Time Routinesin CSPICE

Revisions

22 July 1997

This edition of TIME Required Reading documents the routine ET2LST. This routine alows
user'sto easly convert Ephemeris Time (Barycentric Dynamicd Time) to the locd solar time at
auser specified longitude on the surface of an object.

In addition to the new routine ET2L ST, we document a dight extension of the set of time gtrings
that are recognized by the SPICE time software. This extenson is documented in Appendix B.

15 October 1996

This edition of TIME Required Reading is a substantid revison to the previous edition; this
reflects amgor enhancement of the SPICE time software. This version describes the new time
related software that was included in verson N0046 of SPICE . We dso draw distinctions
between the various levels of time conversion software that are available to Toolkit users.

The following routines are new as of verson N0046 of SPICELIB.

STR2ET TSETYR TTRANS JUL2GR

TI MOUT T1 MDEF TPARTV GR2JUL
TPI CTR TCHCKD TCHECK TEXPYR

30 June 1994

This verson differs substantialy from the previous version of 13 April 1992. Much of the
description of the time software has been redone and sections added to describe how to modify
time string parsing behavior and the conversion between uniform time systems.

13 April 1992

Thisverson differs from the previous version of 10 April 1991 in thet it discusses the new
routine, UNITIM, for converting between additive numeric time systems.

References

The formulation and the vaues used in this document are taken from the following sources

1. Moyer, T.D., Transformation from Proper Time on Earth to Coordinate Timein Solar
System Barycentric Space- Time Frame of Reference, Parts 1 and 2, Celestia Mechanics
23 (1981), 33-56 and 57-68.

2. Moyer, T.D., Effects of Converson to the J2000 Astronomical Reference System on
Algorithms for Computing Time Differences and Clock Rates, JPL IOM 314.5--942, 1
October 1985.

3. The Explanatory Supplement to the Astronomica Almanac (1992) Edited by P.
Kenneth Seiddmann, Univeraty Science Books, Mill Valey, Cdifornia 94941

4. SCLK Required Reading.

The variable names usad are cong stent with notations used in the Astronomica Almanac.

For agenera and very ble discussion of time we recommend:
5. James Jespersen and Jane Fitz Randolph ~"From Sundidsto Atomic Clocks---

Understanding Time and Frequency" (Dover Publications, Inc. 1977) ISBN 0-486-24265-
X

| ntroduction

This document describes the software available in the SPICE Tooalkit for manipulating various
representations of time. It isyour main source for genera information about calendar based and
continuous time systems in SPICE . For specifics of aparticular routine you should consult the
header of that routine.

In addition to the discussion of time software, there are two gppendices to this document. The
first provides basic background materia on various time systems. The second discussesthe
details of how time strings are parsed in the SPICE system.

The Toolkit also supports conversion between spacecraft clock (SCLK) and Barycentric
Dynamica Time (TDB). However, spacecraft clock conversion is mentioned only in the context

of background information in Appendix A. SPICE routines degling with spacecraft clock are
discussed in SCLK Required Reading.

Intended Audience

This document is intended for al SPICE users.

Overview

SPICE contains a versatile st of time conversion routines designed to smplify conversons

between severa time systems. The basic time systems supported are: Coordinated Universa
Time (UTC), Barycentric Dynamica Time (TDB) and Terrestrid Dynamica Time (TDT). In
addition, most common time formats are supported including: caendar, day of year, and Julian
Date.

A brief description of the various time systemsis given in Appendix A.

If You'reinaHurry

Well discuss things in more detall in amoment, but in case you are just looking for the right
name of the routine to perform some time transformation task, here is a classfication of the time
routinesin SPICE. We touch on only the most important routines in the remainder of this
overview.

Loading a LegpsecondsKerndl

LDPOOL (FILE)
Converting stringsto ET

STR2ET (STRING, ET)
UTC2ET (UTCSTR, ET)

TPARSE (STRING, SP2000, ERROR)
Converting ET to agtring

TIMOUT (ET, PICTUR, STRING)
ET2UTC (ET, FORMAT, PREC, UTCSTR)

ETCAL (ET, STRING)
Converting between numeric representations of time

UNI TIM (DPTIME, |NSYS, OUTSYS)
Runtime modification of behavior

TIMDEF (ACTION, | TEM VALUE)
TSETYR (YEAR)

TPARCH (YESNO)
Formetting ad

TPICTR (SAMPLE, PICTUR, OK, ERRCR)
Converting ET to locd solar time on the surface of an object.

