplate." = FIELD END_OBJECT OBJECT = FIELD NAME = "STOP_HEAD_3" = 18 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10VALID_MINIMUM = 0 VALID MAXIMUM = 2147483646 DESCRIPTION = " This field represents the total number of PHA events that triggered the head 3 stop microplate." END_OBJECT = FIELD OBJECT = FIELD NAME = "STOP_SUM" = 19 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 2147483646 DESCRIPTION = ' This field represents the total number of PHA events that triggered any of the stop microplates." = FIELD END_OBJECT OBJECT = FIELD NAME = "ENERGY_HEAD_1" FIELD_NUMBER = 20 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 2147483646 DESCRIPTION = ' This field represents the total number of PHA events that deposited energy in telescope 1 SSD." END_OBJECT = FIELD OBJECT = FIELD NAME = "ENERGY_HEAD_2" = 21 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 2147483646 DESCRIPTION = ' This field represents the total number of PHA events that deposited energy in telescope 2 SSD." = FIELD END_OBJECT OBJECT = FIELD NAME = "ENERGY_HEAD_3" FIELD_NUMBER = 22 DATA_TYPE = ASCII_INTEGER BYTES = 10VALID_MINIMUM = 0 VALID MAXIMUM = 2147483646 DESCRIPTION = " This field represents the total number of PHA events that deposited energy in telescope 3 SSD." END_OBJECT = FIELD OBJECT = FIELD

NAME = "ENERGY_SUM" FIELD NUMBER = 23 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 2147483646 = ' DESCRIPTION This field represents the total number of PHA events that deposited energy all three telescopes." END_OBJECT = FIELD OBJECT = FIELD NAME = "DCR_HEAD_1" FIELD NUMBER = 24 DATA TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 2147483646 = ' DESCRIPTION This field represents the total number of PHA events that triggered two of the start microplates for telescope 1. Double Coincidence.' END_OBJECT = FIELD OBJECT = FIELD NAME = "DCR_HEAD_2" FIELD_NUMBER = 25 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 2147483646 = " DESCRIPTION This field represents the total number of PHA events that triggered two of the start microplates for telescope 2. Double Coincidence. END OBJECT = FIELD OBJECT = FTELDNAME = "DCR_HEAD_3" FIELD_NUMBER = 26 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 2147483646 = ' DESCRIPTION This field represents the total number of PHA events that triggered two of the start microplates for telescope 3. Double Coincidence." END OBJECT = FIELD OBJECT = FIELD = "DCR_SUM" NAME FIELD NUMBER = 27 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 2147483646 = DESCRIPTION This field represents the total number of PHA events that triggered two of the start microplates for all of the telescopes. Double Coincidence." END OBJECT = FIELD OBJECT = FIELD NAME = "TCR_HEAD_1" FIELD_NUMBER = 28 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID MINIMUM = 0 VALID_MAXIMUM = 2147483646 DESCRIPTION = " This field represents the total number of PHA events that triggered all three of the start microplates for telescope 1. Triple Coincidence." END OBJECT = FTELDOBJECT = FIELD NAME = "TCR_HEAD_2" = 29 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 2147483646 DESCRIPTION = " This field represents the total number of PHA events that triggered all

three of the start microplates for telescope 2. Triple Coincidence." END OBJECT = FTELDOBJECT = FIELD NAME = "TCR_HEAD_3" FIELD_NUMBER = 30 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 = 2147483646 VALID_MAXIMUM DESCRIPTION _ " This field represents the total number of PHA events that triggered all three of the start microplates for telescope 3. Triple Coincidence." END OBJECT = FIELD OBJECT = FTELD= "TCR_SUM" NAME = 31 FIELD_NUMBER DATA TYPE = ASCII_INTEGER = 10 BYTES VALID_MINIMUM = 0 = 2147483646 VALID_MAXIMUM DESCRIPTION = " This field represents the total number of PHA events that triggered all three of the start microplates for all telescopes. Triple Coincidence." = FIELD END OBJECT OBJECT = FIELD = "UFSR" NAME FIELD_NUMBER = 32 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 2147483646 DESCRIPTION = " This field represents the total number of PHA events that any of the start microplates triggered for any telescope. (U)niversal (F)ront (S)EDA (R)ate. (S)econdary (E)lectron (D)etector (A)ssembly." END OBJECT = FIELD OBJECT = FIELD NAME = "URSR" FIELD_NUMBER = 33 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 2147483646 DESCRIPTION = " This field represents the total number of PHA events that any of the stop microplates triggered for any telescope. (U)niversal (R)ear (S)EDA (R)ate. (S)econdary (E)lectron (D)etector (A)ssembly." END_OBJECT = FIELD END_OBJECT = SPREADSHEET END

Sample File 6: CSCI0_2000340_0000.LBL		
PDS_VERSION_ID DATA_SET_ID PRODUCT_ID STANDARD_DATA_PRODUCT_ID PRODUCT_TYPE PRODUCT_VERSION PRODUCT_CREATION_TIME	<pre>= PDS3 = "CO-E/J/S/SW-MIMI-2-CHEMS-UNCALIB-V1.0" = "CSCI0_2000340_0000" = "MIMI_CHEMS_SCI" = "DATA" = 0 = 2005-123T16:24:43.000</pre>	
RECORD_TYPE	= STREAM	
INTERCHANGE_FORMAT	= ASCII	
FILE_RECORDS	= 14993	
START_TIME	= "2000-340T00:00:00"	
STOP_TIME	= "2000-340T23:59:59"	

= "29246464.183189" NATIVE_START_TIME NATIVE_STOP_TIME = "29332863.183214" SPACECRAFT_CLOCK_START_COUNT = "1/1354666282.146" SPACECRAFT_CLOCK_STOP_COUNT = "1/1354752682.043" INSTRUMENT_HOST_NAME = "CASSINI ORBITER" INSTRUMENT_HOST_ID = "CO" = "\$PHASE NAME" MISSION_PHASE_NAME ORBIT_NUMBER = \$ORBIT_NUM TARGET_NAME = "SOLAR WIND" INSTRUMENT_NAME = "MAGNETOSPHERIC IMAGING INSTRUMENT" = "MIMI" INSTRUMENT_ID DESCRIPTION = " Simplified subsector accumulations for the CHEMMS sensor of the MIMI instrument on the Cassini spacecraft" = ("CSCI0_2000340_0000.CSV", 1 <BYTES>) = ("CSCI0_2000340_0000.CSV", 1075 <BYTES>) ^HEADER ^SPREADSHEET OBJECT = HEADER RECORDS = 1 = 1074BYTES = SPREADSHEET HEADER TYPE DESCRIPTION = " This file contains a single row of column headings (text strings enclosed within double quotes) separated by commas." END_OBJECT = HEADER OBJECT = SPREADSHEET = 14998 ROWS FIELDS = 61 ROW BYTES = 726 FIELD_DELIMITER = COMMA OBJECT = FIELD NAME = "PURPOSE" FIELD NUMBER = 1 DATA_TYPE = CHARACTER BYTES = 32 = " DESCRIPTION The PURPOSE field identifies the purpose or function of the data contained in current row. Valid entries include: SCI - normal science data values VALID_MIN - the inclusive or exclusive minimum value allowed for this column VALID MAX - the inclusive or exclusive maximum value allowed for this column MIN - the minimum value for this column present in this product MAX - the maximum value for this column present in this product MEAN - the mean of the values in this column in this product, this value will be rounded for integer columns STDEV - the standard deviation of the values in this column in this product, this value will be rounded for integer columns" END_OBJECT = FIELD OBJECT = FIELD NAME = "START_EPHEMERIS_S" FIELD_NUMBER = 2 UNIT = SECOND DATA_TYPE = ASCII_REAL = 20 BYTES VALID MINIMUM = -71063936 = 757339265 VALID_MAXIMUM DESCRIPTION = " The J2000 ephemeris time in seconds at the beginning of the time period for this record." END OBJECT = FIELD OBJECT = FIELD = "END_EPHEMERIS_S" NAME = 3 FIELD_NUMBER UNIT = SECOND DATA_TYPE = ASCII_REAL BYTES = 20 VALID_MINIMUM = -71063936 = 757339265 VALID_MAXIMUM DESCRIPTION = "

The J2000 ephemeris time in seconds at the end of the time period for this record." END_OBJECT = FTELD OBJECT = FIELD NAME = "SPIN_COUNTER" FIELD_NUMBER = 4 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 16383 = " DESCRIPTION MIMI always organizes time by Spins, when Cassini is not in spin mode, MIMI uses a commanded virtual spin period. This column is a counter that increments with each spin or virtual spin. This counter resets when MIMI undergoes certain operations like shutdown, and is not sufficiently large that it will not roll over." END OBJECT = FIELD = FIELD OBJECT NAME = "SECTOR" FIELD NUMBER = 5 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 15 = " DESCRIPTION Each spin is divided into 16 sectors. Sectors have no meaning with regard to pointing. They are nothing more or less than segments of time. This column contains the zero based index of the sector. Sectors have special significance in that the beginning of a sector is the only time that MIMI records the SCLOCK. All other times must be calculated based on the subsector, and, where appropriate, microsector values provided below. Times in this product were calculated in this manner.' END_OBJECT = FIELD OBJECT = FIELD NAME = "START_SECTOR_SCLOCK_MAJOR" FIELD NUMBER = 6 UNIT = COUNT DATA_TYPE = ASCII_INTEGER BYTES = 10 = 0 VALID MINIMUM VALID_MAXIMUM = 400000000 DESCRIPTION = " The value of the Spacecraft clock at the beginning of Sector during which this record occurred. This, combined with subsector, and microsector where appropriate, is the monotonic timestamp for the each record. All other times are calculated from this time representation." END OBJECT = FIELD OBJECT = FIELD NAME = "SUBSECTOR" = 7 FIELD_NUMBER DATA TYPE = ASCII_INTEGER = 10 BYTES VALID_MINIMUM = 0 VALID MAXIMUM = 15 = " DESCRIPTION Each sector is divided into 16 subsectors. Subsectors have no meaning as far as pointing. They are nothing more or less than segments of time." END_OBJECT = FTELD OBJECT = FIELD = "MICROSECTORS_COVERED" NAME = 8 FIELD_NUMBER DATA TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 2 VALID MAXIMUM = 1024DESCRIPTION = " Each subsector is divided into 16 microsectors. Microsectors have no meaning as far as pointing. They are nothing more or less than segments of time. This column is the number of microsectors over which this record was recorded, i.e. 16 for one subsector, 32 for two subsectors, 256 for one sector, etc." = FIELD END_OBJECT OBJECT = FIELD

NAME = "SPIN_PERIOD_S" FIELD_NUMBER = 9 UNIT = SECOND DATA TYPE = ASCII_REAL BYTES = 20 VALID_MINIMUM = 680 = 3072 VALID_MAXIMUM DESCRIPTION = " The spacecraft spin period in seconds. If the spacecraft is not in spin mode, this is the virtual spin period used by the MIMI sensor to determine the timing of data colection. This value is not very reliable. It represents the 'nominal' spin period. When the spin period is changing, it will not be very accurate.' END_OBJECT = FIELD OBJECT = FIELD NAME = "STARING" FIELD NUMBER = 10 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 = 1 VALID_MAXIMUM = " DESCRIPTION 0 if the spacecraft is in spin mode, 1 if the not in spin mode." = FIELD END OBJECT OBJECT = FIELD = "DPPS_LEVEL" NAME FIELD_NUMBER = 11 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 31 = " DESCRIPTION This field represents the step level for the calculation of E/Q for the given duration." END_OBJECT = FIELD OBJECT = FIELD = "RANGE_0_TELE_1" NAME FIELD_NUMBER = 12 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field represents the total number of counts received that fit into the definition of range 0 for telescope 1." END OBJECT = FIELD OBJECT = FIELD NAME = "RANGE_0_TELE_2" FIELD_NUMBER = 13 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field represents the total number of counts received that fit into the definition of range 0 for telescope 2." END OBJECT = FTELDOBJECT = FIELD NAME = "RANGE_0_TELE_3" FIELD_NUMBER = 14 DATA TYPE = ASCII INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field represents the total number of counts received that fit into the definition of range 0 for telescope 3." END OBJECT = FIELD OBJECT = FIELD = "RANGE_0_SUM" NAME FIELD_NUMBER = 15 DATA_TYPE = ASCII_INTEGER BYTES = 10 = 0 VALID_MINIMUM VALID_MAXIMUM = 65534

