

Time Routines in CSPICE

Revisions

22 July 1997

This edition of TIME Required Reading documents the routine ET2LST. This routine allows
user's to easily convert Ephemeris Time (Barycentric Dynamical Time) to the local solar time at
a user specified longitude on the surface of an object.

In addition to the new routine ET2LST, we document a slight extension of the set of time strings
that are recognized by the SPICE time software. This extension is documented in Appendix B.

15 October 1996

This edition of TIME Required Reading is a substantial revision to the previous edition; this
reflects a major enhancement of the SPICE time software. This version describes the new time
related software that was included in version N0046 of SPICE . We also draw distinctions
between the various levels of time conversion software that are available to Toolkit users.

The following routines are new as of version N0046 of SPICELIB.

 STR2ET TSETYR TTRANS JUL2GR

 TIMOUT TIMDEF TPARTV GR2JUL
 TPICTR TCHCKD TCHECK TEXPYR

30 June 1994

This version differs substantially from the previous version of 13 April 1992. Much of the
description of the time software has been redone and sections added to describe how to modify
time string parsing behavior and the conversion between uniform time systems.

13 April 1992

This version differs from the previous version of 10 April 1991 in that it discusses the new
routine, UNITIM, for converting between additive numeric time systems.

References

The formulation and the values used in this document are taken from the following sources

1. Moyer, T.D., Transformation from Proper Time on Earth to Coordinate Time in Solar
System Barycentric Space-Time Frame of Reference, Parts 1 and 2, Celestial Mechanics
23 (1981), 33-56 and 57-68.

2. Moyer, T.D., Effects of Conversion to the J2000 Astronomical Reference System on
Algorithms for Computing Time Differences and Clock Rates, JPL IOM 314.5--942, 1
October 1985.

3. The Explanatory Supplement to the Astronomical Almanac (1992) Edited by P.
Kenneth Seidelmann, University Science Books, Mill Valley, California 94941

4. SCLK Required Reading.

The variable names used are consistent with notations used in the Astronomical Almanac.

For a general and very accessible discussion of time we recommend:

5. James Jespersen and Jane Fitz-Randolph ``From Sundials to Atomic Clocks---
Understanding Time and Frequency'' (Dover Publications, Inc. 1977) ISBN 0-486-24265-
X

Introduction

This document describes the software available in the SPICE Toolkit for manipulating various
representations of time. It is your main source for general information about calendar based and
continuous time systems in SPICE . For specifics of a particular routine you should consult the
header of that routine.

In addition to the discussion of time software, there are two appendices to this document. The
first provides basic background material on various time systems. The second discusses the
details of how time strings are parsed in the SPICE system.

The Toolkit also supports conversion between spacecraft clock (SCLK) and Barycentric
Dynamical Time (TDB). However, spacecraft clock conversion is mentioned only in the context
of background information in Appendix A. SPICE routines dealing with spacecraft clock are
discussed in SCLK Required Reading.

Intended Audience

This document is intended for all SPICE users.

Overview

SPICE contains a versatile set of time conversion routines designed to simplify conversions

between several time systems. The basic time systems supported are: Coordinated Universal
Time (UTC), Barycentric Dynamical Time (TDB) and Terrestrial Dynamical Time (TDT). In
addition, most common time formats are supported including: calendar, day of year, and Julian
Date.

A brief description of the various time systems is given in Appendix A.

If You're in a Hurry

We'll discuss things in more detail in a moment, but in case you are just looking for the right
name of the routine to perform some time transformation task, here is a classification of the time
routines in SPICE. We touch on only the most important routines in the remainder of this
overview.

Loading a Leapseconds Kernel

 LDPOOL (FILE)
Converting strings to ET

 STR2ET (STRING, ET)

 UTC2ET (UTCSTR, ET)

 TPARSE (STRING, SP2000, ERROR)
Converting ET to a string

 TIMOUT (ET, PICTUR, STRING)

 ET2UTC (ET, FORMAT, PREC, UTCSTR)

 ETCAL (ET, STRING)
Converting between numeric representations of time

 UNITIM (DPTIME, INSYS, OUTSYS)
Runtime modification of behavior

 TIMDEF (ACTION, ITEM, VALUE)

 TSETYR (YEAR)

 TPARCH (YESNO)
Formatting aid

 TPICTR (SAMPLE, PICTUR, OK, ERROR)
Converting ET to local solar time on the surface of an object.

 ET2LST (ET, BODY, LONG, TYPE, HR, MN, SC, TIME, AMPM)
Foundation routines

 TTRANS (INTYP, OUTTYP, TIMVEC)

 TPARTV (STRING, TVEC, NTVEC, TYPE,
 . MODIFY, MODS, YABBRV, SUCCES,
 . PICTUR, ERROR)
Utilities

 DELTET (EPOCH, EPTYPE, DELTA)

 TEXPYR (YEAR)

 TCHCKD (YESNO)

 JUL2GR (YEAR, MONTH, DAY, DOY)

 GR2JUL (YEAR, MONTH, DAY, DOY)

 TCHECK (TVEC, TYPE, MODS, MODIFY, OK, ERROR)
Time constants

 B1900 ()
 B1950 ()
 J1900 ()
 J1950 ()
 J2000 ()
 J2100 ()
 JYEAR ()
 SPD ()
 TYEAR ()

The J2000 Epoch

The basic spatial reference system for SPICE is the J2000 system. This is an inertial reference
frame in which the equations of motion for the solar system may be integrated. This reference
frame is specified by the orientation of the earth's mean equator and equinox at a particular epoch
--- the J2000 epoch. This epoch is Greenwich noon on January 1, 2000 Barycentric Dynamical
Time. Throughout the SPICE documentation, you will see the expressions: ``seconds past 2000'';
``seconds past J2000''; or ``seconds past the J2000 epoch.'' In all cases, the reference epoch is
noon January 1, 2000 on a particular time scale.

(As we've just seen ``J2000'' is used to name the fundamental inertial frame and a particular
epoch. This can sometimes be confusing if you are not careful to distinguish the context in which
the term ``J2000'' is used.)

Leapseconds

In almost all cases, before converting between different representations of time you must ``load''
a leapseconds kernel (LSK) into memory. The leapseconds kernel is a text kernel and is loaded
via the routine LDPOOL.

 LDPOOL ('<file name of leapseconds kernel>')
The leapseconds kernel is discussed in more detail later in this document.

Converting Time Strings to Numeric Representations

If you are starting with a representation of time in the form of a string such as ``Mon Sep 30
09:59:10 PDT 1996'' you will normally need to get this into a numeric representation before you
can work with it. The basic routine for converting strings to a numeric representation is STR2ET
(``String to ET'').

 STR2ET (STRING, ET)
STR2ET computes the ephemeris epoch corresponding to an input string. The ephemeris epoch
is represented as seconds past the epoch of the J2000 reference frame in the time system known
as Barycentric Dynamical Time (TDB). This time system is also referred to as Ephemeris Time
(ET) throughout the SPICE Toolkit.

The variety of ways people have developed for representing times is enormous. It is unlikely that
any single subroutine can accommodate all of the custom time formats that have arisen in
various computing contexts. However, we believe that STR2ET correctly interprets most time
formats used throughout the planetary science community. For example STR2ET supports ISO
time formats, UNIX `date` output formats. VMS time formats, MS-DOS formats, epochs in both
the A.D. and B.C. eras, time zones, etc.

If you've been using the Toolkit for a while you are probably familiar with the routine UTC2ET.

 UTC2ET (UTCSTR, ET)
UTC2ET provides a subset of the capabilities contained in STR2ET. It does not recognize time
zones or time systems other than the UTC system. However, it has been the work horse for time
conversion within the Toolkit for many years. In version N0046 of the Toolkit it was upgraded to
support ISO time formats.

If you are writing new code, we recommend that you use the routine STR2ET. There is no need
to upgrade any of your existing code that calls UTC2ET. However, you may want to replace
calls to UTC2ET with calls to STR2ET due to the greater flexibility of STR2ET.

Converting Numeric Representations to Time Strings

If you need to examine an epoch given as some double precision number of seconds past J2000,
you will normally want to convert it to some more meaningful representation. There are two
routines normally used for this task. They offer varying degrees of flexibility in the output strings
they can produce. The more general of these is TIMOUT.

 TIMOUT (ET, PICTUR, STRING)
Given an epoch ET expressed as double precision seconds past J2000 and a format picture pictur
that you would like to use as a model for the output time strings, TIMOUT produces a string
representing the input ET in a format that matches the one specified by pictur with the length of
the string lenout. Using TIMOUT you can produce a time string in almost any format you desire
(including many that cannot be recognized by any of the SPICE software). To assist in creating a
format picture the routine TPICTR is provided. TPICTR takes a sample time string and produces
the format picture that corresponds to the sample. By using TPICTR and TIMOUT together you
can easily produce strings in the format you are used to seeing.

Less flexible, but slightly easier to use, ET2UTC has been the standard SPICE time formatting
routine for many years.

 ET2UTC (ET, FORMAT, PREC, UTCSTR)
This routine supports several fixed formats: calendar, Julian Date (UTC), day-of-year, ISO
year/month/day, and ISO year/day-of-year. You may adjust the number of digits that follow the
decimal point in the seconds component (or day in the Julian Date format).

Converting between Different Numeric Formats

You may need to convert between different numeric representations of time such as TDT, Julian
Date TDB, TAI seconds past J2000, etc. The routine UNITIM is available for such conversions.

 UNITIM (DPTIME, INSYS, OUTSYS)

Initialization

Leapseconds Kernel

Most SPICE time routines make use of the information contained in a leapseconds kernel.
Specifically, all of the following routines make use of the leapseconds kernel.

STR2ET

Converts strings to ET.
UTC2ET

Converts UTC strings to ET
TIMOUT

Converts ET to strings
ET2UTC

Converts ET to a UTC string.
UNITIM

Converts between numeric time systems
TTRANS

Converts between different parsed representations of time
Before any of these routines can be used you must ``load'' a leapseconds kernel into the ``kernel
pool.'' This is done by calling the routine LDPOOL, whose calling sequence is:

 LDPOOL (KERNEL)
KERNEL is the name of a ``leapseconds kernel.'' Leapseconds kernels are text based kernels
containing the epochs of leap seconds and other constants required by the time conversion
routines.

The leapseconds kernel needs to be loaded just once per program run; normally, the leapseconds
kernel is loaded in a program's initialization section.