ET2LST (ET, BODY, LONG TYPE, HR, M\, SC, TIME, AMPM)
Foundation routines

TTRANS (INTYP, OUTTYP, TIMEC)

TPARTV (STRI NG, TVEC, NTVEC, TYPE,
MODI FY, MODS, YABBRV, SUCCES,
Pl CTUR, ERROR)

Utilities
DELTET (EPOCH, EPTYPE, DELTA)
TEXPYR (YEAR)

TCHCKD (YESNO)
JUL2GR (YEAR, MONTH, DAY, DOY)
GR2JUL (YEAR, MONTH, DAY, DOY)

TCHECK (TVEC, TYPE, MODS, MODI FY, OK, ERROR)
Time congants

B1900 ()
B1950 ()
J1900 ()
J1950 ()
J2000 ()
J2100 ()
JYEAR ()
SPD ()
TYEAR ()

The J2000 Epoch

The basic spatid reference system for SPICE is the J2000 system. Thisisan inertia reference
frame in which the equations of motion for the solar syssem may be integrated. This reference
frameis specified by the orientation of the earth's mean equator and equinox at a particular epoch
--- the J2000 epoch. This epoch is Greenwich noon on January 1, 2000 Barycentric Dynamical
Time. Throughout the SPICE documentation, you will see the expressions. — seconds past 20007,
““seconds past J2000"; or " "seconds past the J2000 epoch.” In all cases, the reference epochis
noon January 1, 2000 on a particular time scae.

(Aswevejust seen T J2000" is used to name the fundamenta inertia frame and a particular
epoch. This can sometimes be confusing if you are not careful to distinguish the context in which
the term ~"J2000" is used.)

L eapseconds

Inamost dl cases, before converting between different representations of time you must ™ load”
aleapseconds kernel (LSK) into memory. The leapseconds kernel isatext kernel and isloaded
viathe routine LDPOOL.

LDPOOL ("<file name of |eapseconds kernel >)

The legpseconds kernd is discussed in more detall later in this document.

Converting Time Stringsto Numeric Representations

If you are starting with a representation of time in the form of a gtring such as "Mon Sep 30
09:59:10 PDT 1996" you will normally need to get thisinto a numeric representation before you
can work with it. The basic routine for converting strings to a numeric representation is STR2ET
("String to ET™).

STR2ET (STRING, ET)
STR2ET computes the ephemeris epoch corresponding to an input string. The ephemeris epoch
is represented as seconds past the epoch of the J2000 reference frame in the time system known
as Barycentric Dynamicd Time (TDB). Thistime system is aso referred to as Ephemeris Time
(ET) throughout the SPICE Toolkit.

The variety of ways people have developed for representing timesis enormous. It is unlikely that
any single subroutine can accommodate al of the custom time formats that have arisen in

various computing contexts. However, we bdieve that STR2ET correctly interprets most time
formats used throughout the planetary science community. For example STR2ET supports 1SO
time formats, UNIX "date’ output formats. VM S time formats, MS-DOS formeats, epochsin both
the A.D. and B.C. eras, time zones, etc.

If you've been usng the Toolkit for awhile you are probably familiar with the routine UTC2ET.

UTC2ET (UTCSTR, ET)
UTC2ET provides a subset of the cgpabiilities contained in STR2ET. It does not recognize time
zones or time systems other than the UTC system. However, it has been the work horse for time
converson within the Toolkit for many years. In verson NOO46 of the Toolkit it was upgraded to
support 1SO time formats.

If you are writing new code, we recommend that you use the routine STR2ET. There is no need
to upgrade any of your existing code that cals UTC2ET. However, you may want to replace
cdlsto UTC2ET with cdlsto STR2ET due to the grester flexibility of STR2ET.

Converting Numeric Representationsto Time Strings

If you need to examine an epoch given as some double precision number of seconds past J2000,
you will normally want to convert it to some more meaningful representation. There are two
routines normaly used for thistask. They offer varying degrees of flexibility in the output strings
they can produce. The more generd of theseis TIMOUT.

TIMOUT (ET, PICTUR STRING)
Given an epoch ET expressed as doubl e precision seconds past J2000 and a format picture pictur
that you would like to use asamode for the output time strings, TIMOUT produces a string
representing the input ET in aformat that matches the one specified by pictur with the length of
the string lenout. Using TIMOUT you can produce atime string in dmost any format you desire
(including many that cannot be recognized by any of the SPICE software). To assigt in creating a
format picture the routine TPICTR is provided. TPICTR takes a sample time string and produces
the format picture that corresponds to the sample. By using TPICTR and TIMOUT together you
can easily produce stringsin the format you are used to seeing.

Lessflexible, but dightly easier to use, ET2UTC has been the standard SPICE time formatting
routine for many years.