DESCRIPTION _ This field represents the total number of counts received that fit into the definition of range 0 for all telescopes." = FIELD END OBJECT OBJECT = FIELD NAME = "RANGE_1_TELE_1" = 16 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 = 65534 VALID_MAXIMUM DESCRIPTION = " This field represents the total number of counts received that fit into the definition of range 1 for telescope 1." END_OBJECT = FIELD OBJECT = FIELD NAME = "RANGE_1_TELE_2" = 17 FIELD_NUMBER = ASCII_INTEGER DATA_TYPE BYTES = 10 VALID_MINIMUM = 0 = 65534 VALID MAXIMUM DESCRIPTION = " This field represents the total number of counts received that fit into the definition of range 1 for telescope 2." = FIELD END OBJECT OBJECT = FIELD NAME = "RANGE_1_TELE_3" = 18 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 = 0 VALID_MINIMUM VALID MAXIMUM = 65534 DESCRIPTION = " This field represents the total number of counts received that fit into the definition of range 1 for telescope 3." END OBJECT = FIELD OBJECT = FIELD NAME = "RANGE_1_SUM" FIELD_NUMBER = 19 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field represents the total number of counts received that fit into the definition of range 1 for all telescopes." END OBJECT = FIELD OBJECT = FIELD NAME = "RANGE_2_TELE_1" = 20 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field represents the total number of counts received that fit into the definition of range 2 for telescope 1." END_OBJECT = FIELD OBJECT = FIELD NAME = "RANGE_2_TELE_2" = 21 FIELD_NUMBER = ASCII_INTEGER DATA_TYPE BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 65534 DESCRIPTION = " This field represents the total number of counts received that fit into the definition of range 2 for telescope 2." = FIELD END OBJECT OBJECT = FIELD NAME = "RANGE_2_TELE_3" = 22 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10

VALID MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field represents the total number of counts received that fit into the definition of range 2 for telescope 3." END_OBJECT = FIELD OBJECT = FTELD = "RANGE_2_SUM" NAME = 23 FIELD NUMBER DATA_TYPE = ASCII_INTEGER = 10 BYTES VALID_MINIMUM = 0 VALID MAXIMUM = 65534 = " DESCRIPTION This field represents the total number of counts received that fit into the definition of range 2 for all telescopes." END OBJECT = FIELD OBJECT = FIELD NAME = "RANGE_3_TELE_1" FIELD NUMBER = 24 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION - " This field represents the total number of counts received that fit into the definition of range 3 for telescope 1." END_OBJECT = FIELD = FIELD OBJECT = "RANGE_3_TELE_2" NAME = 25 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER = 10 BYTES VALID_MINIMUM = 0 VALID MAXIMUM = 65534 DESCRIPTION - " This field represents the total number of counts received that fit into the definition of range 3 for telescope 2." END_OBJECT = FIELD OBJECT = FIELD NAME = "RANGE_3_TELE_3" FIELD_NUMBER = 26 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field represents the total number of counts received that fit into the definition of range 3 for telescope 3." END_OBJECT = FIELD = FTELDOBJECT = "RANGE_3_SUM" NAME = 27 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER = 10 BYTES VALID_MINIMUM = 0 VALID MAXIMUM = 65534 DESCRIPTION = ' This field represents the total number of counts received that fit into the definition of range 3 for all telescopes." END OBJECT = FIELD OBJECT = FIELD NAME = "RANGE_4_TELE_1" FIELD NUMBER = 28 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 = 65534 VALID_MAXIMUM DESCRIPTION = ' This field represents the total number of counts received that fit into the definition of range 4 for telescope 1." END_OBJECT = FIELD OBJECT = FIELD NAME = "RANGE_4_TELE_2" FIELD_NUMBER = 29

DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 65534 DESCRIPTION = " This field represents the total number of counts received that fit into the definition of range 4 for telescope 2." END OBJECT = FIELD = FIELD OBJECT NAME = "RANGE_4_TELE_3" FIELD NUMBER = 30 DATA_TYPE = ASCII_INTEGER BYTES = 10VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field represents the total number of counts received that fit into the definition of range 4 for telescope 3." = FIELD END OBJECT OBJECT = FIELD NAME = "RANGE_4_SUM" = 31 FIELD_NUMBER = ASCII_INTEGER DATA_TYPE BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 65534 DESCRIPTION = " This field represents the total number of counts received that fit into the definition of range 4 for all telescopes." = FIELD END_OBJECT OBJECT = FIELD NAME = "RANGE_5_TELE_1" = 32 FIELD NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 65534 DESCRIPTION = " This field represents the total number of counts received that fit into the definition of range 5 for telescope 1.' = FIELD END OBJECT OBJECT = FIELD NAME = "RANGE_5_TELE_2" FIELD_NUMBER = 33 DATA_TYPE = ASCII_INTEGER = 10 BYTES VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field represents the total number of counts received that fit into the definition of range 5 for telescope 2." END_OBJECT = FIELD OBJECT = FIELD NAME = "RANGE_5_TELE_3" = 34 FIELD NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field represents the total number of counts received that fit into the definition of range 5 for telescope 3." = FIELD END_OBJECT = FIELD OBJECT NAME = "RANGE_5_SUM" FIELD_NUMBER = 35 = ASCII_INTEGER DATA_TYPE BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 65534 DESCRIPTION = " This field represents the total number of counts received that fit into the definition of range 5 for all telescopes." = FIELD END_OBJECT OBJECT = FIELD

NAME = "RANGE_6_TELE_1" FIELD NUMBER = 36 DATA_TYPE = ASCII_INTEGER BYTES = 10VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 = " DESCRIPTION This field represents the total number of counts received that fit into the definition of range 6 for telescope 1." END_OBJECT = FIELD OBJECT = FIELD NAME = "RANGE_6_TELE_2" FIELD NUMBER = 37 DATA TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 65534 = ' DESCRIPTION This field represents the total number of counts received that fit into the definition of range 6 for telescope 2." END_OBJECT = FIELD OBJECT = FIELD NAME = "RANGE_6_TELE_3" FIELD_NUMBER = 38 DATA_TYPE = ASCII_INTEGER = 10 BYTES VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 = " DESCRIPTION This field represents the total number of counts received that fit into the definition of range 6 for telescope 3." END_OBJECT = FIELD OBJECT = FTELDNAME = "RANGE_6_SUM" FIELD_NUMBER = 39 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 = " DESCRIPTION This field represents the total number of counts received that fit into the definition of range 6 for all telescopes." END_OBJECT = FIELD OBJECT = FIELD NAME = "HE_PLUS_DOUBLES" FIELD_NUMBER = 40 DATA_TYPE = ASCII_INTEGER BYTES = 10VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 = " DESCRIPTION This field represents the total number of counts with mass and charge that best is fitted as a HE+ using double coincidence." = FIELD END_OBJECT OBJECT = FIELD NAME = "HE_PLUS_TRIPLES" FIELD_NUMBER = 41 DATA TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 65534 = ' DESCRIPTION This field represents the total number of counts with mass and charge that best is fitted as a HE+ using triple coincidence." END_OBJECT = FIELD OBJECT = FTELD NAME = "HE_PLUS_2_DOUBLES" FIELD_NUMBER = 42 DATA_TYPE = ASCII_INTEGER = 10 BYTES VALID_MINIMUM = 0 VALID MAXIMUM = 65534 = " DESCRIPTION This field represents the total number of counts with mass and charge that best is fitted as a HE++ using double coincidence."

END_OBJECT = FIELD OBJECT = FIELD = "HE_PLUS_2_TRIPLES" NAME FIELD NUMBER = 43 DATA_TYPE = ASCII_INTEGER BYTES = 10 = 0 VALID_MINIMUM = 65534 VALID MAXIMUM = " DESCRIPTION This field represents the total number of counts with mass and charge that best is fitted as a HE++ using triple coincidence." END_OBJECT = FIELD OBJECT = FIELD NAME = "O_PLUS_DOUBLES_TELE_1" FIELD_NUMBER = 44 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 = " DESCRIPTION This field represents the total number of counts with mass and charge that best is fitted as a 0+ using double coincidence and telescope 1." END OBJECT = FIELD OBJECT = FIELD = "O_PLUS_DOUBLES_TELE_2" NAME FIELD NUMBER = 45 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = ' This field represents the total number of counts with mass and charge that best is fitted as a 0+ using double coincidence and telescope . END_OBJECT = FIELD OBJECT = FIELD NAME = "O_PLUS_DOUBLES_TELE_3" = 46 FIELD NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 = 65534 VALID MAXIMUM = " DESCRIPTION This field represents the total number of counts with mass and charge that best is fitted as a 0+ using double coincidence and telescope 3." END_OBJECT = FIELD OBJECT = FIELD = "O_PLUS_TRIPLES_TELE_1" NAME FIELD NUMBER = 47 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 = 65534 VALID MAXIMUM = ' DESCRIPTION field represents the total number of counts with mass and charge that best is fitted as a O+ using triple coincidence and telescope 1.' END_OBJECT = FIELD OBJECT = FIELD NAME = "O_PLUS_TRIPLES_TELE_2" = 48 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 = " DESCRIPTION This field represents the total number of counts with mass and charge that best is fitted as a O+ using triple coincidence and telescope 2." END OBJECT = FIELD OBJECT = FIELD = "O_PLUS_TRIPLES_TELE_3" NAME FIELD NUMBER = 49 = ASCII_INTEGER DATA_TYPE BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 = " DESCRIPTION

This field represents the total number of counts with mass and charge that best is fitted as a 0+ using triple coincidence and telescope 3." END_OBJECT = FIELD OBJECT = FIELD = "O_PLUS_2_DOUBLES" NAME FIELD_NUMBER = 50 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 = " DESCRIPTION This field represents the total number of counts with mass and charge that best is fitted as a O++ using double coincidence for all telescopes." END_OBJECT = FIELD OBJECT = FIELD = "O_PLUS_2_TRIPLES" NAME = 51 FIELD NUMBER = ASCII_INTEGER DATA_TYPE BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field represents the total number of counts with mass and charge that best is fitted as a O++ using triple coincidence for all telescopes." END OBJECT = FIELD OBJECT = FIELD = "CNO_OVER_4_AND_T" NAME = 52 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER = 10 BYTES VALID_MINIMUM = 0 VALID MAXIMUM = 65534 = " DESCRIPTION field represents the total number of counts with mass and charge that best is fitted a heavy (CNO>4) and triple coincidence." END_OBJECT = FIELD OBJECT = FIELD = "ENERGY_UNDERFLOW" NAME = 53 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 = 0 VALID_MINIMUM VALID_MAXIMUM = 65534 = " DESCRIPTION This field represents the total number of counts with where there was an energy underflow condition." END OBJECT = FIELD OBJECT = FIELD = "ENERGY_OVERFLOW" NAME FIELD_NUMBER = 54 DATA_TYPE = ASCII_INTEGER BYTES = 10 = 0 VALID_MINIMUM VALID_MAXIMUM = 65534 DESCRIPTION = " This field represents the total number of counts with where there was an energy overflow condition." END_OBJECT = FIELD OBJECT = FIELD = "TOF_UNDERFLOW" NAME = 55 FIELD_NUMBER DATA TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 = 65534 VALID_MAXIMUM DESCRIPTION = " This field represents the total number of counts with where there was a time of flight underflow condition." END_OBJECT = FIELD OBJECT = FIELD = "TOF_OVERFLOW" NAME = 56 FIELD_NUMBER = ASCII_INTEGER DATA_TYPE

BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field represents the total number of counts with where there was a time of flight overflow condition." END_OBJECT = FTELDOBJECT = FIELD = "MASS_OVERFLOW" NAME FIELD_NUMBER = 57 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 65534 DESCRIPTION = " This field represents the total number of counts with where there was a mass calculation overflow condition." = FIELD END OBJECT OBJECT = FIELD NAME = "M_OVER_Q_UNDERFLOW" FIELD_NUMBER = 58 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field represents the total number of counts with where there was a mass/charge calculation underflow condition." END_OBJECT = FIELD OBJECT = FIELD = "M_OVER_Q_OVERFLOW" NAME FIELD_NUMBER = 59 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field represents the total number of counts with where there was a mass/charge calculation overflow condition." END OBJECT = FTELDOBJECT = FIELD = "O_PLUS_DOUBLES_SUM" NAME FIELD_NUMBER = 60 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = " This field represents the total number of counts with mass and charge that best is fitted as a O+ using double coincidence for all telescopes." END_OBJECT = FIELD OBJECT = FTELD NAME = "O_PLUS_TRIPLES_SUM" = 61 FIELD NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65534 DESCRIPTION = ' This field represents the total number of counts with mass and charge that best is fitted as a O+ using triple coincidence for all telescopes." END OBJECT = FTELD END_OBJECT = SPREADSHEET END

7.1.3. MIMI INCA

Sample File 7: IACC0_2000340_0000.LBL

PDS_VERSION_ID = PDS3DATA_SET_ID = "CO-E/J/S/SW-MIMI-2-INCA-UNCALIB-V1.0" = "IACC0_2000340_0000" PRODUCT ID STANDARD_DATA_PRODUCT_ID = "MIMI_INCA_ACC" PRODUCT_TYPE PRODUCT_VERSION = "DATA" = 0 PRODUCT_CREATION_TIME = 2005-123T16:16:43.000 RECORD_TYPE = STREAM INTERCHANGE_FORMAT = ASCIT FILE_RECORDS = 14994 START_TIME = "2000-340T00:00:00" STOP TIME = "2000-340T23:59:59" NATIVE_START_TIME = "29246464.183189" = "29332863.183214" NATIVE_STOP_TIME SPACECRAFT_CLOCK_START_COUNT = "1/1354666282.146" SPACECRAFT CLOCK STOP COUNT = "1/1354752682.043" INSTRUMENT_HOST_NAME = "CASSINI ORBITER" INSTRUMENT_HOST_ID = "CO" = "\$PHASE NAME" MISSION_PHASE_NAME = \$ORBIT_NUM ORBIT_NUMBER TARGET_NAME = "SOLAR WIND" INSTRUMENT_NAME = "MAGNETOSPHERIC IMAGING INSTRUMENT" = "MIMI" INSTRUMENT_ID DESCRIPTION = " Subsector accumulations for the INCA sensor of the MIMI instrument on the Cassini spacecraft" ^HEADER = ("IACC0_2000340_0000.CSV", 1 <BYTES>) ^SPREADSHEET = ("IACC0_2000340_0000.CSV", 319 <BYTES>) OBJECT = HEADER RECORDS = 1 BYTES = 318 HEADER_TYPE = SPREADSHEET DESCRIPTION This file contains a single row of column headings (text strings enclosed within double quotes) separated by commas." END_OBJECT = HEADER OBJECT = SPREADSHEET ROWS = 14999 FIELDS = 21 ROW_BYTES = 286 FIELD DELIMITER = COMMA OBJECT = FIELD = "PURPOSE" NAME = 1 FIELD_NUMBER DATA_TYPE = CHARACTER BYTES = 32 = " DESCRIPTION The PURPOSE field identifies the purpose or function of the data contained in current row. Valid entries include: SCI - normal science data values VALID MIN - the inclusive or exclusive minimum value allowed for this column VALID MAX - the inclusive or exclusive maximum value allowed for this column MIN - the minimum value for this column present in this product MAX - the maximum value for this column present in this product MEAN - the mean of the values in this column in this product, this value will be rounded for integer columns STDEV - the standard deviation of the values in this column in this product, this value will be rounded for integer columns"

END_OBJECT = FIELD OBJECT = FTELD= "START_EPHEMERIS_S" NAME = 2 FIELD_NUMBER UNIT = SECOND DATA_TYPE = ASCII_REAL BYTES = 20 VALID_MINIMUM = -71063936= 757339265 VALID_MAXIMUM DESCRIPTION = The J2000 ephemeris time in seconds at the beginning of the time period for this record." END OBJECT = FIELD OBJECT = FIELD NAME = "END_EPHEMERIS_S" FIELD_NUMBER = 3 UNIT = SECOND DATA_TYPE = ASCII_REAL BYTES = 20 = -71063936VALID_MINIMUM = 757339265 VALID_MAXIMUM = " DESCRIPTION The J2000 ephemeris time in seconds at the end of the time period for this record." END_OBJECT = FIELD OBJECT = FIELD NAME = "SPIN_COUNTER" FIELD_NUMBER = 4 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 16383 = " DESCRIPTION MIMI always organizes time by Spins, when Cassini is not in spin mode, MIMI uses a commanded virtual spin period. This column is a counter that increments with each spin or virtual spin. This counter resets when MIMI undergoes certain operations like shutdown, and is not sufficiently large that it will not roll over." END_OBJECT = FIELD OBJECT = FTELDNAME = "SECTOR" FIELD_NUMBER = 5 DATA_TYPE = ASCII_INTEGER BYTES = 10VALID_MINIMUM = 0 VALID MAXIMUM = 15 = " DESCRIPTION Each spin is divided into 16 sectors. Sectors have no meaning with regard to pointing. They are nothing more or less than segments of time. This column contains the zero based index of the sector. Sectors have special significance in that the beginning of a sector is the only time that MIMI records the SCLOCK. All other times must be calculated based on the subsector, and, where appropriate, microsector values provided below. Times in this product were calculated in this manner. END_OBJECT = FIELD OBJECT = FIELD NAME = "START_SECTOR_SCLOCK_MAJOR" FIELD_NUMBER = б UNTT = COUNT DATA TYPE = ASCII INTEGER BYTES = 10 VALID_MINIMUM = 0 = 400000000 VALID_MAXIMUM DESCRIPTION The value of the Spacecraft clock at the beginning of Sector during which this record occurred. This, combined with subsector, and microsector where appropriate, is the monotonic timestamp for the each record. All other times are calculated from this time representation." END OBJECT = FIELD OBJECT = FIELD NAME = "SUBSECTOR" = 7 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10

VALID MINIMUM = 0 VALID_MAXIMUM = 15 = " DESCRIPTION Each sector is divided into 16 subsectors. Subsectors have no meaning as far as pointing. They are nothing more or less than segments of time.' END_OBJECT = FIELD OBJECT = FTELD = "MICROSECTORS_COVERED" NAME FIELD_NUMBER = 8 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 2 VALID MAXIMUM = 1024DESCRIPTION = " Each subsector is divided into 16 microsectors. Microsectors have no meaning as far as pointing. They are nothing more or less than segments of time. This column is the number of microsectors over which this record was recorded, i.e. 16 for one subsector, 32 for two subsectors, 256 for one sector, etc." END_OBJECT = FIELD OBJECT = FTELDNAME = "SPIN_PERIOD_S" FIELD_NUMBER = 9 UNIT = SECOND DATA TYPE = ASCII_REAL BYTES = 20 VALID_MINIMUM = 680 VALID_MAXIMUM = 3072 DESCRIPTION = " The spacecraft spin period in seconds. If the spacecraft is not in spin mode, this is the virtual spin period used by the MIMI sensor to determine the timing of data colection. This value is not very reliable. It represents the 'nominal' spin period. When the spin period is changing, it will not be very accurate.' END_OBJECT = FIELD OBJECT = FIELD = "STARING" NAME FIELD_NUMBER = 10 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 1 DESCRIPTION 0 if the spacecraft is in spin mode, 1 if the not in spin mode." END OBJECT = FTELDOBJECT = FIELD NAME = "START_FAST" FIELD_NUMBER = 11 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 1E7DESCRIPTION = " This field contains the total number of start events identified as fast." END OBJECT = FTELDOBJECT = FIELD = "START_PULSE" NAME FIELD_NUMBER = 12 DATA TYPE = ASCII INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 1E7DESCRIPTION = " This field contains the total number of start events identified as pulse." END OBJECT = FIELD OBJECT = FIELD NAME = "START_COINCIDENCE" FIELD_NUMBER = 13 DATA_TYPE = ASCII_INTEGER BYTES = 10 = 0 VALID_MINIMUM VALID_MAXIMUM = 1E7

DESCRIPTION _ This field contains the total number of start events that are coincident." END OBJECT = FIELD OBJECT = FIELD NAME = "STOP_FAST" = 14 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 1E7DESCRIPTION = " This field contains the total number of stop events identified as fast." END_OBJECT = FIELD OBJECT = FIELD = "STOP PULSE" NAME FIELD_NUMBER = 15 = ASCII_INTEGER DATA_TYPE BYTES = 10 VALID_MINIMUM = 0 = 1E7VALID_MAXIMUM DESCRIPTION = " This field contains the total number of stop events identified as pulse." END OBJECT = FIELD OBJECT = FIELD NAME = "FULL" = 16 FIELD_NUMBER = ASCII_INTEGER DATA_TYPE = 10 BYTES VALID_MINIMUM = 0 VALID MAXIMUM = 1E7DESCRIPTION = " This field contains the total number of events identified as full." END_OBJECT = FIELD OBJECT = FIELD = "COINCIDENCE" NAME FIELD_NUMBER = 17 = ASCII_INTEGER DATA_TYPE BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 1E7= " DESCRIPTION This field contains the total number of events identified that are coincident." END_OBJECT = FIELD OBJECT = FIELD = "TIME" NAME FIELD_NUMBER = 18 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 = 1E7VALID_MAXIMUM = " DESCRIPTION This field contains the total number of acceptable events." END OBJECT = FTELDOBJECT = FIELD = "STOP_COINCIDENCE" NAME FIELD_NUMBER = 19 DATA TYPE = ASCII INTEGER = 10 BYTES VALID_MINIMUM = 0 VALID MAXIMUM = 1E7DESCRIPTION = " This field contains the total number of stop events that are coincident." END OBJECT = FIELD OBJECT = FIELD NAME = "EVENTS_RECEIVED" FIELD_NUMBER = 20 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 1E7