The precise contents of the leapseconds kernel are discussed in the section ``Computing Delta
ET'' below. Text kernels and the routine LDPOOL are discussed in more detail in KERNEL
Required Reading.

SPK and PCK kernels

The routine ET2LST converts ephemeris time (ET) to the local solar time for a point at a user
specified longitude on the surface of a body. This computation is performed using the bodyfixed
location of the sun. Consequently, to use ET2LST you must first load SPK and PCK files that
contain sufficient position and orientation data for the computation of the bodyfixed location of
the sun.

SPK files are loaded using the routine SPKLEF.

 SPKLEF ('<spk file name>', HANDLE)
PCK files are usually text based. Text based kernels are loaded by calling LDPOOL.

 LDPOOL (KERNEL)
Occasionally, PCK, files are binary (DAF based) files that contain the orientation of an object
with respect to an inertial frame. Binary PCK files are loaded with the routine PCKLOF.

 PCKLOF ('<binary pck file name>', HANDLE)
As with the leapseconds kernel, SPK and PCK files need to be loaded just once per program run-
--usually at program initialization.

Input String Conversion

We normally represent epochs as a combination of a date and time of day. In C the simplest
means of specifying an epoch as a date and time is to create a string such as:

 STRING = 'Oct 1, 1996 09:12:32'
However, arithmetic is most easily performed with numeric representations of time. In SPICE
we represent epochs as some number of double precision seconds past the J2000 epoch.

SPICE contains three routines for converting strings directly to ``seconds past 2000.'' They are
STR2ET, UTC2ET, and TPARSE. All of these routines take a string as input and produce a
double precision number that gives the number of seconds past the J2000 epoch corresponding to
the input string. The method of analyzing the input string and assigning meaning to its various
components is identical for all three routines. This analysis is called ``parsing'' the string. All

three routines, STR2ET, UTC2ET and TPARSE, use the ``foundation'' routine TPARTV to parse
the input string. Each then interprets the results of TPARTV to assign meaning to the string.
Below are a number of examples of strings and the interpretation assigned to the various
components.

ISO (T) Formats.

 String Year Mon DOY DOM HR Min Sec
 ---------------------------- ---- --- --- --- -- --- ------
 1996-12-18T12:28:28 1996 Dec na 18 12 28 28
 1986-01-18T12 1986 Jan na 18 12 00 00
 1986-01-18T12:19 1986 Jan na 18 12 19 00
 1986-01-18T12:19:52.18 1986 Jan na 18 12 19 52.18
 1995-08T18:28:12 1995 na 008 na 18 28 12
 1995-18T 1995 na 018 na 00 00 00
Calendar Formats.

 String Year Mon DOM HR Min Sec
 ---------------------------- ---- --- --- -- --- ------
 Tue Aug 6 11:10:57 1996 1996 Aug 06 11 10 57
 1 DEC 1997 12:28:29.192 1997 Dec 01 12 28 29.192
 2/3/1996 17:18:12.002 1996 Feb 03 17 18 12.002
 Mar 2 12:18:17.287 1993 1993 Mar 02 12 18 17.287
 1992 11:18:28 3 Jul 1992 Jul 03 11 18 28
 June 12, 1989 01:21 1989 Jun 12 01 21 00
 1978/3/12 23:28:59.29 1978 Mar 12 23 28 59.29
 17JUN1982 18:28:28 1982 Jun 17 18 28 28
 13:28:28.128 1992 27 Jun 1992 Jun 27 13 28 28.128
 1972 27 jun 12:29 1972 Jun 27 12 29 00
 '93 Jan 23 12:29:47.289 1993* Jan 23 12 29 47.289
 27 Jan 3, 19:12:28.182 2027* Jan 03 19 12 28.182
 23 A.D. APR 4, 18:28:29.29 0023 Apr 04 18 28 29.29
 18 B.C. Jun 3, 12:29:28.291 -017 Jun 03 12 29 28.291
 29 Jun 30 12:29:29.298 2029+ Jun 30 12 29 29.298
 29 Jun '30 12:29:29.298 2030* Jun 29 12 29 29.298
Day of Year Formats

 String Year DOY HR Min Sec
 ---------------------------- ---- --- -- --- ------
 1997-162::12:18:28.827 1997 162 12 18 28.827
 162-1996/12:28:28.287 1996 162 12 28 28.287
 1993-321/12:28:28.287 1993 231 12 28 28.287
 1992 183// 12 18 19 1992 183 12 18 19
 17:28:01.287 1992-272// 1992 272 17 28 01.287
 17:28:01.282 272-1994// 1994 272 17 28 01.282
 '92-271/ 12:28:30.291 1992* 271 12 28 30.291
 92-182/ 18:28:28.281 1992* 182 18 28 28.281
 182-92/ 12:29:29.192 0182+ 092 12 29 29.192
 182-'92/ 12:28:29.182 1992 182 12 28 29.182
Julian Date Strings

 jd 28272.291 Julian Date 28272.291
 2451515.2981 (JD) Julian Date 2451515.2981

 2451515.2981 JD Julian Date 2451515.2981
Abbreviations Used in Tables

 na --- Not Applicable
 Mon --- Month
 DOY --- Day of Year
 DOM --- Day of Month
 Wkday --- Weekday
 Hr --- Hour
 Min --- Minutes
 Sec --- Seconds
*

The default interpretation of a year that has been abbreviated with a leading quote as in
'xy (such as '92) is to treat the year as 19xy if xy is more than 49 and to treat it is 20xy
otherwise. Thus '52 is interpreted as 1952 and '47 is treated as 2047.

+

When a day of year format or calendar format string is input and neither of the integer
components of the date is greater than 1000, the first integer is regarded as being the year.

Parsing Time Strings

A time string is parsed by first scanning the string from left to right and identifying recognizable
substrings. (integers, punctuation marks, names of months, names of weekdays and time
systems, time zones, etc.) These recognizable substrings are called the tokens of the input string.
The meaning of some tokens are immediately determined. For example named months,
weekdays and time systems have clear meanings. However, the meanings of numeric
components must be deciphered from their magnitudes and location in the string relative to the
immediately recognized components of the input string.

The following substrings are immediately recognizable.

1. All months (January, February, ...) or any abbreviation of at least 3 letters;

2. All weekdays (Sunday, Monday, ...) or any abbreviation of at least 3 letters;

3. Standard abbreviations of U.S. time zones: 'EST', 'EDT', 'CST', 'CDT', 'MST', 'MDT',
'PDT', 'PST'.

4. The abbreviations for eras: 'B.C.', 'BC', 'A.D.', and 'AD';

5. Time systems: 'TDT', 'TDB', 'UTC' (Note that 'ET' is not a recognized time system);

6. Julian Date Label: 'JD' (Note that JED is not a recognized Julian Date Label);

7. The 12-hour clock labels: 'A.M.', 'AM', 'P.M.' and 'PM';

8. Time Zones expressed as UTC offsets: UTC+HR:MN, UTC-HR:MN where HR is an
unsigned integer between 0 and 12 inclusive; MN is an unsigned integer between 0 and
59 inclusive.

With the exception of months, all items above may be enclosed in parentheses. For example
'TDB' and '(TDB)' are both recognized as the same time system.

The case of the letters in these substrings does not matter. For example all of the various ways of
writing 'TDB' ('TDB', 'tDB', ... 'tdb') are recognized as 'TDB'.

It is not necessary to leave space between the various substrings. For example JDTDT and
JDUTC are recognized as 'JD' followed by 'TDT' and 'JD' followed by 'UTC' respectively.

To determine the meaning of the numeric tokens in the input string, a set of transformation rules
are applied to the full set of tokens in the string. These transformations are repeated until the
meaning of every token has been determined or until further transformations yield no new clues
into the meaning of the numeric tokens. Here is an overview of the rules that are applied to the
various tokens in the string.

1. Unless the substring JD or jd is present the string is assumed to be a calendar format
(day-month-year or year and day of year). If the substring JD or jd is present, the string is
assumed to represent a Julian date.

2. If the Julian date specifier is not present, any integer greater than 999 is regarded as
being a year specification.

3. A dash `-' can represent a minus sign only if it precedes the first digit in the string and
the string contains the Julian date specifier (JD). (No negative years, months, days, etc
are allowed).

4. Numeric components of a time string must be separated by a character that is not a
digit or decimal point. Only one decimal component is allowed. For example
1994219.12819 is sometimes interpreted as the 219th day of 1994 + 0.12819 days. The
SPICE time parsing software does not support such strings.

5. No exponential components are allowed. For example you can't input 1993 Jun 23
23:00:01.202E-4. You have to explicitly list all zeros that follow the decimal point: i.e.
1993 Jun 23 23:00:00.0001202

6. The single colon (:) when used to separate numeric components of a string is
interpreted as separating Hours, Minutes, and Seconds of time.

7. If a double slash (//) or double colon (::) follows a pair of integers, those integers are
assumed to represent the year and day of year.

8. A quote followed by an integer less than 100 is regarded as an abbreviated year. For
example: '93 would be regarded as the 93rd year of the reference century. See TEXPYR
for further discussion of abbreviated years.

9. An integer followed by 'B.C.' or 'A.D.' is regarded as a year in the era associated with
that abbreviation.

10. All dates are regarded as belonging to the extended Gregorian Calendar (the
Gregorian calendar is the calendar currently used by western society).

11. If the ISO date-time separator (T) is present in the string, only ISO allowed token
patterns are examined for a match with the current set of tokens. If no match is found the
search is abandoned and appropriate diagnostic messages are generated.

12. If two delimiters are found in succession in the time string, the time string is
diagnosed as an erroneous string. (Delimiters are comma, white space, dash, slash,
period, day of year mark)

 Note the delimiters do not have to be the same. The pair of characters ``,-'' counts as
two successive delimiters.

13. White space and commas serve only to delimit tokens in the input string; they do not
affect the meaning of any of the tokens.

14. When the sizes of the integer components do not clearly specify a year but the name
of a month is present (for example 'APR') the following patterns are assumed

 Year Month Day
 Month Day Year
 Year Day Month

15. When integer components are separated by slashes (/) as in 3/4/5. The integers are
assumed to be Month, Day, Year. Thus in our example '3/4/5' is assumed to mean 4th of
March in the year '05.

16. If a day of year marker is present (// or ::) and the size of the integer components
does not clearly specify the year (as in 45-33//) the string is interpreted as Year Day-of-
Year. Thus 45-33// is interpreted as the 33rd day of the year '45.