ET2UTC (ET, FORMAT, PREC, UTCSTR)
This routine supports severd fixed formats. calendar, Julian Date (UTC), day-of-year, 1SO
year/month/day, and I SO year/day-of-year. Y ou may adjust the number of digits that follow the
decima point in the seconds component (or day in the Julian Date formet).

Converting between Different Numeric Formats

Y ou may need to convert between different numeric representations of time such as TDT, Julian
Date TDB, TAI seconds past J2000, etc. The routine UNITIM is available for such conversions.

UNI TIM (DPTI ME, | NSYS, OUTSYS)

I nitialization

L eapseconds K ernel

Most SPICE time routines make use of the information contained in a legpseconds kerndl.
Specificdly, dl of the following routines make use of the legpseconds kerndl.

STR2ET

Converts stringsto ET.
UTC2ET

Converts UTC dringsto ET
TIMOUT

Converts ET to grings
ET2UTC

ConvertsET toaUTC gtring.
UNITIM

Converts between numeric time systems
TTRANS

Converts between different parsed representations of time
Before any of these routines can be used you must ™ load" alegpseconds kerndl into the ~kernel
pool.” Thisis done by cdling the routine LDPOOL, whose cdling sequenceis

LDPOOL (KERNEL)
KERNEL isthe name of a " "legpseconds kerndl." Leapseconds kernds are text based kernels
containing the epochs of legp seconds and other constants required by the time conversion
routines.

The leapseconds kernel needs to be loaded just once per program run; normally, the legpseconds
kernd isloaded in a program'sinitiaization section.

The precise contents of the legpseconds kernel are discussed in the section " Computing Delta
ET" below. Text kernels and the routine LDPOOL are discussed in more detail in KERNEL
Required Reading.

SPK and PCK kernels

The routine ET2L ST converts ephemeristime (ET) to the locd solar time for apoint at a user
specified longitude on the surface of abody. This computation is performed using the bodyfixed
location of the sun. Consequently, to use ET2L ST you mugt first load SPK and PCK filesthat
contain sufficient position and orientation data for the computation of the bodyfixed locetion of
the sun.

SPK files are loaded using the routine SPKLEF.

SPKLEF ('<spk file name>', HANDLE)
PCK files are usualy text based. Text based kernels are loaded by calling LDPOOL.

LDPOOL (KERNEL)
Occasondly, PCK, files are binary (DAF based) files that contain the orientation of an object
with respect to an inertid frame. Binary PCK files are loaded with the routine PCKLOF.

PCKLOF ('<binary pck file name>', HANDLE)
Aswith the leapseconds kernel, SPK and PCK files need to be loaded just once per program run-
--usudly a program initidization.

Input String Conversion

We normaly represent epochs as a combination of a date and time of day. In C the smplest
means of specifying an epoch as adate and timeisto creste astring such as:

STRING = 'Oct 1, 1996 09:12: 32
However, arithmetic is most eadily performed with numeric representations of time. In SPICE
we represent epochs as some number of double precision seconds past the J2000 epoch.

SPICE contains three routines for converting strings directly to ~"seconds past 2000." They are
STR2ET, UTC2ET, and TPARSE. All of these routines take a string as input and produce a
double precison number that gives the number of seconds past the J2000 epoch corresponding to
the input string. The method of andyzing the input string and assgning meaning to its various
componentsisidentica for al three routines. Thisandysisiscdled ““parsing” the gring. All

three routines, STR2ET, UTC2ET and TPARSE, use the ~ foundation" routine TPARTYV to parse
the input string. Each then interprets the results of TPARTV to assign meaning to the string.

Beow are anumber of examples of strings and the interpretation assigned to the various
components.

1SO (T) Formats.

String Year Mon DOY DOM HR M n Sec
1996- 12-18T12: 28: 28 1996 Dec na 18 12 28 28
1986-01- 18T12 1986 Jan na 18 12 00 00
1986-01-18T12: 19 1986 Jan na 18 12 19 00
1986-01-18T12: 19: 52. 18 1986 Jan na 18 12 19 52.18
1995-08T18: 28: 12 1995 na 008 na 18 28 12
1995-18T 1995 na 018 na 00 00 00
Calendar Formats.
String Year Mon DOM HR M n Sec
Tue Aug 6 11:10:57 1996 1996 Aug 06 11 10 57
1 DEC 1997 12:28:29.192 1997 Dec 01 12 28 29.192
2/3/1996 17:18:12.002 1996 Feb 03 17 18 12.002
Mar 2 12:18:17.287 1993 1993 Mar 02 12 18 17.287
1992 11:18:28 3 Jul 1992 Jul 03 11 18 28
June 12, 1989 01:21 1989 Jun 12 01 21 00
1978/ 3/ 12 23:28:59. 29 1978 Mar 12 23 28 59.29
17JUN1982 18: 28: 28 1982 Jun 17 18 28 28
13:28:28.128 1992 27 Jun 1992 Jun 27 13 28 28.128
1972 27 jun 12:29 1972 Jun 27 12 29 00
'93 Jan 23 12:29:47.289 1993* Jan 23 12 29 47.289
27 Jan 3, 19:12:28.182 2027* Jan 03 19 12 28.182

