DOCUMENT 820-13; REV. A DSN SYSTEM REQUIREMENTS DETAILED INTERFACE DESIGN RSC-11-10A VOYGER-NEPTUNE/PHOBOS ODR AGREEMENT (Insert this module in Document 820-13; Rev. A) EFFECTIVE DATE: July 1988 EFFECTIVE SERVICE: Voyager-Neptune/PHOBOS Initial Release Date: April 1, 1988 Approved by: E. R. Kursinksi (sig) (430) John J. Wiemewski (sig) (368) Jay B. Curtoy II for G. W. ?? (sig) (440) A. PURPOSE This interface module defines and controls the format of the Radio Science Original Data Record (ODR). This record is generated by the Spectrum Processing Assembly (SPA) of the DSCC Spectrum Processing Subsystem (DSP), using the radio science software of the DSP, which is designated DSP-R. NOTE This module is generated by DSP-R software versions beginning with OP-D as of the effective date stated above. Versions OP-A, OP-B, and OP-C generated the ODR format defined in RSC-11-10. B. REVISION AND CONTROL Revisions or changes to the information herein presented may be initiated according to the procedures in Section 1 of this document. 1 820-13; Rev. A RSC-11-10A C. GENERAL INFORMATION The DSP is a computer-controlled subsystem that digitally samples and records on tape a received spacecraft signal, along with the monitor data necessary to reconstruct the signal. Analysis of variations in the amplitude, phase, and frequency of the signal provides information on the ring structure, atmospheric density, magnetic field, and charged-particle environment of planets occulted by the spacecraft. The Radio Science ODR is shipped to the Network Data Control (NDC) for delivery to the appropriate project Radio Science team, or it may be played back via wideband data lines (refer to module RSC-11-4A of this document) to the Ground Communications Facility (GCF), where it can processed in order to produce an Intermediate Data Record (IDR). (Refer to module IDR-12-1A of this document.) D. DATA RECORDS AND CONTENT The DSP-R digitally samples the received spacecraft signal with 8-bit or 12-bit resolution and writes tape records with one of ten lengths, depending on the sample rate and resolution. Table RSC-11-10A-1 lists the record length for each sample rate. (Tables RSC-11-10A-2 and -3 list time consumption data and sample time offsets.) Each tape record is composed of (1) a header containing information on system configuration, time-tagged receiver local oscillator values, etc., and (2) a block of digital data from the four analog-to-digital (A-D) converters. The DSP-R records data on 9-track tapes with either (1) a tape density of 6250 bytes per inch (bpi), using the Group-Coded Recording (GCR) format with a 0.3-inch inter-record gap, or (2) a density of 1600 bpi, using the Phase Encoding (PE) format with an 0.6-inch inter-record gap. American National Standards Institute (ANSI) formats are used. Only one tape density may be used per recording session. 1. Beginning of Tape Header A special 16-word record is written at the beginning of each tape as part of the tape-initialization process. The first 10 words of the record 2 820-13; Rev. A RSC-11-10A Table RSC-11-10A-1. Record Length Tabulation |==============================================================================| | Rate* | | | | | | (Samples/second | | | | | | per A-D | Samples** | Records | Data Words*** | Total Words | | Converter) | per Record | per Second | per Record | per Record | |------------------------------------------------------------------------------| | 8-Bit Resolution | |------------------------------------------------------------------------------| | 50,000**** | 1000 | 50 | 2000 | 2083 | | 31,25O**** | 625 | 50 | 1250 | 1333 | | 25,0O0**** | 1000 | 25 | 2000 | 2083 | | 20,000 | 1000 | 20 | 2000 | 2083 | | 15,625 | 625 | 25 | 1250 | 1333 | | 12,500 | 625 | 20 | 1250 | 1333 | | 10,000 | 1000 | 10 | 2000 | 2083 | | 6,250 | 625 | 10 | 1250 | 1333 | | 5,000 | 1000 | 5 | 2000 | 2083 | | 4,000 | 1000 | 4 | 2000 | 2083 | | 3,125 | 625 | 5 | 1250 | 1333 | | 2,500 | 625 | 4 | 1250 | 1333 | | 2,000 | 1000 | 2 | 2000 | 2083 | | 1,250 | 625 | 2 | 1250 | 1333 | | 1,000 | 500 | 2 | 1000 | 1083 | | 500 | 250 | 2 | 500 | 583 | | 400 | 200 | 2 | 400 | 483 | | 