DESCRIPTION	= "
This field contains	the total number of acceptable events."
END_OBJECT	= FIELD
OBJECT	= FIELD
NAME	= "EVENTS_PROCESSED"
FIELD_NUMBER	= 21
DATA_TYPE	= ASCII_INTEGER
BYTES	= 10
VALID_MINIMUM	= 0
VALID_MAXIMUM	= 1E7
DESCRIPTION	= "
This field contains	the total number of acceptable events."
END_OBJECT	= FIELD
END_OBJECT	= SPREADSHEET
END	

Sample File 8: IPHA0_2000340_0000.LBL		
DDC VERSION ID	- DDC 2	
PDS_VERSION_ID DATA_SET_ID PRODUCT_ID STANDARD_DATA_PRODUCT_ID PRODUCT_TYPE PRODUCT_VERSION PRODUCT_CREATION_TIME	<pre>= PDS3 = "CO-E/J/S/SW-MIMI-2-INCA-UNCALIB-V1.0" = "IPHA0_2000340_0000" = "MIMI_INCA_PHA" = "DATA" = 0 = 2005-123T16:21:02.000</pre>	
RECORD_TYPE INTERCHANGE_FORMAT FILE_RECORDS	= STREAM = ASCII = 157280	
START_TIME STOP_TIME NATIVE_START_TIME NATIVE_STOP_TIME SPACECRAFT_CLOCK_START_COUNT SPACECRAFT_CLOCK_STOP_COUNT	= "1/1354666282.146"	
INSTRUMENT_HOST_ID MISSION_PHASE_NAME ORBIT_NUMBER TARGET_NAME INSTRUMENT_NAME INSTRUMENT_ID DESCRIPTION	<pre>= "CASSINI ORBITER" = "CO" = "\$PHASE_NAME" = \$ORBIT_NUM = "SOLAR WIND" = "MAGNETOSPHERIC IMAGING INSTRUMENT" = "MIMI" = " sis for the INCA sensor of the MIMI instrument on</pre>	
^HEADER= ("IPHA0_20)^SPREADSHEET= ("IPHA0_20)	00340_0000.CSV", 1 <bytes>) 00340_0000.CSV", 310 <bytes>)</bytes></bytes>	
OBJECT RECORDS BYTES HEADER_TYPE DESCRIPTION This file contains a sing within double quotes) sep END_OBJECT	<pre>= HEADER = 1 = 309 = SPREADSHEET = " gle row of column headings (text strings enclosed parated by commas." = HEADER</pre>	
OBJECT ROWS FIELDS ROW_BYTES FIELD_DELIMITER	= SPREADSHEET = 157285 = 19 = 264 = COMMA	
OBJECT NAME FIELD_NUMBER	= FIELD = "PURPOSE" = 1	

DATA_TYPE = CHARACTER BYTES = 32 = " DESCRIPTION The PURPOSE field identifies the purpose or function of the data contained in current row. Valid entries include: SCI - normal science data values VALID_MIN - the inclusive or exclusive minimum value allowed for this column VALID_MAX - the inclusive or exclusive maximum value allowed for this column MIN - the minimum value for this column present in this product MAX - the maximum value for this column present in this product MEAN - the mean of the values in this column in this product, this value will be rounded for integer columns STDEV - the standard deviation of the values in this column in this product, this value will be rounded for integer columns" END OBJECT = FIELD = FIELD OBJECT NAME = "START_EPHEMERIS_S" FIELD_NUMBER = 2 = SECOND UNIT DATA TYPE = ASCII_REAL BYTES = 20 = -71063936 VALID MINIMUM = 757339265 VALID_MAXIMUM DESCRIPTION = " The J2000 ephemeris time in seconds at the beginning of the time period for this record." END OBJECT = FIELD OBJECT = FIELD NAME = "END_EPHEMERIS_S" = 3 FIELD_NUMBER = SECOND UNTT DATA_TYPE = ASCII_REAL BYTES = 20 VALID_MINIMUM = -71063936 VALID MAXIMUM = 757339265 DESCRIPTION = " The J2000 ephemeris time in seconds at the end of the time period for this record." END OBJECT = FIELD OBJECT = FIELD NAME = "SPIN_COUNTER" = 4 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER = 10 BYTES VALID_MINIMUM = 0 VALID MAXIMUM = 16383 DESCRIPTION = " MIMI always organizes time by Spins, when Cassini is not in spin mode, MIMI uses a commanded virtual spin period. This column is a counter that increments with each spin or virtual spin. This counter resets when MIMI undergoes certain operations like shutdown, and is not sufficiently large that it will not roll over." END OBJECT = FIELD OBJECT = FIELD NAME = "SECTOR" = 5 FIELD_NUMBER = ASCII_INTEGER DATA_TYPE = 10 BYTES VALID MINIMUM = 0 VALID_MAXIMUM = 15 = " DESCRIPTION Each spin is divided into 16 sectors. Sectors have no meaning with regard to pointing. They are nothing more or less than segments of time. This column contains the zero based index of the sector. Sectors have special significance in that the beginning of a sector is the only time that MIMI records the SCLOCK. All other times must be calculated based on the subsector, and, where appropriate, microsector values provided below. Times in this product were calculated in this manner." END_OBJECT = FIELD OBJECT = FIELD NAME = "START_SECTOR_SCLOCK_MAJOR" FIELD_NUMBER = б

UNIT = COUNT DATA TYPE = ASCII INTEGER BYTES = 10 VALID MINIMUM = 0 VALID_MAXIMUM = 400000000 DESCRIPTION = " The value of the Spacecraft clock at the beginning of Sector during which this record occurred. This, combined with subsector, and microsector where appropriate, is the monotonic timestamp for the each record. All other times are calculated from this time representation." END OBJECT = FIELD OBJECT = FIELD NAME = "SUBSECTOR" = 7 FIELD_NUMBER = ASCII_INTEGER DATA_TYPE = 10 BYTES VALID MINIMUM = 0 = 15 VALID_MAXIMUM = " DESCRIPTION Each sector is divided into 16 subsectors. Subsectors have no meaning as far as pointing. They are nothing more or less than segments of time." END_OBJECT = FIELD OBJECT = FIELD = "MICROSECTORS_COVERED" NAME FIELD NUMBER = 8 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 2 VALID_MAXIMUM = 1024DESCRIPTION = " Each subsector is divided into 16 microsectors. Microsectors have no meaning as far as pointing. They are nothing more or less than segments of time. This column is the number of microsectors over which this record was recorded, i.e. 16 for one subsector, 32 for two subsectors, 256 for one sector, etc." END OBJECT = FIELD OBJECT = FIELD = "SPIN_PERIOD_S" NAME = 9 FIELD_NUMBER = SECOND UNIT DATA_TYPE = ASCII_REAL BYTES = 20 = 680 VALID_MINIMUM VALID MAXIMUM = 3072 DESCRIPTION = ' The spacecraft spin period in seconds. If the spacecraft is not in spin mode, this is the virtual spin period used by the MIMI sensor to determine the timing of data colection. This value is not very reliable. It represents the 'nominal' spin period. When the spin period is changing, it will not be very accurate. END OBJECT = FTELDOBJECT = FIELD NAME = "STARING" = 10 FIELD NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 1 DESCRIPTION = ' 0 if the spacecraft is in spin mode, 1 if the not in spin mode." END_OBJECT = FIELD OBJECT = FIELD NAME = "INDEX_IN_FOUR_SUBSECTORS" FIELD_NUMBER = 11 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 500DESCRIPTION = " An id number that represents the zero based index of this record within a certain sclock value. This along with sclock is unique." END OBJECT = FIELD OBJECT = FIELD NAME = "COINCIDENCE"

FIELD_NUMBER = 12 = ASCII_INTEGER DATA_TYPE BYTES = 10 VALID MINIMUM = 0 VALID_MAXIMUM = 1 DESCRIPTION = " This field identifies whether the PHA event is coincident (1) or not (0)." END_OBJECT = FTELD OBJECT = FIELD = "START_STOP" NAME FIELD_NUMBER = 13 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 1 = " DESCRIPTION This field identifies whether the PHA event included both start and stop (1) or only one of the two (0)." END OBJECT = FIELD OBJECT = FIELD = "PULSE_HEIGHT_FRONT" NAME FIELD_NUMBER = 14 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID MINIMUM = 0 VALID_MAXIMUM = 255 DESCRIPTION = " This field contains the encoded pulse height data for the front microplate." END_OBJECT = FIELD OBJECT = FIELD = "PULSE_HEIGHT_REAR" NAME FIELD_NUMBER = 15 DATA_TYPE = ASCII_INTEGER BYTES = 10 = 0 VALID MINIMUM VALID_MAXIMUM = 255 DESCRIPTION = " This field contains the encoded pulse height data for the rear microplate." END_OBJECT = FIELD OBJECT = FIELD = "TIME_OF_FLIGHT" NAME FIELD_NUMBER = 16 DATA TYPE = ASCII_INTEGER BYTES = 10 VALID MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION = " This field contains the PHA event time of flight in microseconds." END_OBJECT = FIELD OBJECT = FIELD NAME = "AZIMUTH" = 17 FIELD NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 63 DESCRIPTION = ' This field contains the encoded value of the calculated azimuth for the PHA event." END_OBJECT = FIELD OBJECT = FTELDNAME = "ELEVATION" FIELD_NUMBER = 18 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 47 = " DESCRIPTION This field contains the encoded value of the calculated elevation for the PHA event." END_OBJECT = FIELD OBJECT = FIELD

NAME	= "MASS_RANGE"
FIELD_NUMBER	= 19
DATA_TYPE	= ASCII_INTEGER
BYTES	= 10
VALID_MINIMUM	= 0
VALID_MAXIMUM	= 31
DESCRIPTION	= "
This field contains	the encoded value of the calculated mass."
END_OBJECT	= FIELD
END_OBJECT	= SPREADSHEET
END	

Sample File 9: IIMG0_2000340_0000.LBL PDS_VERSION_ID = PDS3 DATA_SET_ID = "CO-E/J/S/SW-MIMI-2-INCA-UNCALIB-V1.0" = "IIMG0_2000340_0000" PRODUCT ID = "MIMI_INCA_IMG" STANDARD_DATA_PRODUCT_ID PRODUCT_TYPE PRODUCT_VERSION = "DATA" = 0 PRODUCT_CREATION_TIME = 2005-125T17:51:35.000 RECORD_TYPE = STREAM INTERCHANGE_FORMAT = ASCIT FILE_RECORDS = 194145 START_TIME = "2000-340T00:00:00" STOP TIME = "2000-340T23:59:59" = "29246464.183189" NATIVE_START_TIME = "29332863.183214" NATIVE_STOP_TIME SPACECRAFT_CLOCK_START_COUNT = "1/1354666282.146" SPACECRAFT_CLOCK_STOP_COUNT = "1/1354752682.043" INSTRUMENT_HOST_NAME = "CASSINI ORBITER" = "CO" INSTRUMENT HOST ID = "\$PHASE_NAME" MISSION_PHASE_NAME = \$ORBIT_NUM ORBIT_NUMBER TARGET_NAME = "SOLAR WIND" INSTRUMENT_NAME = "MAGNETOSPHERIC IMAGING INSTRUMENT" = "MIMI" INSTRUMENT_ID DESCRIPTION = " 1-4 Sector images from the INCA sensor of the MIMI instrument on the Cassini spacecraft" ^HEADER = ("IIMG0_2000340_0000.CSV", 1 <BYTES>) ^SPREADSHEET = ("IIMG0_2000340_0000.CSV", 899 <BYTES>) OBJECT = HEADER RECORDS = 1 BYTES = 898 HEADER_TYPE = SPREADSHEET DESCRIPTION = " This file contains a single row of column headings (text strings enclosed within double quotes) separated by commas." END_OBJECT = HEADER OBJECT = SPREADSHEET ROWS = 194150 FIELDS = 87 ROW_BYTES = 1084FIELD_DELIMITER = COMMA OBJECT = FIELD NAME = "PURPOSE" = 1 FIELD_NUMBER DATA_TYPE = CHARACTER = 32 BYTES = " DESCRIPTION The PURPOSE field identifies the purpose or function of the data