Once the various tokens have been determined and a meaning attached to them, the routines
STR2ET, UTC2ET, and TPARSE, use the tokens to construct the double precision number
giving the number of seconds past J2000 that corresponds to input string. However, not all
tokens or token combinations are allowed by the routines.

STR2ET

The routine STR2ET is the most flexible of the three time transformation routines. STR2ET
accepts the widest variety of time strings. To illustrate the various features of STR2ET we begin
by considering the string

 1988 June 13, 3:29:48
There is nothing in this string to indicate what time system the date and time belong to.
Moreover, there is nothing to indicate whether the time is based on a 24-hour clock or twelve
hour clock.

In the absence of such indicators, the default interpretation of this string is to regard the time of
day to be a time on a 24-hour clock in the UTC time system. The date is a date on the Gregorian
Calendar (this is the calendar used in nearly all western societies).

Labels (A.M. and P.M.)

If you add more information to the string, STR2ET can then make a more informed
interpretation of the time string. For example:

 1988 June 13, 3:29:48 P.M.
is still regarded as a UTC epoch. However, with the addition of the ``P.M.'' label it is now
interpreted as the same epoch as the unlabeled epoch 1988 June 13, 15:29:48. Similarly

 1988 June 13, 12:29:48 A.M.
is interpreted as

 1988 June 13, 00:29:48
on the 24-hour clock.

For the Record

12:00 A.M. corresponds to Midnight (00:00 on the 24-hour clock). 12:00 P.M. corresponds to
Noon (12:00 on the 24-hour clock).

Labels (Time Zones)

You may add still further indicators to the string. For example

 1988 June 13, 3:29:48 P.M. PST
is interpreted as an epoch in the Pacific Standard Time system. This is equivalent to

 1988 June 13, 23:29:48 UTC
All of the standard abbreviations for U.S. time zones are recognized by the time parser.

 EST --- Eastern Standard Time (UTC-5:00)
 CST --- Central Standard Time (UTC-6:00)
 MST --- Mountain Standard Time (UTC-7:00)
 PST --- Pacific Standard Time (UTC-8:00)

 EDT --- Eastern Daylight Time (UTC-4:00)
 CDT --- Central Daylight Time (UTC-5:00)
 MDT --- Mountain Daylight Time (UTC-6:00)
 PDT --- Pacific Daylight Time (UTC-7:00)
In addition, any other time zone may be specified by representing its offset from UTC.

To specify an offset from UTC you need to create an offset label. The label starts with the letters
`UTC' followed by a `+' for time zones east of Greenwich and `-' for time zones west of
Greenwich. This is followed by the number of hours to add or subtract from UTC. This is
optionally followed by a colon `:' and the number of minutes to add or subtract to get the local
time zone. Thus to specify the time zone of Calcutta (which is 5 and 1/2 hours ahead of UTC)
you would specify the time zone to be UTC+5:30. To specify the time zone of Newfoundland
(which is 3 and 1/2 hours behind UTC) use the offset notation UTC-3:30.

For the Record

Leapseconds occur at the same time in all time zones. In other words, the seconds component of
a time string is the same for any time zone as is the seconds component of UTC. The following
are all legitimate ways to represent an epoch of some event that occurred in the leapsecond

 1995 December 31 23:59:60.5 (UTC)

 1996 January 1, 05:29:60.5 (UTC+5:30 --- Calcutta Time)
 1995 December 31, 20:29:60.5 (UTC-3:30 --- Newfoundland)

 1995 December 31 18:59:60.5 (EST)
 1995 December 31 17:59:60.5 (CST)
 1995 December 31 16:59:60.5 (MST)
 1995 December 31 15:59:60.5 (PST)

Labels (TDT, TDT, and UTC)

In addition to specifying time zones you may specify that the string be interpreted as a formal
calendar representation in either the Barycentric Dynamical Time system (TDB) or the
Terrestrial Dynamical Time system (TDT).

In these systems there are no leapseconds; every day has exactly 86400 seconds. TDB times are
written as

 1988 June 13, 12:29:48 TDB
TDT times are written as:

 1988 June 13, 12:29:48 TDT
To add clarity or to override any changes you happen to make to the default behavior of ET2STR
(see below) you may add the label ``UTC'' to any time string.

 1998 Jun 13, 12:29:48 UTC
Note that the system label may be placed anywhere in the time string. All of the following will
be understood by the time parsing software:

 TDB 1988 June 13, 12:29:48
 1988 June 13, 12:29:48 TDB
 1988 June 13, TDB 12:29:48

UTC2ET

The routine UTC2ET can be thought of as a version of STR2ET that allows a narrower range of
inputs. It converts strings in the UTC system to TDB seconds past the J2000 epoch. It does not
support other time systems or time zones. In addition UTC2ET does not recognize times on a 12-
hour clock. Strings such as

 1983 June 13, 9:00:00 A.M.
are treated as erroneous by UTC2ET.

TPARSE

The routine TPARSE can be thought of as a narrow version of STR2ET that allows only TDB as
input. TPARSE converts strings on a formal time scale to seconds past the J2000 epoch.
TPARSE doesn't ``know'' anything about leapseconds. Since TPARSE does not make use of
leapseconds, it can be used without first loading a leapseconds kernel.

Like UTC2ET, TPARSE does not recognize other time systems or time zones. Also it does not
recognize times on a 12-hour clock.

Unlike STR2ET and UTC2ET, TPARSE does not make use of the SPICE exception handling
subsystem. Erroneous strings are diagnosed via a string---ERROR. If the string ERROR is
returned empty (blank) no problems were detected in the input string. If ERROR is returned by
TPARSE non-blank, it contains a diagnostic message that indicates problems with the input time
string.

Changing Default Behavior

The three time string transformation routines can be adjusted at run time so that various built in
defaults can be changed without re-writing any of the code for the routines.

Abbreviated Years

All three string transformation routines treat abbreviated years in the same fashion. The default
behavior is to map any abbreviated year into the range from 1968 to 2067. Thus the year 22
corresponds to 2022; 77 corresponds to 1977. However, you may reset the lower end of this 100
year range via the routine TSETYR. For example if you would like to set the default range to be
from 1972 to 2071 issue the following subroutine call:

 TSETYR (1972)
Note that this change affects the behavior of all three string conversion routines.

Range of Time String Components

The routines TPARSE and UTC2ET accept time strings whose numeric components are outside
of the normal range of values used in time and calendar representations. For example strings
such as

 1985 FEB 43 27:65:25 (equivalent to 1985 MAR 16 04:05:25)
will be accepted as input. You might wish to restrict the range of input strings so that this
behavior is not allowed. The routine TPARCH is provided for this purpose. If you place the
following subroutine call

 TPARCH ('YES')
early in your program, prior to any calls to UTC2ET or TPARSE, the components of calendar
strings will be restricted so that all calendar components will be in the ``expected'' range. (The
exact ranges for the components are spelled out in the header for TPARCH)

STR2ET does not accept time strings whose components are outside the normal range used in
conversation. You cannot alter this behavior without re-coding STR2ET.

Default Time Systems and Time Zone

When a string is presented without a time system or time zone label STR2ET assumes that the
string represents a time in a default time zone or time system. If you take no action, the default
time system is UTC. (There is no time zone offset; UTC is the same as UTC+00:00) You can
override the default by simply including the time zone or time system of interest in the input time
string. However, under some circumstances you may find that you almost always use the TDB
time system. In such a case you would normally need to include the TDB label in the time string
every time you use STR2ET. Hence, the defaults used by STR2ET might be a hindrance rather
than a convenience. With this possibility in mind, STR2ET has been designed so that you may
alter its default behavior with regard to default time system or time zone. To change the default
time system or time zone use the routine TIMDEF.

(Keep in mind that if you specify a time zone or time system label in the input time string the
default time zone or system is not used. The label in the string is used to determine the time zone
or time system.)

Changing the Time System

Three time systems are supported: UTC, TDB, TDT. To change the default system to one of
these three systems issue the appropriate subroutine call below:

 TIMDEF ('SET', 'SYSTEM', 'UTC')
 TIMDEF ('SET', 'SYSTEM', 'TDB')
 TIMDEF ('SET', 'SYSTEM', 'TDT')
Note that setting a time system turns off any default time zone you may have set using TIMDEF.

Time Zones

All time zones are supported by STR2ET. The default time zone is simply Greenwich Mean
Time (UTC+00:00). To change the default behavior of STR2ET so that unlabeled strings are
assumed to be referenced to a particular time zone (for example Pacific Standard Time) issue the
subroutine call below.

 TIMDEF ('SET', 'ZONE', 'PST')
Note that setting a time zone turns off any default time system you may have set via TIMDEF.

Calendars

The default calendar used by STR2ET is the Gregorian calendar. However, the Gregorian
calendar did not come into existence until October 15, 1582. To complicate matters, many
countries did not adopt the Gregorian calendar until centuries later. Prior to adoption of the
Gregorian calendar most western societies used the Julian calendar. The generation of successive
days is identical on the Julian and Gregorian calendars except for the determination of leap days
in the last year of a century such as the year 1900. On the Julian calendar, a leap day is inserted
as the last day of February every 4 years. on the Gregorian calendar, a leap day is inserted as the

last day of February every 4 years with the possible exception of the last year of a century (such
as 1900). The last year of a century is a leap year only if the year is evenly divisible by 400. Thus
the year 2000 is a leap year on the Gregorian calendar but 1900 is not.

Both the Gregorian and Julian calendars can be extended forward and backward in time
indefinitely. The default behavior of STR2ET is to use the Gregorian calendar for all epochs.
However, using TIMDEF you can set the default calendar to one of three: GREGORIAN,
JULIAN, or MIXED.

 TIMDEF ('SET', 'CALENDAR', 'GREGORIAN')
 TIMDEF ('SET', 'CALENDAR', 'JULIAN')
 TIMDEF ('SET', 'CALENDAR', 'MIXED')
The ``MIXED'' calendar assumes that calendar strings for epochs prior to October 6, 1582 belong
to the Julian Calendar; strings for later epochs are assumed to belong to the Gregorian Calendar.
The specification of a calendar, does not affect a previous setting of a time system or time zone.
You can change the calendar used by STR2ET only through the routine TIMDEF, there are no
labels recognized by STR2ET for the various calendars.