250 | 125 | 2 | 250 | 333 | | 200 | 100 | 2 | 200 | 283 | |------------------------------------------------------------------------------| | 12-Bit Resolution | |------------------------------------------------------------------------------| | 10,000 | 2000 | 20 | 1500 | 1583 | | 5,000 | 2000 | 10 | 1500 | 1583 | | 2,000 | 2000 | 4 | 1500 | 1583 | | 1,000 | 1000 | 4 | 750 | 833 | | 200 | 200 | 4 | 150 | 233 | |------------------------------------------------------------------------------| | NOTES | |------------------------------------------------------------------------------| |* Maximum effective sampling rate of 4 times the individual converter rate | | is obtained when all four A-D converters sample the same input channel | | sequentially, but separated by 1/4 cycle. | | | |** The total number of samples per record is 4 (times) that per individual | | A-D converter. | | | |*** A word contains 16 bits. | | | |**** Only available when recording at 6250-bpi density. | | | ===============================================================================| 3 820-13; Rev. A RSC-11-10A Table RSC-11-10A-2. Time Consumption for 6250-bpi Tape |==============================================================================| | | Samples/ | | | Time Used to | | Samples/Second | Record per A-D | Record/ | | Fill/Tape | | (Rate) | Converter | Second | Record/Tape | (minutes) | |------------------------------------------------------------------------------| | 8-Bit Resolution | |------------------------------------------------------------------------------| | 50,000 | 1000 | 50 | 24,000 | 8 | | 31,250 | 625 | 50 | 30,000 | 10 | | 25,000 | 1000 | 25 | 24,000 | 16 | | 20,000 | 1000 | 20 | 24,000 | 20 | | 15,625 | 625 | 25 | 30,000 | 20 | | 12,500 | 625 | 20 | 30,000 | 25 | | 10,000 | 1000 | 10 | 24,000 | 40 | | 6,250 | 625 | 10 | 30,000 | 50 | | 5,000 | 1000 | 5 | 24,000 | 80 | | 4,000 | 1000 | 4 | 24,000 | 100 | | 3,125 | 625 | 5 | 30,000 | 100 | | 2,500 | 625 | 4 | 30,000 | 125 | | 2,000 | 1000 | 2 | 24,000 | 200 | | 1,250 | 625 | 2 | 30,000 | 250 | | 1,000 | 500 | 2 | 36,000 | 300 | | 500 | 250 | 2 | 36,000 | 300 | | 400 | 200 | 2 | 55,000 | 458.3 | | 250 | 125 | 2 | 55,000 | 458.3 | | 200 | 100 | 2 | 55,000 | 458.3 | |------------------------------------------------------------------------------| | 12-Bit Resolution | |------------------------------------------------------------------------------| | 10,000 | 2000 | 20 | 30,000 | 25 | | 5,000 | 2000 | 10 | 30,000 | 50 | | 2,000 | 2000 | 4 | 30,000 | 125 | | 1,000 | 1000 | 4 | 41,000 | 170.83 | | 200 | 200 | 4 | 58,000 | 241.6 | ===============================================================================| 4 820-13; Rev. A RSC-11-10A Table RSC-11-10A-3 Consumption for 1600-bpi Tape |==============================================================================| | | Samples/ | | | Time Used to | | Samples/Second | Record per AD | Record/ | | Fill/Tape | | (Rate) | Converter | Second | Record/Tape | (minutes) | |------------------------------------------------------------------------------| | 8-Bit Resolution | |------------------------------------------------------------------------------| | 50,000 | N/A | | | | | 31,250 | N/A | | | | | 25,000 | N/A | | | | | 20,000 | 1000 | 20 | 7,000 | 5.83 | | 15,625 | N/A | | | | | 12,500 | 625 | 20 | 7,000 | 5.83 | | 10,000 | 1000 | 10 | 7,000 | 11.6 | | 6,250 | 625 | 10 | 7,000 | 11.6 | | 5,000 | 1000 | 5 | 7,000 | 23.3 | | 4,000 | 1000 | 4 | 7,000 | 29.16 | | 3,125 | 625 | 5 | 7,000 | 23.3 | | 2,500 | 625 | 4 | 7,000 | 29.16 | | 2,000 | 1000 | 2 | 7,000 | 58.3 | | 1,250 | 625 | 2 | 7,000 | 58.3 | | 1,000 | 500 | 2 | 12,000 | 100 | | 500 | 250 | 2 | 12,000 | 100 | | 400 | 200 | 2 | 20,000 | 166.6 | | 250 | 125 | 2 | 20,000 | 166.6 | | 200 | 100 | 2 | 20,000 | 166.6 | |------------------------------------------------------------------------------| | 12-Bit Resolution | |------------------------------------------------------------------------------| | 10,000 | 2000 | 20 | 9,000 | 7.5 | | 5,000 | 2000 | 10 | 9,000 | 15 | | 2,000 | 2000 | 4 | 9,000 | 37.5 | | 1,000 | 1000 | 4 | 14,000 | 58.3 | | 200 | 200 | 4 | 25,000 | 104.16 | |==============================================================================| 5 820-13; Rev. A RSC-11-10A are ASCII characters, identifying the program and version currently in use; e.g., DMO-52O5-OP-A v 2.5. The remaining six words are nulls. 