contained in current row. Valid entries include: SCI - normal science data values VALID MIN - the inclusive or exclusive minimum value allowed for this column VALID_MAX - the inclusive or exclusive maximum value allowed for this column MIN - the minimum value for this column present in this product MAX - the maximum value for this column present in this product MEAN - the mean of the values in this column in this product, this value will be rounded for integer columns STDEV - the standard deviation of the values in this column in this product, this value will be rounded for integer columns" END OBJECT = FIELD OBJECT = FTELDNAME = "START_EPHEMERIS_S" = 2 FIELD_NUMBER UNIT = SECOND DATA_TYPE = ASCII_REAL BYTES = 20 = -71063936VALID_MINIMUM = 757339265 VALID_MAXIMUM = " DESCRIPTION The J2000 ephemeris time in seconds at the beginning of the time period for this record." END_OBJECT = FIELD OBJECT = FIELD NAME = "END_EPHEMERIS_S" FIELD_NUMBER = 3 = SECOND UNIT DATA_TYPE = ASCII_REAL BYTES = 20 = -71063936VALID_MINIMUM VALID MAXIMUM = 757339265 DESCRIPTION = " The J2000 ephemeris time in seconds at the end of the time period for this record." END OBJECT = FIELD OBJECT = FIELD NAME = "SPIN_COUNTER" FIELD_NUMBER = 4 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 = 16383 VALID_MAXIMUM DESCRIPTION = " MIMI always organizes time by Spins, when Cassini is not in spin mode, MIMI uses a commanded virtual spin period. This column is a counter that increments with each spin or virtual spin. This counter resets when MIMI undergoes certain operations like shutdown, and is not sufficiently large that it will not roll over." END_OBJECT = FTELD OBJECT = FTELD= "SECTOR" NAME FIELD_NUMBER = 5 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID MINIMUM = 0 VALID MAXIMUM = 15 = " DESCRIPTION Each spin is divided into 16 sectors. Sectors have no meaning with regard to pointing. They are nothing more or less than segments of time. This column contains the zero based index of the sector. Sectors have special significance in that the beginning of a sector is the only time that MIMI records the SCLOCK. All other times must be calculated based on the subsector, and, where appropriate, microsector values provided below. Times in this product were calculated in this manner." END OBJECT = FIELD OBJECT = FIELD NAME = "START_SECTOR_SCLOCK_MAJOR" FIELD_NUMBER = б UNIT = COUNT DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0

VALID MAXIMUM = 400000000 = " DESCRIPTION The value of the Spacecraft clock at the beginning of Sector during which this record occurred. This, combined with subsector, and microsector where appropriate, is the monotonic timestamp for the each record. All other times are calculated from this time representation." END_OBJECT = FTELDOBJECT = FIELD = "SUBSECTOR" NAME = 7 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 15 = " DESCRIPTION Each sector is divided into 16 subsectors. Subsectors have no meaning as far as pointing. They are nothing more or less than segments of time.' END_OBJECT = FIELD OBJECT = FTELD NAME = "MICROSECTORS_COVERED" = 8 FIELD_NUMBER = ASCII_INTEGER DATA_TYPE BYTES = 10 VALID_MINIMUM = 2 VALID MAXIMUM = 1024DESCRIPTION = " Each subsector is divided into 16 microsectors. Microsectors have no meaning as far as pointing. They are nothing more or less than segments of time. This column is the number of microsectors over which this record was recorded, i.e. 16 for one subsector, 32 for two subsectors, 256 for one sector, etc." END_OBJECT = FTELD OBJECT = FIELD NAME = "SPIN_PERIOD_S" FIELD_NUMBER = 9 UNIT = SECOND DATA_TYPE = ASCII_REAL BYTES = 20 = 680 VALID MINIMUM VALID_MAXIMUM = 3072 DESCRIPTION _ ' The spacecraft spin period in seconds. If the spacecraft is not in spin mode, this is the virtual spin period used by the MIMI sensor to determine the timing of data colection. This value is not very reliable. It represents the 'nominal' spin period. When the spin period is changing, it will not be very accurate. END OBJECT = FIELD OBJECT = FIELD NAME = "STARING" = 10 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 1 DESCRIPTION = " 0 if the spacecraft is in spin mode, 1 if the not in spin mode." END_OBJECT = FIELD OBJECT = FIELD NAME = "TYPE_ID" FIELD NUMBER = 11 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 65535 = " DESCRIPTION 4 byte word describing the type of image collected. Byte 0 - Type: 0 = High Spatial, 1 = High Time, 2 = High m-TOF Byte 1 - Charge: 0 = Neutral, 1 = Ion Byte 2 - Species: 0 = H, 1 = He, 2 = CNO, 3 = Heavy, 4 = Other, 5 = All Byte 3 - TOF: 0 = Low, 1-6 = Medium, 7 = High" END_OBJECT = FIELD OBJECT = FIELD NAME = "ROW_ID"

FIELD_NUMBER = 12 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID MINIMUM = 0 VALID_MAXIMUM = 63 DESCRIPTION = " This field identifies the row number of the image." END OBJECT = FIELD OBJECT = FIELD NAME = "NUM_ROWS" FIELD_NUMBER = 13 DATA_TYPE = ASCII_INTEGER BYTES = 10VALID_MINIMUM = 8 VALID_MAXIMUM = 64 DESCRIPTION = " This field identifies the number of rows in the image." = FIELD END OBJECT OBJECT = FIELD NAME = "NUM_COLS" FIELD_NUMBER = 14 DATA TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 8 VALID_MAXIMUM = 64 = " DESCRIPTION This field identifies the number of columns in the image." END_OBJECT = FIELD OBJECT = FIELD = "COMPRESSION_BITS" NAME FIELD_NUMBER = 15 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 65535 DESCRIPTION - " This field the number of compression bits used for the image." END_OBJECT = FIELD OBJECT = FIELD = "COMPRESSION_METHOD" NAME = 16 FIELD_NUMBER DATA_TYPE = CHARACTER BYTES = 32 = " DESCRIPTION Identifies the compression algorithm used for the image. Options are None, Fast, or Rice." END_OBJECT = FIELD OBJECT = FIELD NAME = "LOG_COMPRESSED" FIELD_NUMBER = 17 DATA_TYPE = ASCII_INTEGER BYTES = 10 = 0 VALID_MINIMUM VALID_MAXIMUM = 1 = " DESCRIPTION This field identifies whether the field is log compressed (1) or not (0)." END_OBJECT = FIELD OBJECT = FIELD = "THETA_OFFSET" NAME FIELD NUMBER = 18 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 31 = " DESCRIPTION Offset in number of pixels of the transmitted image with respect to the DPU image memory. Image theta is parallel to the spacecraft -Z axis." END OBJECT = FIELD OBJECT = FIELD NAME = "PHI_OFFSET" FIELD NUMBER = 19 DATA $\overline{T}YPE$ = ASCII INTEGER = 10 BYTES = 0 VALID MINIMUM

VALID_MAXIMUM = 61 = " DESCRIPTION Offset in number of pixels of the transmitted image with respect to the DPU image memory. Image phi is parallel to the spacecraft X axis." END OBJECT = FIELD OBJECT = FIELD = "HIGH_RESOLUTION" NAME FIELD_NUMBER = 20 DATA_TYPE = CHARACTER BYTES = 32 DESCRIPTION = " This field identifies the resolution means as Spatial, Time, or m-TOF." END OBJECT = FIELD OBJECT = FTELD= "CHARGED" NAME FIELD_NUMBER = 21 DATA TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 1 = " DESCRIPTION This field identifies whether the image was taken of neutrals (0) or charged particles and neutrals (1)." END OBJECT = FIELD OBJECT = FIELD NAME = "SPECIES" FIELD_NUMBER = 22 DATA_TYPE = CHARACTER BYTES = 32 DESCRIPTION = " This field identifies the type of particle imaged as H - hydrogen, He -Helium, CNO - Carbon, Nitrogen, Oxygen, Heavy - others, All - all particles." END_OBJECT = FIELD OBJECT = FIELD = "TOF" NAME = 23 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 = 7 VALID_MAXIMUM = " DESCRIPTION This field contains the encoded TOF measurement duration." END_OBJECT = FIELD OBJECT = FIELD = "COL_0" NAME FIELD_NUMBER = 24 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_1" NAME FIELD_NUMBER = 25 DATA TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 65535 = DESCRIPTION The particle count for this row and column of the image." END OBJECT = FIELD OBJECT = FIELD = "COL_2" NAME FIELD_NUMBER = 26 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION The particle count for this row and column of the image." = FIELD END_OBJECT OBJECT = FIELD

= "COL_3" NAME FIELD NUMBER = 27 DATA TYPE = ASCII_INTEGER BYTES = 10VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 = " DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_4" NAME FIELD_NUMBER = 28 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END OBJECT = FIELD OBJECT = FIELD NAME = "COL_5" = 29 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_6" NAME FIELD_NUMBER = 30 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FTELDNAME = "COL_7" FIELD_NUMBER = 31 DATA_TYPE = ASCII_INTEGER = 10 BYTES VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END OBJECT = FIELD OBJECT = FIELD = "COL_8" NAME FIELD_NUMBER = 32 DATA_TYPE = ASCII_INTEGER = 10 BYTES = 0 VALID_MINIMUM VALID_MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL 9" NAME = 33 FIELD_NUMBER = ASCII_INTEGER DATA_TYPE BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 = " DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD NAME = "COL_10" FIELD_NUMBER = 34 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0

= 65535 VALID MAXIMUM DESCRIPTION = " The particle count for this row and column of the image." = FIELD END OBJECT OBJECT = FIELD NAME = "COL_11" = 35 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 = " DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD NAME = "COL_12" FIELD NUMBER = 36 = ASCII_INTEGER DATA_TYPE BYTES = 10 = 0 VALID_MINIMUM = 65535 VALID_MAXIMUM = " DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_13" NAME = 37 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD NAME = "COL_14" FIELD_NUMBER = 38 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 = 65535 VALID MAXIMUM = " DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_15" NAME = 39 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_16" NAME FIELD_NUMBER = 40 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 65535 = ' DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD NAME = "COL_17" FIELD_NUMBER = 41 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION The particle count for this row and column of the image." = FIELD END_OBJECT OBJECT = FIELD

= "COL_18" NAME FIELD NUMBER = 42 DATA_TYPE = ASCII_INTEGER BYTES = 10VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 = " DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_19" NAME FIELD_NUMBER = 43 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END OBJECT = FIELD OBJECT = FIELD NAME = "COL_20" = 44 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_21" NAME FIELD_NUMBER = 45 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FTELDNAME = "COL_22" FIELD_NUMBER = 46 DATA_TYPE = ASCII_INTEGER = 10 BYTES VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_23" NAME FIELD_NUMBER = 47 DATA_TYPE = ASCII_INTEGER BYTES = 10 = 0 VALID_MINIMUM VALID_MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_24" NAME = 48 FIELD_NUMBER = ASCII_INTEGER DATA_TYPE BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 = " DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD NAME = "COL_25" FIELD_NUMBER = 49 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0