Output Conversion

Times need to be printed out as well as read in. SPICE contains three routines for accomplishing
this task: TIMOUT, ET2UTC, and ETCAL. All three convert a number of ephemeris seconds
past J2000 to a time string.

TIMOUT

 TIMOUT (ET, PICTUR, OUTSTR)
where
ET

is a double precision number containing the number of TDB seconds past J2000
corresponding to some epoch.

PICTUR

is a characters string that describes how the output string should be formatted. It is a
``picture'' of the format for output.

OUTPUT

is the string corresponding to ET and PICTUR.
To see how this works, consider the following example time string:

 04:29:29.292 Jan 13, 1996
The value of PICTUR to use to create time strings that are similar in appearance to the example
string is:

 PICTUR = 'HR:MN:SC.### Mon DD, YYYY ::RND'
Most of this components in PICTUR are fairly obvious. The exception is the substring

 '::RND'.
This substring tells TIMOUT to round the seconds portion of the output string instead of simply
truncating. (Note that the case of the letters is significant in pictur.) TIMOUT can produce
strings representing epochs in the time systems (UTC, TDB, TDT) or any time zone, and on
either the Julian, Gregorian Calendar or Mixed Calendar. You may round or truncate numeric
components.

The rules for constructing pictur are spelled out in the header to TIMOUT. However, you may
very well never need to learn these rules. SPICE contains the routine TPICTR that can construct
a time format picture for you from a sample time string. Returning to the example above, if the
following block of code is executed, pictur will contain the format picture that will yield output
strings similar to our example string.

 EXAMPL = '04:29:29.292 Jan 13, 1996'

 TPICTR (EXAMPL, PICTUR, OK, ERROR)
The arguments ok and error are outputs from TPICTR. They are present because some strings are
not recognized as time strings. TPICTR recognizes the same set of time strings as does STR2ET,
UTC2ET and TPARSE. However, if you want your output string to be in a system other than
UTC you must supply the label for that system in your example string. TPICTR can construct
format pictures for strings that are not accepted by the string conversion routines. For example, if
you would like to suppress the year in a calendar output format, you could use the following
example string:

 EXAMPL = 'Jan 12, 02:28:29.### A.M. (PDT)'
Even though this string is ambiguous as an epoch (there's no year specified), it is sufficient for
determining a picture that describes its format. If you decide to use TPICTR with inputs like this,
be sure to check the output flag OK. Even though you know what is intended, TPICTR may have
problems with some ambiguous time strings.

ET2UTC

The routine ET2UTC is an older time formatting routine. It is not as flexible as TIMOUT. All
outputs are UTC outputs and only a limited set of formats are supported. On the other hand it is
easier to learn how to use ET2UTC. ET2UTC is an inverse to UTC2ET: that is following the
calls

 UTC2ET (UTCIN, ET)
 ET2UTC (ET, 'C', 3, UTCOUT)
utcout is identical in content to (although probably formatted differently from) UTCIN. ET2UTC
can create time strings in any of the following formats.

 Format Name Example
 ------ ----------- --------------------------
 'C' Calendar '1979 JUL 04 14:19:57.184'
 'D' Day of Year '1979-114 // 14:19:57.184'
 'J' Julian Date 'JD 2433282.529'
 'ISOC' ISO Calendar '1987-04-122T16:31:12.814'
 'ISOD' ISO Day of Year '1987-102T16:31:12.814'
In addition, you may specify the number of decimal places in the fractional part of the seconds
token or the Julian Date (three, in the examples above). Note that Julian Dates are prefaced with
the character string `JD' (and are UTC Julian Dates). This allows strings generated by ET2UTC
to be used later as inputs to UTC2ET or STR2ET.

ETCAL

The routine ETCAL is a utility routine. It can produce outputs in a single format with a fixed
number of decimal places. Moreover, the calendar strings it produces are on a formal calendar.
There are no leapseconds; each day has exactly 86400 seconds. Since it does not make use of
leapseconds, you don't need to load a leapseconds kernel prior to calling ETCAL. This makes it
well suited for producing diagnostic messages. Indeed, it was created so that more user friendly
diagnostic messages could be produced by those SPICE routines that require ET as an input.

Converting Between Uniform Time Scales

We use the term uniform time scale to refer to those representations of time that are numeric
(each epoch is represented by a number) and additive. A numeric time system is additive if given

the representations E1 and E2 of any pair of successive epochs, the time elapsed between the
epochs is given by the difference E2 - E1.

Conversion between uniform time scales can be carried out via the double precision function
UNITIM. The uniform time scales that are supported by this routine are:

 'TAI' International Atomic Time.
 'TDB' Barycentric Dynamical Time.
 'TDT' Terrestrial Dynamical Time.
 'ET' Ephemeris time
 'JDTDB' Julian Date relative to TDB.
 'JDTDT' Julian Date relative to TDT.
 'JED' Julian Ephemeris date.

 * In the @SPICE system ET is synonymous to TDB.
 ** In the @SPICE system JED is synonymous to JDTDB.

Local Solar Time

Local solar time is a used to give people an idea of how high the sun is in the sky as seen from a
particular site on surface of a planet or satellite. When the Sun is on the zenith meridian, the local
solar time is 12:00:00 noon. For points on the equator of a body, the Sun rises around 6:00:00
A.M. local solar time; it sets around 6:00:00 P.M. local solar time.

Formally, the local solar time at a site on a body is the difference between the planetocentric
longitude of the site and the planetocentric longitude of the Sun as seen from the center of the
body. The angular difference in these two longitudes is measured in hours, minutes, and seconds
in the same sense that hours, minutes and seconds are used to measure right ascension--- 24
hours in 360 degrees; 60 minutes in an hour; 60 seconds in a minute. When the sun in on the
zenith meridian the hour is defined to be 12. Finally, the hours increase from sunrise to sunset.

Because of these conventions, an hour of local solar time will not be of the same duration as a
UTC hour. In the case of a site on Mars, a solar hour will be approximately 62 UTC minutes.

Local solar time for a specific site can be computed using the routine ET2LST (ET to Local
Solar Time).

Foundation Routines and Utilities

At the heart of the SPICE time software subsystem are the ``foundation'' routines TPARTV and
TTRANS. TPARTV is used to take apart a time string and convert it to a vector of numeric
components. TTRANS serves the role of converting between the various numeric vector
representations of time. If you need to build your own time conversion routines, these routines
are a good place to begin.

In addition to the foundation routines, you may find helpful the following utility routines.

TEXPYR

converts two-digit abbreviated years to full years. You set lower bound of the 100 year
mapping interval via the routine TSETYR discussed earlier in this document.

TCHECK

takes a numeric vector representing the components of a calendar time and checks that all
components are within the normal range used in conversation. Note that TCHECK
performs no action until you call TPARCH with an argument of "YES".

TCHCKD

allows you to determine if component checking has been enabled in TCHECK via a call
to TPARCH.

JUL2GR

converts the year, month, and day of an epoch on the Julian Calendar to the
corresponding year, month, day and day-of-year on the Gregorian calendar.

GR2JUL

converts the year, month, and day of an epoch on the Gregorian Calendar to the
corresponding year, month, day and day-of-year on the Julian calendar.

DELTET

computes the time difference TDB - UTC.
B1900

returns the Julian ephemeris date (TDB) of the epoch of the Besselian date 1900.
B1950

returns the Julian ephemeris date (TDB) of the epoch of the Besselian date 1950.
J1900

returns the Julian Date of 1899 DEC 31 12:00:00 (TDB)
J1950

returns the Julian ephemeris date of the epoch 1 Jan 1950 00:00:00 (TDB).

J2000

returns the Julian ephemeris date of the epoch 1 Jan 2000 12:00:00 (TDB).
J2100

returns the Julian ephemeris date of the epoch 1 Jan 2100 12:00:00
JYEAR

returns the number of seconds in a Julian year (365.25 Julian days).
SPD

returns the number of TDB seconds in a Julian day TDB (86400 seconds).
TYEAR

returns the number of seconds in a tropical year (approximately the number of seconds
from one spring equinox to the next)

Example

The following program demonstrates use of the time conversion routines STR2ET, TPICTR,
TIMOUT and ET2UTC.

Note that the data necessary to convert between UTC and ET are loaded into the kernel pool just
once---typically during program initialization--- after which the conversion may be performed at
any level within the program.

 PROGRAM EXAMPLE
 C
 C Convert between UTC and ET interactively, and convert ET
 C back to UTC in calendar format, DOY format, and as a
 C Julian date.
 C
 C Requires a leapseconds kernel.
 C
 INTEGER FILEN
 PARAMETER (FILEN = 128)

 INTEGER LNSIZE
 PARAMETER (LNSIZE = 60)

 CHARACTER*(8) ANSWER
 CHARACTER*(FILEN) KERNEL

 CHARACTER*(LNSIZE) DOY
 CHARACTER*(LNSIZE) ERROR
 CHARACTER*(LNSIZE) EXAMP1
 CHARACTER*(LNSIZE) EXAMP2
 CHARACTER*(LNSIZE) JDUTC
 CHARACTER*(LNSIZE) PICTR1
 CHARACTER*(LNSIZE) PICTR2
 CHARACTER*(LNSIZE) PST
 CHARACTER*(LNSIZE) STR
 CHARACTER*(LNSIZE) UTC

 DOUBLE PRECISION ET

 LOGICAL OK

 C
 C Get the name of the leapseconds kernel file.
 C
 WRITE (*,*) 'We need to load a leapseconds kernel.'
 CALL PROMPT ('Kernel Name: ', KERNEL)

 C
 C Load the leapseconds kernel into the kernel pool.
 C
 CALL LDPOOL (KERNEL)

 C
 C Create pictures for producing strings similar to
 C those below.
 C
 EXAMP1 = 'Fri Oct 04, 08:57:28.000 (UTC) 1996'
 EXAMP2 = 'Fri Oct 04, 08:57:28.000 (PST) 1996'

 CALL TPICTR (EXAMP1, PICTR1, OK, ERROR)
 CALL TPICTR (EXAMP2, PICTR2, OK, ERROR)

 C
 C Compute result for each new UTC epoch.
 C
 ANSWER = 'Y'

 DO WHILE ((ANSWER(1:1) .EQ. 'Y')
 . .OR. (ANSWER(1:1) .EQ. 'y'))

 WRITE (*,*) ' '
 CALL PROMPT ('Enter a time: ', STR)

 CALL STR2ET (STR, ET)

 WRITE (*,*) ' '
 WRITE (*,*) 'Input time converts to ET ' //
 . '(sec past J2000)', ET