2. Time Tag Offset The sampled data is later than the reported time tag by two intervals of the sample rate of a single A-D converter. This means that in each record the ADC data which corresponds with the time tag is the third set of ADC samples in the record, not the first set. (See Words 7 and 8 in paragraph E below.) 3. Printed Tape Label Format The following description refers to the information in Figure RSC-11-10A-1. DRIVE = x DSP tape drive number (1-6) on which the tape was generated YEAR = xxxx Year in which tape was generated, such as "1988" SCN xxx Spacecraft number PASS xxxx Pass number P xx S xx Primary and secondary antenna numbers as received from CMC in setting up the link in which the DSP resides. If only one antenna is used, the secondary antenna number will be 0. 6 820-13; Rev. A RSC-11-10A START TIME xxx:xx:xx:xx.xxx Time tag of first record on the tape in DOY:HH:MM:SS.SSS format. An example is 325:12:02:00.000, which would indicate the first data on the tape corresponds to a time of DOY 325 at 12:02:00. END TIME xxx:xx:xx:xx.xxx Time tag of last record on the tape ERRORS = xxxxx Number of write errors detected while recording on this tape TAPE# = xxx The number of this tape in this recording session. The first tape of a recording session is numbered 1. VERSION xxxxxxxxxxxxxxxxxxxxxxx The ID of the SDR-P software version which generated the tape, such as "DMO-5205-OP-A v 2.5". E. DETAIL RECORD DESCRIPTION 1. Header* - (See Figure RSC-11-10A-2) WORD 1 BIT 1 Origin of Narrow Band Occultation Converter (NBOC) time tag (Words 7 and 8) and configuration information (Words 81 thru 83). = 0 if time tag (Words 7 and 8) was generated by DSP-R software counting from last Frequency and Timing Subsystem (FTS) 1-second pulse and configuration information (Words 81 thru 83) was copied forward by software and not read directly from NBOC buffer. = 1 if time tag is from FTS and Words 81 thru 83 came directly from NBOC buffer. 7 820-13; Rev. A RSC-11-10A ------------------------------------------- | DSPR DRIVE = x YEAR = xxxx | | SCN xxx PASS xxxx SPC xx Pxx Sxx | | | | | | START TIME xxx:xx:xx:xx.xxx | | END TIME xxx:xx:xx:xx.xxx | | | | ERRORS = xxxxx TAPE# = xxx | | VERSION xxxxxxxxxxxxxxxxxxxx | ------------------------------------------- Figure RSC-11-10A-1. Table Lable Format 8 820-13; Rev. A RSC-11-10A BIT |----------------------------------------------------------------------| WORD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |----------------------------------------------------------------------| 1 | O | S | E | C |COMPRES FACTOR | TAPE NUMBER | 2 | RECORD NUMBER | 3 | LENGTH OF RECORD | 4 | PRIME FEA# | SECONDARY FEA# | 5 | SPACECRAFT NUMBER | SPC CODE | 6 | YEAR | DAY OF YEAR | 7 | UNUSED | MILLISECONDS PAST 0^h UTC | 8 | MILLISECOND OF DAY | 9 | ^ | ~ | PREDICT SET IDENTIFICATION ~ 13 | v | 14 | POCA STATUS |POCA FREQ (READBACK) | 15 | POCA FREQUENCY (READBACK) | 16 | POCA FREQUENCY (READBACK) | 17 | POCA FREQUENCY (READBACK) | 18 | UNUSED | TIME TAG OF POCA FREQ (READBACK) | 19 | TIME TAG OF POCA FREQUENCY (READBACK) | 20 | UNUSED |POCA FREQ (CALCULATED) | 21 | POCA FREQUENCY (CALCULATED) | 22 | POCA FREQUENCY (CALCULATED) | 23 | POCA FREQUENCY (CALCULATED) | 24 | UNUSED | TIME TAG OF POCA FREQUENCY (UPDATE CYCLE) | 25 | TIME TAG OF POCA FREQUENCY (UPDATE CYCLE) | 26 | RFCNF | RFIF | UNUSED | POCA FREQUENCY RATE | 27 | POCA FREQUENCY RATE | MULTIPLIER | S | 28 | FREQUENCY COUNTER NUMBER 1 CUMULATIVE PHASE | 29 | FREQUENCY COUNTER NUMBER 1 CUMULATIVE PHASE | 30 | FREQUENCY COUNTER NUMBER 1 CUMULATIVE PHASE | 31 | FREQUENCY COUNTER NUMBER 2 CUMULATIVE PHASE | 32 | FREQUENCY COUNTER NUMBER 2 CUMULATIVE PHASE | 33 | FREQUENCY COUNTER NUMBER 2 CUMULATIVE PHASE | 34 | TEST SIGNAL | SAMPLE CONTROL | COUNTER # 1 MODE | COUNTER #2 MODE | 35 | UNUSED | TIME TAG OF FMS MEASUREMENT | 36 | TIME TAG OF FMS MEASUREMENT | 37 | PREDICT