= 65535 VALID MAXIMUM DESCRIPTION = " The particle count for this row and column of the image." = FIELD END OBJECT OBJECT = FIELD NAME = "COL_26" = 50 FIELD_NUMBER DATA TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 = " DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_27" NAME FIELD NUMBER = 51 = ASCII_INTEGER DATA_TYPE BYTES = 10 VALID_MINIMUM = 0 = 65535 VALID_MAXIMUM = " DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_28" NAME = 52 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD NAME = "COL_29" FIELD_NUMBER = 53 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 = 65535 VALID MAXIMUM = " DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_30" NAME = 54 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_31" NAME FIELD_NUMBER = 55 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 65535 = ' DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_32" NAME FIELD_NUMBER = 56 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION The particle count for this row and column of the image." = FIELD END_OBJECT OBJECT = FIELD

= "COL_33" NAME FIELD NUMBER = 57 DATA TYPE = ASCII_INTEGER BYTES = 10VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 = " DESCRIPTION The particle count for this row and column of the image." END OBJECT = FIELD OBJECT = FIELD = "COL_34" NAME FIELD_NUMBER = 58 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END OBJECT = FIELD OBJECT = FIELD = "COL_35" NAME = 59 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_36" NAME FIELD_NUMBER = 60 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FTELDNAME = "COL_37" FIELD_NUMBER = 61 DATA_TYPE = ASCII_INTEGER = 10 BYTES VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_38" NAME FIELD_NUMBER = 62 DATA_TYPE = ASCII_INTEGER BYTES = 10 = 0 VALID_MINIMUM VALID_MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_39" NAME = 63 FIELD_NUMBER = ASCII_INTEGER DATA_TYPE BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 = " DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD NAME = "COL_40" FIELD_NUMBER = б4 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0

= 65535 VALID MAXIMUM DESCRIPTION = " The particle count for this row and column of the image." = FIELD END OBJECT OBJECT = FIELD NAME = "COL_41" = 65 FIELD_NUMBER DATA TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 = " DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD NAME = "COL_42" FIELD NUMBER = 66 = ASCII_INTEGER DATA_TYPE BYTES = 10 VALID_MINIMUM = 0 = 65535 VALID_MAXIMUM = " DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_43" NAME FIELD_NUMBER = 67 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD NAME = "COL_44" FIELD_NUMBER = 68 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 = 65535 VALID MAXIMUM = " DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_45" NAME FIELD_NUMBER = 69 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_46" NAME FIELD_NUMBER = 70 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 65535 = ' DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD NAME = "COL 47" FIELD_NUMBER = 71 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION The particle count for this row and column of the image." = FIELD END_OBJECT OBJECT = FIELD

= "COL_48" NAME FIELD NUMBER = 72 DATA TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 = " DESCRIPTION The particle count for this row and column of the image." END OBJECT = FIELD OBJECT = FIELD = "COL_49" NAME = 73 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END OBJECT = FIELD OBJECT = FIELD NAME = "COL_50" = 74 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD NAME = "COL_51" FIELD_NUMBER = 75 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FTELDNAME = "COL_52" = 76 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER = 10 BYTES VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_53" NAME = 77 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER = 10 BYTES = 0 VALID_MINIMUM VALID_MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD NAME = "COL_54" = 78 FIELD_NUMBER = ASCII_INTEGER DATA_TYPE BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 = " DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD NAME = "COL_55" FIELD_NUMBER = 79 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0

= 65535 VALID MAXIMUM DESCRIPTION = " The particle count for this row and column of the image." = FIELD END OBJECT OBJECT = FIELD NAME = "COL_56" = 80 FIELD_NUMBER DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 = " DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_57" NAME FIELD NUMBER = 81 = ASCII_INTEGER DATA_TYPE BYTES = 10 VALID_MINIMUM = 0 = 65535 VALID_MAXIMUM = " DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_58" NAME FIELD_NUMBER = 82 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD NAME = "COL_59" FIELD_NUMBER = 83 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 = 65535 VALID MAXIMUM = " DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_60" NAME FIELD_NUMBER = 84 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION = " The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_61" NAME FIELD_NUMBER = 85 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID_MINIMUM = 0 VALID MAXIMUM = 65535 = ' DESCRIPTION The particle count for this row and column of the image." END_OBJECT = FIELD OBJECT = FIELD = "COL_62" NAME FIELD_NUMBER = 86 DATA_TYPE = ASCII_INTEGER BYTES = 10 VALID MINIMUM = 0 VALID_MAXIMUM = 65535 DESCRIPTION The particle count for this row and column of the image." = FIELD END_OBJECT OBJECT = FIELD

NAME	= "COL_63"
FIELD_NUMBER	= 87
DATA_TYPE	= ASCII_INTEGER
BYTES	= 10
VALID_MINIMUM	= 0
VALID_MAXIMUM	= 65535
DESCRIPTION	= "
The particle count for	this row and column of the image."
END_OBJECT	= FIELD
END_OBJECT	= SPREADSHEET
END	

7.1.4. MIMI KP BROWSE

Sample File 7: MIMI_KP_2000340_0000.LBL	
PDS_VERSION_ID DATA_SET_ID	<pre>= PDS3 = { "CO-E/J/S/SW-MIMI-2-CHEMS-UNCALIB-V1.0", "CO-E/J/S/SW-MIMI-2-INCA-UNCALIB-V1.0", "CO-E/J/S/SW-MIMI-2-LEMMS-UNCALIB-V1.0" }</pre>
PRODUCT_ID PRODUCT_TYPE PRODUCT_VERSION PRODUCT_CREATION_TIME	= "MIMI_KEY_2000340" = "ANCILLARY" = "0000" = 2005-136T17:48:30.000
RECORD_TYPE INTERCHANGE_FORMAT FILE_RECORDS	= STREAM = ASCII = 1440
START_TIME STOP_TIME NATIVE_START_TIME NATIVE_STOP_TIME SPACECRAFT_CLOCK_START_COUNT SPACECRAFT_CLOCK_STOP_COUNT	= "2000-340T00:00:00" = "2000-340T23:59:59" = "29246464.183189" = "29332863.183214" = "1/1354666282.146" = "1/1354752682.043"
INSTRUMENT_HOST_NAME INSTRUMENT_HOST_ID MISSION_PHASE_NAME ORBIT_NUMBER TARGET_NAME INSTRUMENT_NAME INSTRUMENT_ID DESCRIPTION Key Parameter Browse data sensors."	<pre>= "CASSINI ORBITER" = "CO" = "JUPITER CRUISE" = "N/A" = "SOLAR WIND" = "MAGNETOSPHERIC IMAGING INSTRUMENT" = "MIMI" = " a for Cassini MIMI LEMMS, CHEMS, and INCA</pre>
^TABLE	= "MIMI_KEY2000340.TAB"
OBJECT ROWS COLUMNS ROW_BYTES	= TABLE = 1440 = 56 = 906
record in UTC format: YYYY-DOYTHH:MM:SS.SSS YYYY = year of me DOY = day of yea	asurment

HH = hour of measurement MM = minute of measurement = second of measurement to milliseconds" SS END_OBJECT = COLUMN = COLUMN = "LEMMS_A0" OBJECT NAME = 2 COLUMN_NUMBER UNIT = COUNT DATA_TYPE = ASCII_REAL = 23 START_BYTE = 15 BYTES VALID_MINIMUM = 0 = 400000000 VALID_MAXIMUM DESCRIPTION LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN OBJECT = COLUMN "LEMMS_A1" NAME = COLUMN_NUMBER = 3 UNIT = SECOND DATA_TYPE = ASCII_REAL = 34 START_BYTE BYTES = 14 VALID_MINIMUM = -7.0E7= 1.5E9VALID_MAXIMUM DESCRIPTION LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN OBJECT = COLUMN = "LEMMS_A2" NAME = 4 COLUMN_NUMBER UNIT = SECOND DATA_TYPE = ASCII_REAL START_BYTE = 49 = 15 BYTES = -7.0E7VALID_MINIMUM = 1.5E9VALID MAXIMUM ... DESCRIPTION LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN = COLUMN = "LEMMS_A3" OBJECT NAME = 5 COLUMN_NUMBER = ASCII_REAL DATA_TYPE = 65 START_BYTE BYTES = 15 VALID_MINIMUM = 0 VALID_MAXIMUM = 1 DESCRIPTION = LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN = COLUMN = "LEMMS_A4" OBJECT NAME = 6 COLUMN_NUMBER UNIT = SECOND DATA_TYPE = ASCII_REAL = 81 START_BYTE = 15 BYTES VALID_MINIMUM = 680 = 3072 VALID_MAXIMUM DESCRIPTION _ LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN OBJECT = COLUMN = "LEMMS_A5" NAME

COLUMN_NUMBER = = ASCII_REAL DATA_TYPE START_BYTE = 97 = 15 BYTES VALID_MINIMUM = 0 VALID_MAXIMUM = 16383... DESCRIPTION _ LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file. END OBJECT = COLUMN OBJECT = COLUMN = "LEMMS_A6" NAME = 8 COLUMN_NUMBER = ASCII_REAL DATA_TYPE START_BYTE = 113 = 15 BYTES = 0 VALID_MINIMUM = 15 VALID_MAXIMUM DESCRIPTION = LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN = COLUMN = "LEMMS_A7" OBJECT NAME = 9 COLUMN_NUMBER = ASCII_REAL DATA_TYPE START_BYTE = 129 = 15 BYTES = 0 VALID_MINIMUM = 15 VALID_MAXIMUM DESCRIPTION = LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file." = COLUMN END OBJECT = COLUMN = "LEMMS_A8" OBJECT NAME = 10 COLUMN_NUMBER = ASCII_REAL DATA TYPE START_BYTE = 145 BYTES = 15 = 0VALID_MINIMUM = 4.E5 = " VALID_MAXIMUM DESCRIPTION LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN = COLUMN = "LEMMS_CO" OBJECT NAME = 11 COLUMN_NUMBER = ASCII_REAL DATA_TYPE START_BYTE = 161BYTES = 15 VALID_MINIMUM = 0 = 4.E5 VALID_MAXIMUM DESCRIPTION LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file." END_OBJECT = COLUMN = COLUMN
= "LEMMS_C1" OBJECT NAME = 12 COLUMN_NUMBER DATA_TYPE = ASCII_REAL START_BYTE = 177BYTES = 15 VALID_MINIMUM = 0 = 4.E5 VALID_MAXIMUM DESCRIPTION LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file.