 CALL TIMOUT (ET, PICTR1, UTC)

 CALL TIMOUT (ET, PICTR2, PST)
 CALL ET2UTC (ET, 'ISOC', 3, DOY)
 CALL ET2UTC (ET, 'J', 7, JDUTC)

 WRITE (*,*) ' '
 WRITE (*,*) 'ET converts back to'
 WRITE (*,*) ' '
 WRITE (*,*) UTC
 WRITE (*,*) PST
 WRITE (*,*) ' '
 WRITE (*,*) DOY
 WRITE (*,*) JDUTC

 WRITE (*,*) ' '
 CALL PROMPT ('Do you wish to continue?', ANSWER)

 END DO

 END

Appendix A. Background Material

The Toolkit directly supports three time systems. They are

1. Coordinated Universal Time (UTC)

2. Barycentric Dynamical Time (TDB) also called Ephemeris Time (ET)

3. Spacecraft Clock Time (SCLK---pronounced ``ess clock'')

Coordinated Universal Time (UTC)

International Atomic Time (TAI)

Before discussing Coordinated Universal Time we feel it is helpful to talk about International
Atomic Time (TAI or atomic time). Atomic time is based upon the atomic second as defined by
the ``oscillation of the undisturbed cesium atom.'' Atomic time is simply a count of atomic
seconds that have occurred since the astronomically determined instant of midnight January 1,
1958 00:00:00 at the Royal Observatory in Greenwich, England. Atomic time is kept by the
International Earth Rotation Service (IERS, formally the Bureau International L'Heure---BIH) in
Paris, France. The National Bureau of Standards and the U.S. Naval Observatory set their clocks
by the clock maintained by the IERS.

Naming the seconds of TAI --- UTC

Coordinated Universal Time is a system of time keeping that gives a name to each instant of time
of the TAI system. These names are formed from the calendar date and time of day that we use
in our daily affairs. They consist of 6 components: year, month, day, hour, minutes and seconds.
The year, month and day components are the normal calendar year month and day that appear on
wall calendars. The hours component may assume any value from 0 through 23. The minutes
component may assume any value from 0 to 59. The seconds will usually (but not always) range
from 0 to 59.999... . The hour-minute-second string

 '00:00:00'
is midnight and is the first instant of the calendar day specified by the first three components of
the UTC time.

In the SPICE system UTC times are represented by character strings. These strings contain: year,
month, day, hour, minute and second separated by delimiters (spaces or punctuation marks). The
various delimiters and substrings between the delimiters are called the tokens of the string. A
typical time string looks like

 '5 OCTOBER 1986 7:20:16.122 (UTC)'
The tokens of the string and the associated UTC time components are

 '5' --- day
 'OCTOBER' --- month
 '1986' --- year
 '7' --- hours
 '20' --- minutes
 '16.122' --- seconds
The link between any token and its corresponding UTC component is determined by examining
the values of the tokens and comparing them to the other tokens. The precise rules used are

spelled out in great detail in appendix 2. For now, simply be assured that the following five
strings all mean the same thing and are interpreted in the same way by SPICE Toolkit software.

 '5 OCTOBER 1986'
 '1986 OCTOBER 5'
 '1986 5 OCTOBER'
 '1986 10 5'
 '10 5 1986'

Tying UTC to the Earth's Rotation

The names given to TAI instants by the UTC system are governed by the earth's rotation. Ideally,
UTC strings having hours, minutes and seconds components all zero should correspond to
Greenwich midnight as determined by the observations of the transits of stars (the time system
known as UT1). However, since the rotation of the earth is not uniform, this ideal cannot be
realized. The difference between Greenwich midnight observed astronomically and UTC
midnight is almost never zero. However, to keep the difference from becoming too large, UTC is
occasionally adjusted so that the difference between the two midnights never exceeds .9 seconds.
Thus from a knowledge of UTC one can always compute UT1 to better than 1 second accuracy.

Leapseconds

When Greenwich UT1 midnight lags behind UTC midnight by more than 0.7 seconds the IERS
will announce that a leap second will be added to the collection of UTC names. This leap second
has traditionally been added after the last ``normal'' UTC name of December 31 or June 30. Thus
when a UTC second is added the hours-minutes-seconds portion of the UTC name progresses as
shown here

 ... DECEMBER 31 23:59:57
 ... DECEMBER 31 23:59:58
 ... DECEMBER 31 23:59:59
 ... DECEMBER 31 23:59:60
 ... JANUARY 1 00:00:00
instead of the usual progression

 ... DECEMBER 31 23:59:57
 ... DECEMBER 31 23:59:58
 ... DECEMBER 31 23:59:59
 ... JANUARY 1 00:00:00

Should Greenwich UT1 midnight run ahead of UTC midnight by more than 0.7 seconds the
IERS will announce a negative leap second. In this case one of the usual UTC hours-minutes-
seconds triples will be missing from the list of UTC names. In this case the progression will be:

 ... DECEMBER 31 23:59:57
 ... DECEMBER 31 23:59:58
 ... JANUARY 1 00:00:00
Since 1972 when leap seconds and the UTC system were introduced, a negative leap second has
not occurred.

The Leapseconds Kernel (LSK)

The primary difficulty with UTC strings is that it is not possible to predict which atomic times
will correspond to times during a UTC leap second. Thus algorithms for converting between
UTC and time systems that simply use a continuous set of numeric markers require knowledge
of the location of leap seconds in the list of names. This is the purpose of the LEAPSECONDS
kernel supplied with the Toolkit. To convert between UTC times and any other system, you must
first load the leapseconds kernel via a call to the routine LDPOOL.

Ephemeris Time (ET)

Ephemeris time is the uniform time scale represented by the independent variable in the
differential equations that describe the motions of the planets, sun and moon. There are two
forms of ephemeris time: Barycentric Dynamical Time (TDB) and Terrestrial Dynamical Time
(TDT). Although they represent different time systems, these time systems are closely related.

Barycentric Dynamical Time (TDB)

Barycentric dynamical time is used when describing the motion of bodies with respect to the
solar system barycenter.

Terrestrial Dynamical Time (TDT)

Terrestrial dynamical time is used when describing motions of objects near the earth. As far as
measurements have been able to detect, TDT and TAI change at the same rate. Thus the
difference between TDT and TAI is a constant. It is defined to be 32.184 seconds. At the zero
point of TAI, TDT has a value of 32.184.

The Relationship between TDT and TDB

TDB is believed to be in agreement with the time that would be kept by an atomic clock located
at the solar system barycenter. A comparison of the times kept by a clock at the solar system
barycenter with a TDB clock on earth would reveal that the two clocks are in close agreement
but that they run at different rates at different times of the year. This is due to relativistic effects.

At some times in the year the TDT clock appears to run fast when compared to the TDB clock, at
other times of the year it appears to run slow. Let TDB0 be some fixed epoch on the TDB clock
and TDT0 be a fixed epoch on the TDT clock (TDB0 and TDT0 do not necessarily have to be
the same epoch). Any epoch, EPOCH, can be represented in the following ways: as the number
of seconds TDB(EPOCH), that have elapsed since TDB0 on the TDB clock; or as the number of
seconds, TDT(EPOCH), that have elapsed since TDT0 on the TDT clock. If we plot the
differences TDB(EPOCH) - TDT(EPOCH) against TDB(EPOCH) over all epochs, we will find
that the graph is very close to a periodic function.

In SPICE the difference between TDT and TDB is computed as follows:

 [1] TDB - TDT = K * sin (E)
where K is a constant, and E is the eccentric anomaly of the heliocentric orbit of the Earth-Moon
barycenter. This difference, which ignores small-period fluctuations, is accurate to about
0.000030 seconds. Thus to five decimal places the difference between TDT and TDB is a
periodic function with magnitude approximately 0.001658 seconds and period equal to one
sidereal year.

The eccentric anomaly E is given by

 [2] E = M + EB sin (M)
where EB and M are the eccentricity and mean anomaly of the heliocentric orbit of the Earth-
Moon barycenter. The mean anomaly is in turn given by

 [3] M = M0 + M1*t

where t is the epoch TDB expressed in barycentric dynamical seconds past the epoch of J2000.

The values K, EB, M0, and M1 are retrieved from the kernel pool. These are part of the
leapseconds kernel. They correspond to the ``kernel pool variables'' DELTET/K, DELTET/EB,
and DELTET/M. The nominal values are:

 DELTET/K = 1.657D-3
 DELTET/EB = 1.671D-2
 DELTET/M = (6.239996D0 1.99096871D-7)

In the Toolkit ET Means TDB

When ephemeris time is called for by Toolkit routines, TDB is the implied time system.
Software that converts between the various time systems described here use TDB whenever
ephemeris time is called for. We call this time ET. (You can convert a UTC time string to TDT
times, but you must make two subroutine calls instead of one.)

Ephemeris time is given in terms of seconds past a reference epoch. The reference epoch used
throughout the Toolkit is the epoch J2000 (roughly noon on January 1, 2000). Using the Toolkit
software, you can find out how many seconds the J2000 epoch is from right now.

Naming the Seconds of Ephemeris Time

Although ephemeris time is a formal time, within the limits of measurements it coincides with
atomic time. As such we should be able to relate it to the expressions of time that we use use
everyday.

However, ephemeris time is described as a count of ephemeris seconds past the ephemeris
reference epoch (J2000). For most of us the expression

 -312819349 seconds past the ephemeris epoch J2000
bears little relationship to the time system we use to organize our lives. For this reason, it is
common to give names to the various ephemeris seconds in a manner analogous to the UTC
naming of the seconds of TAI---as a calendar date and time of day. The above string corresponds
to

 '1990 FEB 1 21:44:11 (TDB)'
There is an important distinction between the names given to ephemeris seconds and the names
used by the UTC system. The names assigned to ephemeris times never have leap seconds. The
`seconds' component of the name is restricted to and includes all values from 0 to 59.999... .
Thus the time string above does not represent the same moment in time as does ``1990 FEB 1
21:44:11 (UTC)'' There are two reasons. First, ephemeris time is ahead of atomic time by 32.184
seconds. Second, when a leap second occurs UTC strings fit an extra name into the sequence of
valid UTC names. Thus it appears that UTC names fall behind ET names by a second after each
leapsecond. At the present time UTC time strings appear to be 62.184 seconds behind ET time
strings. This appearance is due to the fact that the two naming conventions are not the same.
They simply have a lot of names in common.