TIME OFFSET (DAYS) | UNUSED |SGN |MSB | 38 | TIME OFFSET (SECONDS) |LSB | 39 | | PREDICT FREQUENCY OFFSET | 40 | PREDICT FREQUENCY OFFSET | 41 | PREDICT FREQUENCY OFFSET | |----------------------------------------------------------------------| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |----------------------------------------------------------------------| Figure RSC-11-10A. Tape Header Information (Sheet 1 of 2) 9 820-13: Rev. A RSC-11-10A BIT |----------------------------------------------------------------------| WORD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |----------------------------------------------------------------------| 42 | FILTER OFFSET | 43 | FILTER OFFSET | 44 | RIC CH 1 F OPR| RIC CH 2 F OPR| RIC CH 3 F OPR | RIC CH 4 OPR | 45 | RIC CH 1 FLTR | RIC CH 2 FLTR | RIC CH 3 FLTR | RIC CH 4 FLTR | 46 | CH 1 ATTENUATOR | CH 2 ATTENUATOR | 47 | CH 3 ATTENUATOR | CH 4 ATTENUATOR | 48 | FUTURE ATTENUATOR | FUTURE ATTENUATOR | 49 | FUTURE ATTENUATOR | FUTURE ATTENUATOR | 50 | USUSED | TIME TAG OF RIV ATTENUATOR READING | 51 | TIME TAG OF RIV ATTENUATOR READING ~ 52 | RIV CHANNEL 1 RMS VOLTAGE | 53 | RIV CHANNEL 2 RMS VOLTAGE | 54 | RIV CHANNEL 3 RMS VOLTAGE | 55 | RIV CHANNEL 4 RMS VOLTAGE | 56 | FUTURE RMS VOLTAGE | 57 | FUTURE RMS VOLTAGE | 58 | FUTURE RMS VOLTAGE | 59 | FUTURE RMS VOLTAGE | 60 | UNUSED | TIME TAG OF RIC RMS VOLTAGE READING | 61 | TIME TAG OF RIC RMS VOLTAGE READING | 62 | A-D "1" RMS MEASUREMENT (SOFTWARE CALCULATED) | 63 | A-D "2" RMS MEASUREMENT | 64 | A-D "3" RMS MEASUREMENT | 65 | A-D "4" RMS MEASUREMENT | 66 | A-D "1" MAX. VALUE | A-D "1" MIN. VALUE | 67 | A-D "1" NUMBER OF OCCURRENCES OF MAX. | 68 | A-D "1" NUMBER OF OCCURRENCES OF MIN. | 69 | A-D "2" MAX. VALUE | A-D "2" MIN. VALUE | 70 | A-D "2" NUMBER OF OCCURRENCES OF MAX. | 71 | A-D "2" NUMBER OF OCCURRENCES OF MIN. | 72 | A-D "3" MAX. VALUE | A-D "3" MIN. VALUE | 73 | A-D "3" NUMBER OF OCCURRENCES OF MAX. | 74 | A-D "3" NUMBER OF OCCURRENCES OF MIN. | 75 | A-D "4" MAX. VALUE | A-D "4" MIN. VALUE | 76 | A-D "4" NUMBER OF OCCURRENCES OF MAX. | 77 | A-D "4" NUMBER OF OCCURRENCES OF MIN. | 78 | |TIME TAG OF RMS MEASUREMENT | 79 | TIME TAG OF RMS MEASUREMENT | 80 | A-D CONVERTER SAMPLE RATE | 81 | A | 5 | 5 | A | 82 | '24' COUNTER | 'N' REGISTER | 83 | CONVERSION MODE REGISTER | SIGNAL SELECT REGISTER | |----------------------------------------------------------------------| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |----------------------------------------------------------------------| 10 820-13; Rev. A RSC-11-10A WORD 1 (continued) NOTES If bit 1 is set to "1" the following additional validity checks may be made: (a) Word 81 should be "A55A" (b) Word 83, bits 1 thru 8 should indicate correct configuration from the Conversion Mode Register. After bit 1 is set to "1" it will read "0" for the next L-1 Records, where L is the number of "Records Per Second" (shown in the third column) in Table RSC-11-10A-1. BIT 2 Start of recording session flag: 0 if other than first record on recording session 1 if this is the first record of recording session NOTES Each time the program mode is changed from IDLE to RUN, this bit is set to 1 in the first record. 3 Error flag (can only occur during tape copy process): 0 if Master Tape contains no error 1 if error occurred while reading record on Master Tape 4 A-D Conversion: 1 indicates 8-bit resolution 0 indicates 12-bit resolution 5 thru 8 0001 = Narrow Band, no compression (for compatibility with Mk III ODR) 9 thru 16 Tape Number (binary) in this recording session; first tape is No. 1. 