END_OBJECT = COLUMN = COLUMN
= "LEMMS_C2" OBJECT NAME COLUMN_NUMBER = 13DATA_TYPE = ASCII_REAL START_BYTE = 193= 15 BYTES VALID_MINIMUM = 0 = 4.E5VALID_MAXIMUM DESCRIPTION LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN OBJECT = COLUMN = "LEMMS_C3" NAME = 14 COLUMN NUMBER = ASCII_REAL DATA_TYPE START_BYTE = 209 BYTES = 15 = 0 VALID_MINIMUM = 4.E5VALID_MAXIMUM DESCRIPTION LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN = COLUMN = "LEMMS_C4" OBJECT NAME = 15 COLUMN_NUMBER = ASCII_REAL DATA_TYPE = 225 START_BYTE = 15 BYTES VALID_MINIMUM = 0 = 4.E5 VALID MAXIMUM DESCRIPTION LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN OBJECT = COLUMN = "LEMMS_C5" NAME COLUMN_NUMBER = 16 DATA_TYPE = ASCII_REAL START_BYTE = 241 = 15 BYTES VALID_MINIMUM = 0 VALID MAXIMUM = 4.E5DESCRIPTION = LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN = COLUMN = "LEMMS_C6" OBJECT NAMF = 17 COLUMN_NUMBER DATA_TYPE = ASCII_REAL START_BYTE = 257 = 15 BYTES = 0 VALID_MINIMUM = 4.E5 VALID MAXIMUM DESCRIPTION — LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN = COLUMN = "LEMMS_C7" OBJECT NAMF = 18 COLUMN_NUMBER DATA_TYPE = ASCII_REAL START_BYTE = 273 BYTES = 15= 0 VALID_MINIMUM VALID_MAXIMUM = 4.E5... DESCRIPTION _

LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN = COLUMN
= "LEMMS_P1" OBJECT NAME = 19 COLUMN_NUMBER DATA_TYPE = ASCII_REAL = 289 START_BYTE = 15 BYTES VALID_MINIMUM = 0VALID_MAXIMUM = 4.E5.... DESCRIPTION -LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file. END OBJECT = COLUMN OBJECT = COLUMN = "LEMMS_P2" NAME = 20 COLUMN_NUMBER DATA_TYPE = ASCII_REAL START_BYTE = 305 BYTES = 15 VALID_MINIMUM = 0 = 4.E5 VALID_MAXIMUM DESCRIPTION = LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN OBJECT = COLUMN = "LEMMS_P3" NAME = 21COLUMN_NUMBER DATA_TYPE = ASCII_REAL START_BYTE = 321BYTES = 15 VALID_MINIMUM = 0 VALID_MAXIMUM = 4.E5 DESCRIPTION LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN OBJECT = COLUMN = "LEMMS_P4" NAME = 22 COLUMN_NUMBER DATA_TYPE = ASCII_REAL START_BYTE = 337BYTES = 15 VALID_MINIMUM = 0 VALID_MAXIMUM = 4.E5 DESCRIPTION LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file." END_OBJECT = COLUMN = COLUMN = "LEMMS_P5" OBJECT NAME $= 2\overline{3}$ COLUMN_NUMBER DATA_TYPE = ASCII_REAL = 353 START_BYTE = 15 BYTES = 0 VALID_MINIMUM VALID_MAXIMUM = 4.E5 DESCRIPTION LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN = COLUMN = "LEMMS_EO" OBJECT NAME COLUMN_NUMBER = 24 = ASCII_REAL DATA_TYPE START_BYTE = 369 BYTES = 15

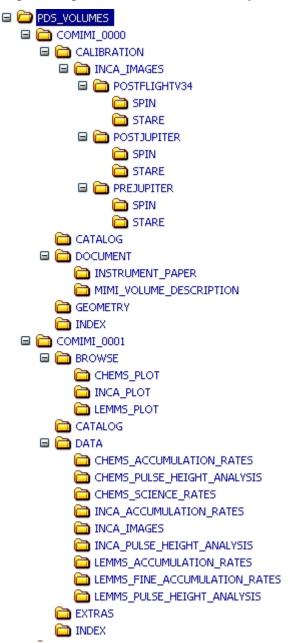
VALID_MINIMUM = 0 = 4.E5VALID_MAXIMUM DESCRIPTION _ LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN OBJECT = COLUMN NAME = "LEMMS_E1" = 25 COLUMN_NUMBER = ASCII_REAL DATA_TYPE START_BYTE = 385 = 15 BYTES VALID_MINIMUM = 0= 4.E5VALID_MAXIMUM DESCRIPTION LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file.' END OBJECT = COLUMN OBJECT = COLUMN = "LEMMS_E2" NAME = 26 COLUMN_NUMBER = ASCII_REAL DATA_TYPE START_BYTE = 401 = 15 BYTES = 0 VALID_MINIMUM VALID MAXIMUM = 4.E5 DESCRIPTION LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file. = COLUMN END_OBJECT OBJECT = COLUMN = "LEMMS_E3" NAMF = 27 COLUMN_NUMBER = ASCII_REAL DATA_TYPE START_BYTE = 417 = 15 BYTES = 0VALID_MINIMUM VALID MAXIMUM = 4.E5.... DESCRIPTION LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN = COLUMN = "LEMMS_E4" OBJECT NAME = 28 COLUMN_NUMBER = ASCII_REAL DATA_TYPE = 433 START_BYTE BYTES = 15 VALID_MINIMUM = 0= 4.E5 VALID_MAXIMUM DESCRIPTION = LEMMS Accumulation Rate for the indicated channel. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN = COLUMN
= "LEMMS_C5_Anisotropy" OBJECT NAME = 29 COLUMN_NUMBER = ASCII_REAL DATA_TYPE = 449 START_BYTE = 15 BYTES = 0 VALID_MINIMUM = 4.E5 = " VALID_MAXIMUM DESCRIPTION This field contains a measure of the anisotropy between the highest microsector and the lowest microsector measured within a sector (1 LEMMS turntable rotation). The anisotropy is calculated to be 1.0 -(sector_minimum / sector_maximum). END_OBJECT = COLUMN OBJECT = COLUMN = "LEMMS_A5_Anisotropy" NAME

COLUMN_NUMBER = 30 DATA_TYPE = ASCII_REAL START_BYTE = 465 = 15 BYTES = 0 VALID_MINIMUM VALID_MAXIMUM = 4.E5... DESCRIPTION _ This field contains a measure of the anisotropy between the highest microsector and the lowest microsector measured within a sector (1 LEMMS turntable rotation). The anisotropy is calculated to be 1.0 -(sector_minimum / sector_maximum). END_OBJECT = COLUMN = COLUMN = "LEMMS_Scanning" OBJECT NAME = 31COLUMN_NUMBER DATA_TYPE = CHARACTER START_BYTE = 481 = 15 BYTES = 0 VALID_MINIMUM VALID_MAXIMUM = 4.E5 DESCRIPTION This field identifies whether the LEMMS turntable is rotating (in scanning mode) or is fixed. The values are either: yes or no." END_OBJECT = COLUMN = COLUMN = "CHEMS_H_Plus_DPPS_0_7" OBJECT NAME COLUMN_NUMBER = 32 = ASCII_REAL DATA_TYPE START_BYTE = 497 = 15 BYTES = 0 VALID_MINIMUM VALID_MAXIMUM = 4.E5 DESCRIPTION _ CHEMS Accumulation Rate for the indicated species and data processing steps. This rate has been interpolated for the 60 second cadence of this data file." END_OBJECT = COLUMN = COLUMN
= "CHEMS_H_Plus_DPPS_8_15" OBJECT NAME = 33 COLUMN NUMBER = ASCII_REAL DATA_TYPE START_BYTE = 513= 15 BYTES VALID_MINIMUM = 0 = 4.E5 VALID_MAXIMUM DESCRIPTION CHEMS Accumulation Rate for the indicated species and data processing steps. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN OBJECT = COLUMN = "CHEMS_H_Plus_DPPS_16_23" NAME = 34 COLUMN_NUMBER = ASCII_REAL DATA_TYPE START_BYTE = 529 = 15 BYTES VALID_MINIMUM = 0 = 4.E5VALID_MAXIMUM DESCRIPTION CHEMS Accumulation Rate for the indicated species and data processing steps. This rate has been interpolated for the 60 second cadence of this data file." END_OBJECT = COLUMN = COLUMN
= "CHEMS_H_Plus_DPPS_24_31" OBJECT NAME = 35 COLUMN_NUMBER = ASCII_REAL DATA_TYPE = 545 START_BYTE = 15 BYTES = 0 VALID_MINIMUM VALID MAXIMUM = 4.E5DESCRIPTION CHEMS Accumulation Rate for the indicated species and data processing steps. This rate has been interpolated for the 60 second

cadence of this data file. END_OBJECT = COLUMN OBJECT = COLUMN NAME = "CHEMS_He_Plus_DPPS_0_7" = 36 COLUMN_NUMBER DATA_TYPE = ASCII_REAL = 561 START_BYTE BYTES = 15 = 0VALID_MINIMUM = 4.E5 VALID_MAXIMUM DESCRIPTION = CHEMS Accumulation Rate for the indicated species and data processing steps. This rate has been interpolated for the 60 second cadence of this data file." END_OBJECT = COLUMN = COLUMN
= "CHEMS_He_Plus_DPPS_8_15" OBJECT NAME = 37 COLUMN_NUMBER = ASCII_REAL DATA_TYPE START_BYTE = 577 = 15 BYTES VALID_MINIMUM = 0 VALID_MAXIMUM = 4.E5DESCRIPTION CHEMS Accumulation Rate for the indicated species and data processing steps. This rate has been interpolated for the 60 second cadence of this data file. END OBJECT = COLUMN OBJECT = COLUMN = "CHEMS_He_Plus_DPPS_16_23" NAME COLUMN_NUMBER = 38 DATA_TYPE START_BYTE = ASCII_REAL = 593 BYTES = 15 VALID MINIMUM = 0VALID_MAXIMUM = 4.E5 DESCRIPTION CHEMS Accumulation Rate for the indicated species and data processing steps. This rate has been interpolated for the 60 second cadence of this data file." = COLUMN END OBJECT = COLUMN
= "CHEMS_He_Plus_DPPS_24_31" OBJECT NAME = 39 COLUMN_NUMBER DATA_TYPE = ASCII_REAL START_BYTE = 609 = 15 BYTES VALID MINIMUM = 0 VALID_MAXIMUM = 4.E5DESCRIPTION CHEMS Accumulation Rate for the indicated species and data processing steps. This rate has been interpolated for the 60 second cadence of this data file." END_OBJECT = COLUMN OBJECT = COLUMN = "CHEMS_He_Plus_2_DPPS_0_7" NAME COLUMN_NUMBER = 40 DATA_TYPE = ASCII_REAL START_BYTE = 625 = 15 BYTES = 0 VALID MINIMUM = 4.E5 VALID_MAXIMUM DESCRIPTION = CHEMS Accumulation Rate for the indicated species and data processing steps. This rate has been interpolated for the 60 second cadence of this data file." END_OBJECT = COLUMN = COLUMN
= "CHEMS_He_Plus_2_DPPS_8_15" OBJECT NAME = 41 COLUMN_NUMBER DATA_TYPE = ASCII_REAL START_BYTE = 641 = 15 BYTES = 0 VALID_MINIMUM VALID_MAXIMUM = 4.E5