It is both fortunate and unfortunate that there is a huge set of common names between calendar
dates ET and calendar dates UTC. Since there are relatively few leapseconds, a time given by an
ET name is always close to the time in the UTC system having the same name. Thus for
planning observations, you can know what day the observation will take place, whether or not
you are likely to need a coat and how to arrange your daily activities around the observation. But
for precise work you must pay attention to the difference between the two times systems. If in
planning the observation of a stellar occultation by an asteroid the difference between the two
naming systems is neglected, it is likely that the observation will be missed.

The routine STR2ET will convert an ephemeris calendar date to seconds past the ephemeris
epoch J2000.

Some Consequences of Leapseconds

There is no way of predicting when future leapseconds will occur. Normally you can predict
whether there will be a leapsecond in the next few months, but beyond this predictions of
leapseconds are not reliable. As a result we cannot say with certainty when a particular future
UTC epoch will occur. For example, suppose you have a timer that you can set to ``beep'' after
some number of seconds have passed. If this timer counts seconds perfectly without loosing or
gaining time over decades, you cannot set it today to beep at midnight (00:00:00) January 1
(UTC) ten years from now---the number of leapseconds that will occur in the next ten years is
not known. On the other hand, it is possible to set the timer so that it will beep at midnight
January 1 (TDB). The TDB system does not have leapseconds. It is only necessary to know an
algorithm (such as STR2ET) for converting calendar epochs TDB to seconds past some
reference epoch in order to determine how to set the timer to beep at the correct epoch.

Any given Leapseconds Kernel will eventually become obsolete. Sometime after the creation of
any Leapseconds Kernel there will be new leapseconds. When future leapseconds occur the old
Leapseconds Kernel will no longer correctly describe the relationship between UTC, TDT and
TDB for epochs that follow the new leapsecond. However, for epochs prior to the new

leapsecond, the old kernel will always correctly describe the relationship between UTC, TDT
and TDB.

Computing UTC from TDB (DELTET)

Below are a few epochs printed out in calendar format in both the TDT and UTC time systems.

 1996, Oct 11, 12:01:02.1840 (TDT)
 1996, Oct 11, 12:00:00.0000 (UTC)

 1996, Oct 12, 12:01:02.1840 (TDT)
 1996, Oct 12, 12:00:00.0000 (UTC)

 1996, Oct 13, 12:01:02.1840 (TDT)
 1996, Oct 13, 12:00:00.0000 (UTC)

 1996, Oct 14, 12:01:02.1840 (TDT)
 1996, Oct 14, 12:00:00.0000 (UTC)

 1996, Oct 15, 12:01:02.1840 (TDT)
 1996, Oct 15, 12:00:00.0000 (UTC)
At least in October 1996, it's clear that if you have either TDT or UTC you can construct the
corresponding representation for the same epoch in the UTC or TDT system by simply
subtracting or adding 62.184 seconds.

If you don't worry about what happens during a leapsecond you can express the above idea as:

 [4] DeltaTDT = TDT - UTC
For all epochs except during UTC leapseconds the above expression makes sense. DeltaTDT is
simply a step function increasing by one after each leapsecond. Thus DeltaTDT can be viewed as
a step function of either UTC or TDT.

If you rearrange this expression, you can get

 [5] UTC = TDT - DeltaTDT
Since, TDT can be expressed as seconds past J2000 (TDT), the above expression indicates the
UTC can be expressed as some count of seconds. This representation is referred to by the
dubious name of ``UTC seconds past J2000.'' If you write down the UTC calendar time string
corresponding to an epoch and count the number of seconds between that calendar expression

and the UTC calendar expression ``January 1, 2000 12:00:00'' and ignore leapseconds, you get
the value of UTC in the expression above.

In practice this expression is broken down as follows:

 [6] UTC = TDT - DeltaTA - DeltaAT
where

 DeltaTA = (TDT - TAI)
and

 DeltaAT = DeltaTDT - DeltaTA
The value DeltaTA is a constant, its value is nominally 32.184 seconds. DeltaTA is a step
function. These two variables appear in the leapseconds kernel.

If we combine equation [6] above with equation [1] from the section ``The Relationship between
TDT and TDB'' we get the following expression

 [7] TDB - UTC = DeltaTA + DeltaAT + K*sin(E)
This last value is called DeltaET and is computed by the SPICE routine DELTET. The various
values that are used in the computation of DeltaET are contained in the Leapseconds Kernel.
Indeed, a Leapseconds Kernel consists of precisely the information needed to compute DeltaET.
Below is a sample Leapseconds kernel.

 \begindata

 DELTET/DELTA_T_A = 32.184
 DELTET/K = 1.657D-3
 DELTET/EB = 1.671D-2
 DELTET/M = (6.239996D0 1.99096871D-7)

 DELTET/DELTA_AT = (10, @1972-JAN-1
 11, @1972-JUL-1
 12, @1973-JAN-1
 13, @1974-JAN-1
 14, @1975-JAN-1
 15, @1976-JAN-1
 16, @1977-JAN-1
 17, @1978-JAN-1
 18, @1979-JAN-1
 19, @1980-JAN-1
 20, @1981-JUL-1
 21, @1982-JUL-1
 22, @1983-JUL-1
 23, @1985-JUL-1
 24, @1988-JAN-1)

 \begintext
 DELTET/DELTA_T_A corresponds to DeltaTA in equation [7].
 DELTET/K corresponds to K in equation [7].
 DELTET/EB corresponds to EB in equation [2].

 DELTET/M corresponds to M0 and M1 of equation [3].
 DELTET/DELTA_AT corresponds to DeltaAT of equation [7].
 Note that this expression gives the
 points on the UTC scale at which
 DeltaAT changes.
Although NAIF recommends against it, you could modify this file to alter the conversion. For
example, until 1985 JPL's Orbit Determination Program (ODP) set used a value of 32.1843817
for DeltaTA, and some older CRS tapes were created using this value in the conversion from
TAI to TDT. The value returned by DELTET can be made compatible with these tapes by
replacing the current value (32.184, exactly) with the older value. Also, JPL'S Optical
Navigation Program (ONP) set does not use the periodic term (K sin E) of the difference TDB-
TDT. Setting the value of K to zero eliminates this term.

Problems With the Formulation of DeltaET

As we pointed out above, the expression (TDT - UTC) is meaningful as long as you stay away
from leapseconds. If you write down the TDT and UTC representations for an epoch that occurs
during a leapsecond you will have something like this:

 1996 Jan 01, 00:01:01.6840 (TDT)
 1996 Dec 31, 23:59:60.5000 (UTC)
Given these two epochs, it is no longer clear what we should assign to the value TDT - UTC.
Thus although equation [7] above provides a simple expression for computing the ``difference
between UTC and TDB'', the expression fails to tell us how to convert between TDB (or TDT)
and UTC during leapseconds. For this reason the SPICE system does not use DeltaET when
converting between TDB (or TDT) and UTC. Instead, the table of offsets corresponding to
DeltaAT in the leapseconds kernel is converted to an equivalent table as shown below.

 Day Number of 1971-DEC-31 TAI seconds past 2000 at
 beginning of 1971-DEC-31

 Day Number of 1972-JAN-01 TAI seconds past 2000 at
 beginning of 1972-JAN-01

 Day Number of 1972-JUN-30 TAI seconds past 2000 at
 beginning of 1972-JUN-30

 Day Number of 1972-JUL-01 TAI seconds past 2000 at
 beginning of 1972-JUL-01

 Day Number of 1972-DEC-31 TAI seconds past 2000 at
 beginning of 1972-DEC-31

 Day Number of 1973-JAN-01 TAI seconds past 2000 at
 beginning of 1973-JAN-01

 Day Number of 1973-DEC-31 TAI seconds past 2000 at
 beginning of 1973-DEC-31
 . .
 . .
 . .
where the day number associated with a particular calendar date is the integer number of days
that have passed since Jan 01, 0001 A.D. (on the extended Gregorian Calendar).

Given an epoch to be converted between UTC and some other time system (call this other system
`S'), we decompose the conversion problem into two parts:

1. converting between UTC and TAI,

2. converting between TAI and system S.

To convert between TAI and UTC, we examine the above table to determine whether or not the
epoch in question falls on a day containing a leapsecond or during a day that is 86400 seconds in
length. Once the length of the day associated with the epoch has been determined, the conversion
from UTC to TAI (or from TAI to UTC) is straight forward. (See the routine TTRANS for
details.) Having settled the problem of converting between TAI and UTC, the conversion
between TAI and system S is carried out using the analytic expressions (equations [1], [2] and
[3]) given above.

Spacecraft Clock (SCLK)

Most spacecraft have an onboard clock. This clock controls the times at which various actions
are performed by the spacecraft and its science instruments. Observations are usually tagged with
the spacecraft clock time when the observations are taken.

Each spacecraft clock can be constructed differently. For Galileo the SPICE spacecraft clock
times looks like

 p/rrrrrrrr:mm:t:e

 p - partition number
 r - rim counts
 m - minor frame
 t - real time interrupt
 e - mod eight count
When asking for the matrix which describes the pointing for some structure or instrument used to
perform an observation, you will usually request this information by supplying the spacecraft

clock string that was used to tag the observation. This string must usually be related to UTC or
ET. Consequently it is necessary to load a file of ``spacecraft clock coefficients'' that enables
SPICE software to transform the spacecraft clock string into one of the other time systems. This
file of spacecraft clock coefficients is loaded with the routine LDPOOL.

A more detailed discussion of Spacecraft Clock is contained in the Required Reading file
SCLK.REQ that is included with the SPICE Toolkit.

Julian Date

The Julian date system is a numerical time system that allows you to easily compute the number
of days between two epochs. NAIF recognizes two types of Julian dates. Julian Ephemeris Date
(JED) and Julian Date UTC (JDUTC). As with calendar dates used for ephemeris time and
calendar dates UTC, the distinction between the two systems is important. The names of the two
systems overlap, but they correspond to different moments of time.

Julian Ephemeris Date is computed directly from ET via the formula

 JED(ET) = J2000() + ET/SPD()
where J2000 is a constant function that returns the Julian Ephemeris Date of the reference epoch
for ET, and SPD is a constant function that gives the number or seconds per day.

Julian Date UTC has an integer value whenever the corresponding UTC time is noon.

We recommend against using the JDUTC system as it provides no mechanism for talking about
events that might occur during a leapsecond. All of the other time systems discussed can be used
to refer to events occurring during a leap second.