11 820-13; Rev. A RSC-11-10A NOTE A new recording session is indicated each time the program mode is changed from IDLE to RUN. Therefore, cycling between these two modes will cause each tape to be labeled No. 1. The record- ing time listed on the tape label must be used to properly verify the tape sequence. WORD 2 BIT 1 thur 6 Record Number (unsigned binary, reset to 1 at beginning of each tape) WORD 3 BIT 1 thru 16 Record Length (binary unsigned integer), number of total words per record: See Table RSC-11-10A-1, column titled "Total Words per Record." WORD 4 BIT 1 thru 8 Prime Front End Area (FEA) Number (e.g., 14, 43) (binary) 9 thru 16 Secondary FEA Number WORD 5 BIT 1 thru 8 Spacecraft Number (binary) from predicts (see module OPS-6-8 of this document) 9 thru 16 Signal Processing Center (SPC) Designator (i.e., 10, 40, 60, or 21), (binary) (see module OPS-6-8) 12 820-13; Rev. A RSC-11-10A WORD 6 BIT 1 thru 7 Last two digits of year from Monitor and Control Subsystem (DMC) monitor data (binary) 8 thru 16 Day of Year (binary representation if decimal 1 through 366, from FTS system) WORD 7 BIT 1 thru 5 Unused 6 thru 16 Time of first sample in record, in milliseconds past 0 h Universal Time Coordinated (UTC) (Binary represen- tation in milliseconds of decimal 0 thru 86,399,999.) See Word 1, bit 1, for origin of time tag. (See Paragraph D.2 for time tag offset information.) WORD 8 BIT 1 thru 16 Time tag (continued) WORD 9 THRU 13 BIT 1 thru 16 Predict Set ID; Identification of predicts set used to tune the receiver frequency (ten 8-bit ASCII characters) WORD 14 POCA Status Status When Status When BIT Function Bit = 1 Bit = 0 ---------- ----------- ----------- 1 Control Manual Computer* 2 Control Ready* Not Ready 3 Synthesizer Power On* Off 4 Synthesizer In-Lock In-Lock* Out-of-Lock 5 Limit Enable On Off* ------------------- *Denotes Normal Radio Science Use 13 820-13; Rev A RSC-11-10A WORD 14 POCA Status Status When Status When BIT Function Bit = 1 Bit = 0 ---------- ----------- ----------- 6 Track On* Off 7 Acquisition On Off* 8 Sweep On* Off 9 thru 16 Frequency value back from the Programmed Oscillator - Control Assembly (POCA) frequency registers - binary coded decimal (BCD) representation in microhertz. WORD 15 THRU 17 BIT 1 thru 16 Value from POCA Frequency registers (continued) NOTE Examples of POCA frequency values: Word 14, bits 9 thru 16 (hex) = 41 Word 15 (hex) = 5624 Word 16 = 2167 Word 17 = 3152 Indicates a POCA frequency of 41,562,421.673152 WORD 18 BIT 1 thru 5 Unused 6 thru 16 Actual FTS time read from the POCA register in milliseconds past 0 h UTC. This is the time value that should be used for reconstructing POCA frequency values. ------------------ *Denotes Normal Radio Science Use 14 820-13; Rev. A RSC-11-10A WORD 19 BIT 1 thru 6 Time tag (continued) WORD 20 BIT 1 thru 8 Unused 9 thru 16 POCA frequent (calculated) - BCD representation in microhertz. Value of the predicted frequency (plus filter offset and operator-entered offset) interpolated by the DSP-R for the time recorded in Words 18 and 19. The predicted frequency is supplied by the NSS Radio Science prediction software. WORD 21 THRU 23 BIT 1 thru 16 POCA frequency (calculated) (continued) WORD 24 BIT 1 thru 5 Unused 6 thru 16 Time tag of POCA frequency update cycle in milliseconds past 0 h UTC. This time value is for diagnostic purposes only, and should not be used for data reconstruction. WORD 25 BIT 1 thru 16 Time tag for POCA frequency (update cycle) (continued) 15 820-13; Rev. A RSC-11-10A WORD 26 BIT 1 thru 2 Antenna RF configuration code which reflects configuration of IF-video switch selection. (Operator input selection) Modes used are: 01 = PRIME mode (70 m) 10 = CROSS mode (34 m HEF) 11 = FAROT mode (Faraday rotation) 3 thru 4 Antenna RF configuration as reported by the IF switch assembly. Same value codes in bits 1-2. 5 thru 8 Unused 9 thru 16 POCA frequency rate from POCA rate registers - in Hertz per second (5 BCD digits following the decimal point; i.e., 0.12345) WORD 27 BIT 1 thru 12 POCA Frequency Rate (continued) 12 thru 15 Power of 10 multiplier for POCA frequency rate (binary) 16 Sign for POCA Frequency Rate: if 0, rate is negative if 1, rate is positive NOTE The following are examples of POCA rates: Word 26 Decimal Rate (hex, bits 9-16) Word 27 (hex) Conversion --------------- ------------ ------------ 12 3452 -1.2345 Hz/sec 12 3457 123.45 Hz/sec 12 3451 .12345 Hz/sec 16 820-13; Rev. A RSC-11-10A WORD 28 THRU 30 BIT 1 thur 16 One-second accumulated phase from frequency counter No. 1. Scaled to 2^-20 cycles. Last 20 bits are fractional part of one cycle. This is a "running count," not the difference count from the previous second. WORD 31 THRU 33 BIT 1 thur 