DESCRIPTION CHEMS Accumulation Rate for the indicated species and data processing steps. This rate has been interpolated for the 60 second cadence of this data file." END_OBJECT = COLUMN OBJECT = COLUMN = "CHEMS_He_Plus_2_DPPS_16_23" NAME COLUMN_NUMBER = 42 DATA_TYPE = ASCII_REAL = 657 START_BYTE = 15 BYTES VALID_MINIMUM = 0 = 4.E5 VALID_MAXIMUM DESCRIPTION CHEMS Accumulation Rate for the indicated species and data processing steps. This rate has been interpolated for the 60 second cadence of this data file." END_OBJECT = COLUMN OBJECT = COLUMN = "CHEMS_He_Plus_2_DPPS_24_31" NAME = 43 COLUMN_NUMBER DATA_TYPE = ASCII_REAL START_BYTE = 673 = 15 BYTES VALID_MINIMUM = 0 = 4.E5VALID_MAXIMUM DESCRIPTION _ CHEMS Accumulation Rate for the indicated species and data processing steps. This rate has been interpolated for the 60 second cadence of this data file." END_OBJECT = COLUMN = COLUMN
= "CHEMS_0_Plus_DPPS_0_7" OBJECT NAME COLUMN_NUMBER = 44 = ASCII_REAL DATA_TYPE START_BYTE = 689 = 15 BYTES VALID_MINIMUM = 0 = 4.E5 VALID_MAXIMUM DESCRIPTION _ CHEMS Accumulation Rate for the indicated species and data processing steps. This rate has been interpolated for the 60 second cadence of this data file." = COLUMN END_OBJECT = COLUMN = "CHEMS_O_Plus_DPPS_8_15" OBJECT NAME = 45 COLUMN_NUMBER DATA_TYPE = ASCII_REAL START_BYTE = 705 = 15 BYTES = 0 VALID_MINIMUM VALID_MAXIMUM = 4.E5DESCRIPTION CHEMS Accumulation Rate for the indicated species and data processing steps. This rate has been interpolated for the 60 second cadence of this data file." END_OBJECT = COLUMN = COLUMN = "CHEMS_O_Plus_DPPS_16_23" OBJECT NAME = 46 COLUMN_NUMBER DATA_TYPE START_BYTE = ASCII REAL = 721 = 15 BYTES = 0VALID_MINIMUM = 4.E5VALID_MAXIMUM ... DESCRIPTION CHEMS Accumulation Rate for the indicated species and data processing steps. This rate has been interpolated for the 60 second cadence of this data file. = COLUMN END_OBJECT = COLUMN
= "CHEMS_O_Plus_DPPS_24_31" OBJECT NAME = 47 COLUMN_NUMBER = ASCII_REAL DATA_TYPE START_BYTE = 737

BYTES = 15 VALID_MINIMUM = 0VALID_MAXIMUM = 4.E5.... DESCRIPTION CHEMS Accumulation Rate for the indicated species and data processing steps. This rate has been interpolated for the 60 second cadence of this data file." END_OBJECT = COLUMN = COLUMN = "INCA_H_TOF_0" OBJECT NAME = 48 COLUMN_NUMBER DATA_TYPE = ASCII_REAL = 753 START_BYTE BYTES = 15 VALID_MINIMUM = 0 = 4.E5 VALID_MAXIMUM DESCRIPTION = INCA Accumulation Rate for the indicated species and time of flight. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN OBJECT = COLUMN = "INCA_H_TOF_1" NAME COLUMN_NUMBER = 49 DATA_TYPE START_BYTE = ASCII_REAL = 769= 15 BYTES VALID_MINIMUM = 0 VALID_MAXIMUM = 4.E5 DESCRIPTION INCA Accumulation Rate for the indicated species and time of flight. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN = COLUMN = "INCA_H_TOF_2" OBJECT NAME = 50 COLUMN NUMBER DATA_TYPE = ASCII_REAL = 785 START_BYTE = 15 BYTES VALID MINIMUM = 0 = 4.E5 VALID_MAXIMUM DESCRIPTION INCA Accumulation Rate for the indicated species and time of flight. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN OBJECT = COLUMN = "INCA_H_TOF_3" NAME COLUMN_NUMBER = 51 DATA_TYPE = ASCII_REAL START_BYTE = 801 = 15 BYTES = 0 VALID_MINIMUM = 4.E5VALID_MAXIMUM DESCRIPTION INCA Accumulation Rate for the indicated species and time of flight. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN = COLUMN = "INCA_H_TOF_4" OBJECT NAME = 52 COLUMN_NUMBER = ASCII_REAL DATA_TYPE = 817 START_BYTE BYTES = 15 VALID_MINIMUM = 0 = 4.E5 VALID_MAXIMUM DESCRIPTION _ INCA Accumulation Rate for the indicated species and time of flight. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN OBJECT = COLUMN = "INCA_H_TOF_5" NAME


COLUMN_NUMBER = 53 DATA_TYPE = ASCII_REAL START_BYTE = 833 BYTES = 15 = 0 VALID_MINIMUM VALID_MAXIMUM = 4.E5... DESCRIPTION _ INCA Accumulation Rate for the indicated species and time of flight. This rate has been interpolated for the 60 second cadence of this data file. END OBJECT = COLUMN = COLUMN = "INCA_H_TOF_6" OBJECT NAME = 54 COLUMN_NUMBER DATA_TYPE = ASCII_REAL START_BYTE = 849 BYTES = 15 = 0 VALID_MINIMUM = 4.E5 = " VALID_MAXIMUM DESCRIPTION INCA Accumulation Rate for the indicated species and time of flight. This rate has been interpolated for the 60 second cadence of this data file. END_OBJECT = COLUMN = COLUMN = "INCA_H_TOF_7" OBJECT NAME = 55 COLUMN_NUMBER DATA_TYPE START_BYTE = ASCII_REAL = 865 BYTES = 15 VALID_MINIMUM = 0 = 4.E5 = " VALID_MAXIMUM DESCRIPTION INCA Accumulation Rate for the indicated species and time of flight. This rate has been interpolated for the 60 second cadence of this data file. END OBJECT = COLUMN = COLUMN
= "INCA_Mode" OBJECT NAME = 56 COLUMN_NUMBER DATA_TYPE = ASCII REAL = 881 START_BYTE BYTES = 15 = 0 VALID_MINIMUM = 4.E5 = " VALID_MAXIMUM DESCRIPTION This field identifies whether the INCA sensor is using neutral mode or ion mode. or ion ." The values are either: neutral END_OBJECT = COLUMN END_OBJECT = TABLE END

8. Support Staff and Cognizant Persons

Table 46: MIMI Archive Collection Support Staff			
	Fundamental Technolog	gies, LLC	
Dr. Thomas P. Armstrong	Fundamental Technologies	785-840-0800	Armstrong@ftecs.com
Co. I.	2411 Ponderosa, Suite A		
	Lawrence, KS 66046		
Dr. Jerry W. Manweiler Assoc. Scientist	Fundamental Technologies	785-840-0800	Manweiler@ftecs.com
	2411 Ponderosa, Suite A		
	Lawrence, KS 66046		
	UCLA		
Mr. Steven P. Joy PPI Operations Manager	UCLA-IGPP 405 Hilgard Ave Los Angeles, CA 90095-1567	310-825-3506	<u>sjoy@igpp.ucla.edu</u>
Mr. Joe Mafi PPI Data Engineer	UCLA-IGPP 405 Hilgard Ave Los Angeles, CA 90095-1567	310-206-6073	jmafi@igpp.ucla.edu

Appendix A. Directory Structure for Archive Volumes

Graphical representation of the Directory structure

Textual representation of the Directory structure - MIMI SAMPLE REFERENCE VOLUME - CALIBRATION - INCA_IMAGES - POSTFLIGHTV34 SPIN STARE - POSTJUPITER SPIN STARE - PREJUPITER SPIN **STARE** CATALOG - DOCUMENT INSTRUMENT_PAPER MIMI_VOLUME_DESCRIPTION GEOMETRY INDEX - MIMI SAMPLE VOLUME - BROWSE CHEMS INCA LEMMS CATALOG - DATA CHEMS_ACCUMULATION_RATES CHEMS_PULSE_HEIGHT_ANALYSIS CHEMS_SCIENCE_RATES INCA_ACCUMULATION_RATES INCA_IMAGES INCA_PULSE_HEIGHT_ANALYSIS LEMMS_ACCUMULATION_RATES LEMMS_FINE_ACCUMULATION_RATES LEMMS_PULSE_HEIGHT_ANALYSIS EXTRAS INDEX

Appendix B. Using the Purpose Field in MIMI Data Products

The record header of the MIMI data products starts with a field called Purpose. The Purpose field is used to differentiate records of the same format intended for different purposes. Records with Purpose SCI are intended for use in scientific analysis. There are two other categories of Purposes, calibration and summary. Calibration records are in separate files distributed on the reference volume. Example Purpose fields for calibration include, AREA, EFFICIENCY, etc. Summary records are in the data products along with SCI records. Example values of Purpose fields in summary records include MIN, MAX, MEAN etc. The table below lists Purpose field values that always cover all time in a data product.

Table 47: MIMI Data Product Record Purposes		
Purpose	Description	
valid_min	The maximum value for each valid field in the record for the time period	
	starting at Start_Ephemeris_s Time and ending at End_Ephemeris_s Time	
valid_max	The minimum value for each valid field in the record for the time period	
	starting at Start_Ephemeris_s Time and ending at End_Ephemeris_s Time	
max	The maximum value for each field in the record for the time period	
	starting at Start Ephemeris Time and ending at End_Ephemeris_s Time	
MEAN	The mean value for each field in the record for the time period starting at	
	Start Ephemeris Time and ending at End_Ephemeris_s Time	
MIN	The minimum value for each field in the record for the time period starting	
	at Start Ephemeris Time and ending at End_Ephemeris_s Time	
sci	Actual science data for the time period from Start_Ephemeris_s Time to	
	End_Ephemeris_s Time	
stdev	The standard deviation for each field in the record for the time period	
	starting at Start_Ephemeris_s Time and ending at End_Ephemeris_s Time	

Table 48: MIMI Calibration Data Record Purposes		
Purpose	Description	
ENERGY	Indicates that the record is describing energy passbands	
ENERGY/CHARGE	Indicates that the record is describing energy/charge passbands	
MASS	Indicates that the record is describing mass passbands	
MASS/CHARGE	Indicates that the record is describing mass/charge passbands	
GEOM_FACTOR	Indicates that the record is describing geometrical factors	
EFFICIENCY	Indicates that the record is describing channel/detector efficiencies	
FOV	Indicates that the record is describing the Field of View (FOV)	

Table 48: MIMI Calibration Data Record Purposes		
Purpose	Description	
E/NUC_A	Identifies the A coefficient for the CHEMS calculation.	
E/NUC_B	Identifies the B coefficient for the CHEMS calculation	

Table 49: MIMI Calibration Data Record Data_Types		
Data_Type	Description	
ACC	Accumulation associated calibration record	
РНА	Pulse Height Analysis associated calibration record	
FRT	Fine Accumulation Rates associated calibration record	
IMG	Science Accumulation Rates associated calibration record	

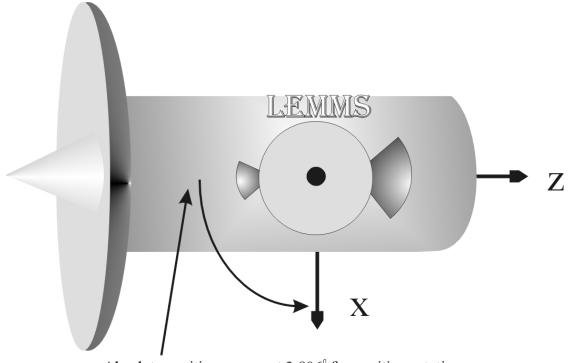

Table 50: MIMI Calibration Data Record Sensors		
Sensor	Description	
LEMMS	MIMI LEMMS associated record	
CHEMS	MIMI CHEMS associated record	
INCA	MIMI INCA associated record	

Table 51: MIMI Calibration Data Record Particles	
Particle	Description
Р	Proton
He	Helium
e	Electron
Xray	X-ray
С	Carbon
0	Oxygen
Fe	Iron
ALL	Any particle
He+	Singly ionized Helium

Table 51: MIMI Calibration Data Record Particles	
Particle	Description
He++	Doubly ionized Helium
O+	Singly ionized Oxygen
O++	Doubly ionized Oxygen
Н	Hydrogen

Appendix C. LEMMS Look Angle Diagram

Figure 1: LEMMS Look Angle Relative to Space Craft Coordinate System

Absolute position sensor at 3.906° for positive rotation and 3.789° for negative rotation

Look Angle^{\circ} = 1.755*lemms_pos - 139.5