The abbreviation JD

Julian date is often abbreviated as ``JD.'' Unfortunately, the meaning of this string depends upon
context. For example, the SPICE routine UTC2ET treats the string ``2451821.1928 JD'' as Julian
Date UTC. On the other hand, the SPICE routine TPARSE treats the same string as Julian Date
TDB. Consequently, for high accuracy work, you must be sure of the context when using strings

labelled in this way. Unless context is clear, it's usually safer to label Julian Date strings with one
of the unambiguous labels: JDUTC, JDTDB, or JDTDT.

Appendix B. Parsing Time Strings

This appendix gives a detailed account of how the routine TPARTV parses time strings.
TPARTV is the ``foundation'' routine relied upon by STR2ET, UTC2ET, TPARSE and TPICTR
to accomplish the task of analyzing and assigning meaning to the components of a time string.

This appendix is not for everyone. Unless you need to understand in great detail how parsing of
strings is performed, you can safely skip this appendix. The discussion below is quite technical
and mirrors very closely the code in TPARTV that handles the parsing of time strings.

An Outline of the Parser

The first step in processing a time string is to scan it from left to right identifying various
substrings. If a substring is encountered that cannot be identified, attempts to further process the
string are abandoned.

Having identified the components in the string as integers, months, weekdays, time systems, etc.
An internal representation of the string is constructed. This representation is simply a list of the
identified substrings in the order they are encountered. Each item in the list is called a token.

Working with the list of tokens, various rules are applied to remove some tokens and combine
others into new tokens. The process of combination and removal of tokens continues until all
tokens belong to a special set of ``meaningful'' tokens or until no further combinations and
removals can be performed. If processing stops before all tokens are meaningful, a diagnostic
message is created and the string is regarded as un-parsable. If all of the tokens are meaningful, a
compatibility check is performed on the tokens to make sure that they unambiguously specify an
epoch.

Once it is clear that an unambiguous epoch has been specified, the substrings corresponding to
the meaningful tokens are converted into numeric representations or are noted so that the time
conversion software can properly interpret the numeric components.

Almost all of the work of manipulating tokens is carried out by SPICE private routines. These
routines are not considered part of the SPICE public interface. Feel free to read and copy these
routines. However, we strongly recommend that you not call these routines in your own code
since we do not guarantee backward compatibility of these routines in future releases of the
Toolkit.

Tokenizing the Input String

The first step in parsing a time string is to decompose it into recognizable substring components.
This decomposition is done as follows:

Starting with the next unexamined character (on the first pass this is the first character in the
string), scan from left to right looking for one of the following classes of substrings:

1. a maximal sequence of digits forming an unsigned integer.

2. a maximal sequence of space characters

3. a tab character

4. a weekday (or abbreviation of a weekday of at least 3 letters)

5. a month name (or abbreviation of a month name of at least 3 letters)

6. a time zone (standard U.S. abbreviations)

7. a positive UTC offset specifier (`UTC+')

8. a negative UTC offset specifier (`UTC-')

9. a time system (TDT, TDB, UTC)

10. an era specifier (`A.D.', `B.C.', `AD', `BC')

11. a 12-hour clock specifier (`A.M.', `P.M.', `AM', `PM')

12. a Julian date specifier (`JD')

13. a day of year specifier (`::' or `//')

14. a period `.'

15. a dash `-'

16. a slash `/'

17. a colon `:'

18. a left parenthesis `('

19. a right parenthesis `)'

20. a single quote character (')

Once the next substring has been identified, its boundaries and classification are stored in the
next available location in the buffer reserved for the tokenized representation of the time string.

The steps above are then repeated until the entire substring has been tokenized or a failure to
recognize some substring occurs. If a failure occurs the location in the string is noted and a
diagnostic message is created indicating the failure in the attempt to parse the string.

When the tokenization is finished, there will be a list of tokens from which a string can be
constructed that lists the class of each token. Each class of token is represented by a single
character. By placing these characters in a string a simple list of token classes is maintained. The
characters used for the remainder of this discussion are listed below.

 Q stands for the quote character
 [stands for the left parenthesis character
] stands for the right parenthesis character
 , stands for the comma character
 - stands for the dash character
 . stands for the decimal point character
 / stands for the slash character
 : stands for the colon character
 N stands for one of the symbols A.M. or P.M.
 O stands for the symbol UTC+
 Z stands for a time zone such as PDT, PSD, CDT,
 b stands for a block of white space (spaces or tabs)
 d stands for the day of year marker (// or ::)
 e stands for the era (B.C. or A.D.)
 j stands for Julian date
 m stands for a month
 o stands for the symbol UTC-
 s stands for a time system (UTC, TDT, TDB)
 t stands the ISO date-T-time separator
 w stands for the day of the week
 i stands for a sequence of digits
Thus the list of token classifications corresponding to

 '1995 Jan 12 12:28:28'
will be

 'ibmbibi:i:i'

Combining and Removing Tokens

Once an internal tokenized representation of the time string has been created, the internal
representation is manipulated so that the meaning of the tokens is gradually discovered.

There are 3 basic operations that can be performed on the tokenized representation:

1. A token can be ``removed'' from the representation based on its classification. This
removal can be wholesale as in ``remove all tokens corresponding to the blank character'',
or it can be positional as in ``remove the last token classified as a blank.''

2. A sequence of tokens can be combined into a single new token with a potentially new
classification. For example you might have a subsequence of token classifications such as
ì.i' in the tokenized representation that corresponds to an unsigned integer, a period, and

another unsigned integer. Under suitable circumstances this sequence `i.i' might be
replaced by `n' (for number).

3. A single token can be reclassified. For example you might have a token whose
classification is `i' for `unsigned integer' and have it reclassified as an hour `H'

Initial Token Processing

The first phase of processing the tokenized time discovers any UTC offsets in the input string,
abbreviated months, decimal numbers, and removes white space. The process proceeds as
follows:

1. Token sequences that represent UTC time offsets are combined to form a single token
with a new classification. (The character used for this new kind of token is `Z'.)

2. Months or weekdays that are followed by a period are combined to form a single
token (month or weekday respectively). The motivation for this combination is to allow
abbreviations such as ``Jan.'' It also allows strings such as ``January.''

3. The right most sequence of tokens of the form ``i.i'', (integer-period-integer) or ``i.''
(integer-period) is combined to form a single token ``n'' (number). This combination is
performed only once in the token resolution process.

4. All blanks (``b'') are removed from the tokenization.

Julian Dates

The string is now examined to see if the Julian date specifier `JD' is present. If so the following
operations are performed. If no Julian date specifier is present, the steps below are skipped and
processing resumes under the section ``Calendar Dates.''

1. Any token sequence of the form `[s]' (left parenthesis - time system - right
parenthesis) is transformed to the sequence `*s*'. The `*' token is then removed. This
leaves just the time system (TDT, TDB, or UTC) specification in the tokenization.

-- Note: Whenever a character in the token classification is replaced by `*', the next step
is to remove all tokens classified as `*' from the token list. In the remainder of the
discussion, we will not add the sentence describing the removal of all asterisks. It will be
implicit that the asterisk is always removed after it is placed in the token list.

2. If the token sequence `[j]' (left parenthesis - Julian date specifier - right parenthesis) is
present, it is replaced by `*j*'

3. If no number token, `n', (see above) is present in the tokenization, the left most integer
(`i') is reclassified as a number (`n').

4. If the token sequence `-n' (dash - number) appears in the token list, it is combined
and classified as a number (`n'). This allows for the input of negative Julian dates.

5. The Julian date specifier `j' is noted and removed from the token list.

6. Any system token (`s') present in the token list is noted and removed.

7. The numeric components of the string are converted to double precision values and
the token list is checked for unresolved tokens. (The only thing that should be in the
token list at this point is a single numeric token.)

8. The parsing process halts. Either the string was successfully parsed and a double
precision value for the Julian date has been constructed or there were unresolved tokens
in the token list and a diagnostic message has been created.

Calendar Dates

If the Julian date specifier was not present in the token list, we assume that the string and token
list represents some calendar date format. One consequence of this assumption is that the dash `-'
is now assumed to be just a punctuation mark and not part of some number. ISO formats are
given first priority in the scheme of token resolution. Note that ISO formats do not allow the
inclusion of time systems, time zones, eras, or 12-hour clocks.

Any integer class tokens (`i') whose corresponding substrings represent integers greater than or
equal to 1000 are reclassified as years (`Y').

ISO Formats

If the ISO separator token `T' is present, the string is treated as an ISO format string. If the token
list matches one of the token patterns in the left column it is transformed to the corresponding
item in the right column by removing punctuation and making the indicated transformations.

 Y-i-iT YmD
 Y-i-iTi YmDH
 Y-i-iTi:i YmDHM
 Y-i-iTi:i:i ... YmDHMS
 Y-i-iTi:i:n ... YmDHMS
 Y-i-iTi:n YmDHM
 Y-i-iTn YmDH
 Y-iT Yy
 Y-iTi YyH
 Y-iTi:i YyHM
 Y-iTi:i:i YyHMS
 Y-iTi:i:n YyHMS
 Y-iTi:n YyHM
 Y-iTn YyH
 i-i-iT YmD
 i-i-iTi YmDH
 i-i-iTi:i YmDHM
 i-i-iTi:i:i ... YmDHMS
 i-i-iTi:i:n ... YmDHMS
 i-i-iTi:n YmDHM

 i-i-iTn YmDH
 i-iT Yy
 i-iTi YyH
 i-iTi:i YyHM
 i-iTi:i:i YyHMS
 i-iTi:i:n YyHMS
 i-iTi:n YyHM
 i-iTn YyH

 Y --- Year
 m --- Month
 D --- Day of Month
 y --- Day of Year
 H --- Hour
 M --- Minute
 S --- Second
If the token list contains the ISO separator (`T') but the list does not match one of the patters
shown above, the input string is regarded as erroneous.

Other Calendar Formats

If the ISO separator is not part of the token list, we next do what we can to recognize years and
note the presence of modifiers (time zone specification, era, 12-hour clock etc.)

1. If a two digit integer is preceded by the quote character ('), the pair of tokens is
combined to a single token and reclassified as a year.