16 One-second accumulated phase from counter No. 2. Scaled to 2^-20 cycles. Last 20 bits are fractional part of one cycle. WORD 34 BIT 1 thru 4 FMS Test Facility Input Signal Selection: 0001 = Live input of Counter 1 (POCA "J1")* 0010 = Live input of Counter 2 ("J2", not used) 5 thru 8 FMS Sample Control Register Bit 5 =1 Enable live sample to counter* =0 Disable live sample Bit 6 =1 Enable test sample to counter* =0 Disable test sample Bit 7 =1 Enable internal 10 MHz to resolvers* =0 Enable reference 10 MHz to resolvers Bit 8 =1 Enable internal 10 MHz to test facilities* =0 Enable reference 10 MHz to test facilities 9 thru 12 Frequency Counter Number 1 Mode Register 0000 = Test facility output frequency to counter 0001 = Live frequency to counter (POCA)* 13 thru 16 Frequency Counter Number 2 Mode Register 0000 = Test facility output frequency to counter* 0001 = Live frequency to counter (not presently connected) ------------------ * = Denotes Normal Radio Science Use 17 820-13; Rev. A RSC-11-10A WORD 35 BIT 1 thru 5 Unused 6 thru 16 Time tag Frequency Monitoring Subassembly (FMS) counter readings (Words 28-33) in millisecond past 0 h UTC. This is the FTS time at which the program stored the FMS phases described in Words 28 thru 33. (This time tag is for diagnostic purposes only.) WORD 36 BIT 1 thru 16 Time tag of FMS counter (continued) WORD 37 AND 38 BIT 1 thru 9 Predict Time Offset (Days) (binary, positive value) 10 thru 14 Unused 15 Sign of Predict Time Offset: this sign is applied to the days and seconds portion 1 = Negative O = Positive 16 Predict Time Offset in seconds (17-bit integer); MSB is Word 37, bit 16; LSB is Word 38, bit 16. This time offset i6 input by the operator in real time as a last-minute correction to the time domain of the predict set. This value is added to the pre- dict set times, and the results are tracked relative to real (current FTS). Therefore, positive time offsets will cause the original predict times to occur later, and negative values cause the times to occur earlier. WORD 38 BIT 1 thru 16 Predict Time Offset in seconds (continued) 18 820-13; Rev. A RSC-11-10A WORD 39 THRU 41 BIT 1 thru 16 The S-band Frequency Offset to the predict set; for- matted as a 48-bit binary number with LSB (Word 41, bit 16) equal to 2^-20 Hz. Value may be positive or negative (2's complement format). Maximum value is 2 MHz. This value is entered by the operator in real time as a last-minute correction to the frequency domain of the predict set. WORD 42 AND 43 BIT 1 thru 16 Offset value used by software to tune carrier signal to center of filter. This offset compensates for the unique characteristics and placement of the filter in the RF spectrum. Value is 32-bit signed binary, scaled in hertz, applied to the predict set frequencies to obtain the final frequency result for the POCA. NOTE: {S-Band - (Filter Offset)} POCA = ------------------------- - 721.818181... 3 All values are in MHz, and filter offset is the value found in Words 42 and 43. The offsets found in Words 37 through 41 are applied to the S-band values before this formula is used. WORD 44 BIT 1 thru 4 IF-VF Downconverter Controller (RIC) Operator filter selection for Channel 1. Value is binary representation with a range from 1 to 6. 5 thru 8 RIC Operator filter selection for Channel 2. 9 thru 12 RIC Operator filter selection for Channel 3. 13 thru 16 RIC Operator filter selection for Channel 4. 19 820-13; Rev. A RSC-11-10A WORD 45 Bit 1 thru 4 IF-VF RIC reported filter selection for Channel 1. Value is binary representation with range a from 1 to 6. 5 thru 8 RIC reported filter selection for Channel 2. 9 thru 12 RIC reported filter selection for Channel 3. 13 thru 16 RIC reported filter selection for Channel 4. WORD 46 Bit 1 thru 8 RIV Attenuator setting for Channel 1. Value is positive, binary representation. Range of values from 0 to 119 db. 9 thru 16 RIV Attenuator setting for Channel 2. WORD 47 Bit 1 thru 8 RIV Attenuator "A" setting for Channel 3. 