2. The following token transformations are performed:

 '[e]' ---> '*e*' (parenthesized era to era)
 '[w]' ---> '*w*' (parenthesized weekday to weekday)
 '[N]' ---> '*N*' (parenthesized AM/PM to AM/PM)
 '[Z]' ---> '*Z*' (parenthesized time zone to time zone)
 '[s]' ---> '*s*' (parenthesized time system to time system)
 'ie', ---> 'Ye' (integer-era to Year-era)

3. Eras, weekdays, AM/PM, time zones, time systems are noted and removed from the
token list.

4. The string is examined for redundant commas, dashes, slashes periods, etc. If any are
found the string is regarded as erroneous.

Built in Representations

Having processed the token list to this point, we check to see if what remains is one of those in a
large set of immediately recognized token lists. The complete list is shown below. As in the case
of ISO formats, the left item is the token list, the right item is the transformation after removing
delimiters. Note that the letter `d' stands for a day-of-year delimiter (`//' or `::').

 Y-i-it......... YmD i/i/ii:i:n..... mDYHMS
 Y-i-iti........ YmDH i/i/ii:n....... mDYHM
 Y-i-iti:i...... YmDHM i/i/ii:n....... mDYHM
 Y-i-iti:i:i.... YmDHMS i:i:ii-i-Y..... HMSmDY
 Y-i-iti:i:n.... YmDHMS i:i:ii/i/Y..... HMSmDY
 Y-i-iti:n...... YmDHM i:i:ii/i/i..... HMSmDY
 Y-i-itn........ YmDH i:i:iimY....... HMSDmY
 Y-i/........... Yy i:i:imiY....... HMSmDY
 Y-i/i:i........ YyHM i:i:ni-i-Y..... HMSmDY
 Y-i/i:i:i...... YyHMS i:i:ni/i/Y..... HMSmDY
 Y-i/i:i:n...... YyHMS i:i:ni/i/i..... HMSmDY
 Y-i/i:n........ YyHM i:i:nimY....... HMSDmY
 Y-id........... Yy i:i:nmiY....... HMSmDY
 Y-idi:i........ YyHM i:ii-i-Y....... HMmDY
 Y-idi:i:i...... YyHMS i:ii/i/Y....... HMmDY
 Y-idi:i:n...... YyHMS i:ii/i/i....... HMmDY
 Y-idi:n........ YyHM i:iimY......... HMDmY
 Y-it........... Yy i:imiY......... HMmDY
 Y-iti.......... YyH i:ni-i-Y....... HMmDY
 Y-iti:i........ YyHM i:ni/i/Y....... HMmDY
 Y-iti:i:i...... YyHMS i:ni/i/i....... HMmDY
 Y-iti:i:n...... YyHMS i:nimY......... HMDmY
 Y-iti:n........ YyHM i:nmiY......... HMmDY
 Y-itn.......... YyH iYd............ yY
 Yid............ Yy iYdi:i......... yYHM
 Yidi:i......... YyHM iYdi:i:i....... yYHMS
 Yidi:i:i....... YyHMS iYdi:i:n....... yYHMS
 Yidi:i:n....... YyHMS iYdi:n......... yYHM
 Yidi:n......... YyHM iiY............ mDY
 Yii............ YmD iiYi........... mDYH
 Yiii........... YmDH iiYi:i......... mDYHM
 Yiii:i......... YmDHM iiYi:i:i....... mDYHMS
 Yiii:i:i....... YmDHMS iiYi:i:n....... mDYHMS
 Yiii:i:n....... YmDHMS iiYi:n......... mDYHM
 Yiii:n......... YmDHM iiYn........... mDYH
 Yiiii.......... YmDHM iid............ Yy
 Yiiiii......... YmDHMS iidi:i......... YyHM
 Yiiiin......... YmDHMS iidi:i:i....... YyHMS
 Yiiin.......... YmDHM iidi:i:n....... YyHMS
 Yiin........... YmDH iidi:n......... YyHM
 Yim............ YDm iim............ YDm
 Yimi........... YDmH iimi........... YDmH
 Yimi:i......... YDmHM iimi:i......... YDmHM
 Yimi:i:i....... YDmHMS iimi:i:i....... YDmHMS
 Yimi:i:n....... YDmHMS iimi:i:n....... YDmHMS
 Yimi:n......... YDmHM iimi:n......... YDmHM
 Yimn........... YDmH iimii.......... YDmHM

 Yin............ YmD iimiii......... YDmHMS
 Ymi............ YmD iimiin......... YDmHMS
 Ymii........... YmDH iimin.......... YDmHM
 Ymii:i......... YmDHM iimn........... YDmH
 Ymii:i:i....... YmDHMS imY............ DmY
 Ymii:i:n....... YmDHMS imYi........... DmYH
 Ymii:n......... YmDHM imYi:i......... DmYHM
 Ymin........... YmDH imYi:i:i....... DmYHMS
 Ymn............ YmD imYi:i:n....... DmYHMS
 Ynm............ YDm imYi:n......... DmYHM
 i-Y/........... yY imYn........... DmYH
 i-Y/i:i........ yYHM imi............ YmD
 i-Y/i:i:i...... yYHMS imi:i:iY....... DmHMSY
 i-Y/i:i:n...... yYHMS imi:i:nY....... DmHMSY
 i-Y/i:n........ yYHM imi:iY......... DmHMY
 i-Yd........... yY imi:nY......... DmHMY
 i-Ydi:i........ yYHM imii........... YmDH
 i-Ydi:i:i...... yYHMS imii:i......... YmDHM
 i-Ydi:i:n...... yYHMS imii:i:i....... YmDHMS
 i-Ydi:n........ yYHM imii:i:n....... YmDHMS
 i-i-Y.......... mDY imii:n......... YmDHM
 i-i-Yi:i....... mDYHM imiii.......... YmDHM
 i-i-Yi:i:i..... mDYHMS imiiii......... YmDHMS
 i-i-Yi:i:n..... mDYHMS imiiin......... YmDHMS
 i-i-Yi:n....... mDYHM imiin.......... YmDHM
 i-i-it......... YmD imin........... YmDH
 i-i-iti........ YmDH imn............ YmD
 i-i-iti:i...... YmDHM inY............ mDY
 i-i-iti:i:i.... YmDHMS inm............ YDm
 i-i-iti:i:n.... YmDHMS miY............ mDY
 i-i-iti:n...... YmDHM miYi........... mDYH
 i-i-itn........ YmDH miYi:i......... mDYHM
 i-i/i:i........ YyHM miYi:i:i....... mDYHMS
 i-i/i:i:i...... YyHMS miYi:i:n....... mDYHMS
 i-i/i:i:n...... YyHMS miYi:n......... mDYHM
 i-i/i:n........ YyHM miYn........... mDYH
 i-idi:i........ YyHM mii............ mDY
 i-idi:i:i...... YyHMS mii:i:iY....... mDHMSY
 i-idi:i:n...... YyHMS mii:i:nY....... mDHMSY
 i-idi:n........ YyHM mii:iY......... mDHMY
 i-it........... Yy mii:nY......... mDHMY
 i-iti.......... YyH miii........... mDYH
 i-iti:i........ YyHM miii:i......... mDYHM
 i-iti:i:i...... YyHMS miii:i:i....... mDYHMS
 i-iti:i:n...... YyHMS miii:i:n....... mDYHMS
 i-iti:n........ YyHM miii:n......... mDYHM
 i-itn.......... YyH miiii.......... mDYHM
 i/i/Y.......... mDY miiiii......... mDYHMS
 i/i/Y/i:n...... mDYHM miiiin......... mDYHMS
 i/i/Yi:i....... mDYHM miiin.......... mDYHM
 i/i/Yi:i:i..... mDYHMS miin........... mDYH
 i/i/Yi:i:n..... mDYHMS mnY............ mDY
 i/i/i.......... mDY mni............ mDY
 i/i/ii:i....... mDYHM nmY............ DmY
 i/i/ii:i:i..... mDYHMS

If the token list agrees with one of the items in the above list, the double precision value
corresponding to each token is computed and the parsing process halts with success.

Last Resort Production Rules

If the token list did not match one of the built-in patterns above, several checks are performed to
see if there is redundant information in the token list (duplicate time systems, eras, etc.) If any
such duplicate items are located, the input string is diagnosed as erroneous.

Assuming that the error checks just discussed do not produce an error diagnosis, the string is
processed according to the following rules:

1. Commas, dashes, and slashes are removed from the token list. The resulting token list
is then compared once more against the list of token patterns above. If there is a
successful match, the parsing process halts with success.

2. The following list of transformations are attempted in the order indicated.

 'i:i:i:n' ---> 'D*H*M*S' (days, hours, minutes, seconds)
 'i:i:i:i' ---> 'D*H*M*S' (days, hours, minutes, seconds)
 'i:i:n' ---> 'H*M*S' (hours, minutes, seconds)
 'i:i:i' ---> 'H*M*S' (hours, minutes, seconds)
 'i:n' ---> 'H*M' (hours, minutes)
 'i:i' ---> 'H*M' (hours, minutes)

3. All colons are removed from the token list.

4. The following list of transformations are attempted in the order indicated.

 '<miiH' ---> 'mDY' (month, day, year)
 '<mi' ---> 'mD' (month, day)
 'Siim>' ---> 'SYDm' (seconds, year, day, month)
 'im>' ---> 'Dm' (day, month)
 'miY>' ---> 'mDY' (month, day, year)
 'Ymi' ---> 'YmD' (year, month, day)
 'Smi' ---> 'SmD' (seconds, month, day)
 'Mmi' ---> 'MmD' (minutes, month, day)
 'imY' ---> 'DmY' (day, month, year)
 'imH' ---> 'DmH' (day, month, hour)
 'Yid' ---> 'Yy*' (year, day-of-year)
 'iYd' ---> 'yY*' (day-of-year, year)
 'Ydi' ---> 'Y*y' (year, day-of-year)

 The characters '<' and '>' mean that the transformation is
 performed only if the token list occurs at the beginning or
 end respectively of the the token list.

5. The token list is now examined to determine whether any unresolved numeric tokens
remain. If unresolved numeric tokens are present, the input string is diagnosed as
erroneous. If no unresolved components remain, the token list is checked for consistency.
For example there can be only one of each type of token, and there must be a sufficient
number of tokens present to unambiguously determine the epoch.

Conclusion

As can be surmised from the preceding discussion, it is very difficult to give a complete list of all
token patterns that might yield a parsed time string. Nevertheless, we feel that the approach taken
and the transformations applied will yield correct and consistent interpretations of the many
ways people choose to represent time.