9 thru 16 RIV Attenuator "A" setting for Channel 4. WORD 48 Bit 1 thru 8 RIV Attenuator "B" setting for future use. Value is positive, binary representation. Range of values from 0 to 119 db. 9 thru 16 RIV Attenuator "B" setting for future use. WORD 49 Bit 1 thru 16 RIV Attenuator "B" setting for future use. WORD 50 Bit 1 thru 5 Unused 6 thru 16 Time tag of RIV Attenuator readings (Words 46-47) in millisecond past 0 h UTC. 20 820-13; Rev. A RSC-11-10A WORD 51 BIT 1 thru 16 Time tag of RIV Attenuator readings (continued) WORD 52 BIT 1 thru 16 Receiver Channel 1 RMS voltage as reported by RIC. Positive binary representation of voltage scaled in millivolts. WORD 53 BIT 1 thru 16 Receiver Channel 2 RMS voltage as reported by RIC. WORD 54 BIT 1 thru 16 Receiver Channel 3 RMS voltage as reported by RIC. WORD 55 BIT 1 thru 16 Receiver Channel 4 RMS voltage as reported by RIC. WORD 56 THRU 59 BIT 1 thru 16 Unused; for future RMS voltage readings. WORD 60 BIT 1 thru 5 Unused 6 thru 16 Time tag of RIC RMS voltage readings (Words 52 thru 55) in milliseconds past 0 h UTC. This is the FTS time that the DSP received the monitor data from the RIC reporting the voltmeter readings on the receiver channels. 21 820-13; Rev. A RSC-11-10A WORD 61 BIT 1 thru 16 Time tag of RIC RMS voltage readings (continued) WORD 62 BIT 1 thru 16 Software-calculated RMS voltage for A-D channel "1". Signed 2's-complement representation, scaled in millivolts. WORD 63 BIT 1 thru 16 Software-calculated RMS voltage for A-D channel "2". WORD 64 BIT 1 thru 16 Software-calculated RMS voltage for A-D channel "3". WORD 65 BIT 1 thru 16 Software-calculated RMS voltage for A-D channel "4". WORD 66 BIT 1 thru 8 Maximum A-D value found in A-D "1" data during RMS sample. Value is same format as A-D data found starting in Word 84 and following. (In 12-bit recordings, this is the MSB 8 bits of the 12-bit sample.) 9 thru 16 Minimum A-D value found in A-D "1" data during RMS sample. WORD 67 BIT 1 thru 16 Number of occurrences of maximum value found in A-D "1". Twos complement binary format, range 0-1000 . 22 820-13; Rev. A RSC-11-10A WORD 68 BIT 1 thru 16 Number of occurrences of minimum value found in A-D "1". Twos complement binary format, range 0-1000. WORD 69 BIT 1 thru 8 Maximum A-D value found in A-D "2" data during RMS sample. 9 thru 16 Minimum A-D value found in A-D "2" data during RMS sample. WORD 70 BIT 1 thru 16 Number of occurrences of maximum value found in A-D "2". WORD 71 BIT 1 thru 16 Number of occurrences of minimum value found in A-D "2". WORD 72 BIT 1 thru 8 Maximum A-D value found in A-D "3" data during RMS sample. 9 thru 16 Minimum A-D value found in A-D "3" data during RMS sample. WORD 73 BIT 1 thru 16 Number of occurrences of maximum value found in A-D "3". 23 820-13; Rev. A RSC-11-10A WORD 74 BIT 1 thru 16 Number of occurrences of minimum value found in A-D "3". WORD 75 BIT 1 thru 8 Maximum A-D value found in A-D "4" data during RMS sample. 9 thru 16 Minimum A-D value found in A-D "4" data during RMS sample. WORD 76 BIT 1 thru 16 Number of occurrences of maximum value found in A-D "4". WORD 77 BIT 1 thru 16 Number of occurrences of maximum (sic minimum) value found in A-D "4". WORD 78 BIT 1 thru 5 Unused 6 thru 16 Time tag of NBOC buffer sample used to calculate RMS voltages and obtain maximum and minimum values in Words 66 thru 77 in milliseconds past 0 h UTC. This time tag corresponds to the time tag found in Words 7 and 8 of an earlier tape record. The A-D data from this earlier record was saved to run the calculations found in Words 63 through 66 of this (current) record. 24 820-13; Rev. A RSC-11-10A WORD 79 BIT 1 thru 16 Time tag of RIC RMS Voltage readings (continued) WORD 80 BIT 1 thru 16 Single A-D Converter Sample Rate (16-bit unsigned binary integer). WORD 81 First two bytes of the six bytes of sync data received from the NBOC at the beginning of each second. BIT 1 thru 4 Hex 'A' (binary '1010') 5 thru 8 Hex '5' (binary '0101') 9 thru 12 Hex '5' (binary '0101') 13 thru 16 Hex 'A' (binary '1010') WORD 82 BIT 1 thru 16 Reserved for diagnostic use. WORD 83 BIT 1 thru 8 Conversion Mode Register (Bytes 4 and 5 of NBOC Sync Data) Where: Bit 1: = 1 if an NBOC converter overflow occurred = 0 if nominal Bit 2: Not used Bit 3: = 1 NBOC PLL in lock = 0 NBOC PLL out of lock 25 820-13; Rev. A RSC-11-10A WORD 83 (continued) BIT 1 thru 8 (continued) Bit 4: = 1 for 50-, 20-, 10-, 5-, and 2-kilosamples/second rates = 0 for 1000- and 200 samples/second rates Bit 5: = 1 for test mode = 0 for normal operational mode Bit 6: = 1 for 8-bit resolution = 0 for 12-bit resolution Bits 7 thru 8: = Mode: 00 = 4 input signals, each sampled by a separate converter 01 = 1 input signal sampled sequentially by 4 A-D converters 10 = 2 input signals, each sampled sequentially by 2 A-D converters 11 = 1 signal sampled sequentially by 3 A-D converters 9 thru 16 Signal Select Register Where: Bits: _ 9 and 10: A-D 1 | 00 = Input Signal | Channel 1 (J1) 11 and 12: A-D 2 | 01 = Input Signal Where < Channel 2 (J2) 13 and 14: A-D 3 | 10 = Input Signal | Channel 3 (J3) 15 and 16: A-D 4 | 11 = Input Signal |_ Channel 4 (J4) (Example: If bits 9 thru 16 = 10101010, then all 4 A-D converters will sample input Signal Channel 3.) 26 820-13; Rev. A RSC-11-10A 2. Data Portion of Tape Record a. 8-bit Quantization Type (See Figure RSC-11-10A-2a). WORD 84 BIT 1 thru 8 A-D 1 data sample 9 thru 16 A-D 2 data sample WORDS 85 BIT 1 thru 8 A-D 3 data sample 9 thru 16 A-D 4 data sample WORD 86 THRU N BIT 1 thru 16 Data Samples of A-D 1, A-D 2, A-D 3, and A-D 4 in the same sequence as that in Words 84 and 85 b. 12-bit Quantization Type (See Figure RSC-11-10A-2b). WORD 84 BIT 1 thru 4 A-D 1 data sample LSB 5 thru 8 A-D 2 data sample LSB 9 thru 12 A-D 3 data sample LSB 13 thru 16 A-D 4 data sample LSB WORD 85 BIT 1 thru 8 A-D 1 data sample MSB 9 thru 16 A-D 4 data sample MSB 27 820-13; Rev. A RSC-11-10A WORD 86 BIT 1 thru 8 A-D data sample MSB 9 thru 16 A-D data sample MSB WORDS 87 THRU N BIT 1 thru 16 Data samples of A-D 1, A-D 2, A-D 3, and A-D 4 in the same sequence as that in Words 84 thru 86. 28 820-13; Rev. A RSC-11-10A BIT |----------------------------------------------------------------------| WORD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |----------------------------------------------------------------------| ~ ~ 84 | A-D 1 | A-D 2 | 85 | A-D 3 | A-D 4 | | | ~ ~ | | N*-1 | A-D 1 | A-D 2 | N* | A-D 3 | A-D 4 | |----------------------------------------------------------------------| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |----------------------------------------------------------------------| *TO FIND THE VALUE OF "N", REFER TO TABLE RSC-11-10A-1 FOR EACH SAMPLE RATE. Figure RSC-11-10A-3a. 8-bit Quantization Format 29 820-13; Rev. A RSC-11-10A BIT |----------------------------------------------------------------------| WORD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |----------------------------------------------------------------------| ~ ~ 84 | A-D 1 LSB | A-D 2 LSB | A-D 3 LSB | A-D 4 LSB | 85 | A-D 1 MSB | A-D 2 MSB | | A-D 3 MSB | A-D 4 MSB | ~ ~ N-2 | A-D 1 LSB | A-D 2 LSB | A-D 3 LSB | A-D LSB | N-1 | A-D 1 MSB | A-D 2 MSB | N | A-D 3 MSB | A-D 4 MSB | |----------------------------------------------------------------------| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |----------------------------------------------------------------------| Figure RSC-11-10A-3b. 12-bit Quantization Format 30 820-13; Rev. A RSC-11-10A GLOSSARY A-D Analog To Digital A/D Analog To Digital ANSI American National Standards Institute ASCII American Standard Code for Information Interchange BCD Binary Coded Decimal bpi Bits Per Inch DMC DSCC Monitor and Control Subsystem DSN Deep Space Network DSCC Deep Space Communications Complex DSP-R DSCC Radio Science Software of the DSP FAROT Faraday Rotation FEA Front End Area FMS Frequency Monitor Subassembly FTS Frequency and Timing Subsystem GCF Ground Communication Facility GCR Group Coded Recording IDR Intermediate Data Record LSB Least Significant Bit MSB Most Significant Bit NBOC Narrow Band Occultation Converter NDC Network Data Control ODR Original Data Record PE Phase Encoding POCA Programmed Oscillator Control Assembly RIC Receiver-Exciter Subsystem IF-Video Downconverter Controller RIV Receiver-Exciter Subsystem IF-Video Downconverter RMS Root Mean Square SPA Spectrum Processor Assembly SPC Signal Processing Center UTC Universal Time Coordinated 31