23 A D. APR 4, 18:28:29.29 0023 Apr 04 18 28 29.29
18 B.C. Jun 3, 12:29:28.291 -017 Jun 03 12 29 28.291

29 Jun 30 12:29:29.298 2029+ Jun 30 12 29 29.298
29 Jun '30 12:29:29.298 2030* Jun 29 12 29 29.298
Day of Year Formats

String Year DOY HR M n Sec
1997-162::12:18: 28. 827 1997 162 12 18 28.827

162- 1996/ 12: 28: 28. 287 1996 162 12 28 28.287

1993- 321/ 12: 28: 28. 287 1993 231 12 28 28.287

1992 183// 12 18 19 1992 183 12 18 19
17:28:01.287 1992-272// 1992 272 17 28 01. 287
17:28:01. 282 272-1994// 1994 272 17 28 01.282
'92-271/ 12:28:30.291 1992* 271 12 28 30.291
92-182/ 18:28:28.281 1992* 182 18 28 28.281
182-92/ 12:29:29.192 0182+ 092 12 29 29.192
182-'92/ 12:28:29.182 1992 182 12 28 29.182

Julian Date Strings

jd 28272.291 Julian Date 28272. 291
2451515. 2981 (JD) Julian Date 2451515. 2981

2451515. 2981 JD Julian Date 2451515. 2981
Abbreviations Used in Tables

na --- Not Applicable
Mon --- Month

DOY --- Day of Year
DOM --- Day of Month
Wkday --- Weekday

Hr --- Hour

M n --- Mnutes

Sec --- Seconds

The default interpretation of ayear that has been abbreviated with aleading quote asin
Xy (such as'92) isto treat the year as 19xy if Xy ismore than 49 and to treet it is 20xy
otherwise. Thus '52 isinterpreted as 1952 and '47 is treated as 2047.

When aday of year format or calendar format string isinput and neither of the integer
components of the date is greater than 1000, the first integer is regarded as being the year.

Parsing Time Strings

A time gring is parsed by first scanning the string from left to right and identifying recognizable
substrings. (integers, punctuation marks, names of months, names of weekdays and time
gystems, time zones, etc.) These recognizable substrings are cdled the tokens of the input string.
The meaning of some tokens areimmediately determined. For example named months,
weekdays and time systems have clear meanings. However, the meanings of numeric
components must be deciphered from their magnitudes and location in the string rdative to the
immediately recognized components of the input string.

The fallowing substrings are immediately recognizable.
1. All months (January, February, ...) or any abbreviation of at least 3 letters;
2. All weekdays (Sunday, Monday, ...) or any abbreviation of at least 3 letters;

3. Standard abbreviations of U.S. time zones. 'EST', 'EDT", 'CST", 'CDT', 'MST', 'MDT,
'PDT', 'PST".

4. The abbreviationsfor eras. 'B.C.", 'BC','A.D.", and 'AD’;
5. Timesysems. TDT', TDB', 'UTC' (Note that 'ET" is not a recognized time system);

6. Julian Date Labd: 'JD" (Note that JED is not arecognized Julian Date Labd);

7. The 12-hour clock labdls 'A.M.", 'AM"', 'P.M." and 'PM";

8. Time Zones expressed as UTC offsets UTC+HR:MN, UTC-HR:MN where HR isan
unsigned integer between 0 and 12 inclusive; MN is an unsigned integer between 0 and
59 inclusive.

With the exception of months, al items above may be enclosed in parentheses. For example
"TDB' and '(TDB)' are both recognized as the same time system.

The case of the letters in these substrings does not matter. For example al of the various ways of
writing TDB' ('TDB', tDB, ... 'tdb’) are recognized as 'TDB'.

It is not necessary to leave space between the various substrings. For example IDTDT and
JDUTC are recognized as'JD' followed by 'TDT' and 'JD' followed by 'UTC' respectively.

To determine the meaning of the numeric tokensin theinput string, a set of transformation rules
are gpplied to the full set of tokensin the string. These transformations are repested until the
meaning of every token has been determined or until further transformations yield no new clues
into the meaning of the numeric tokens. Here is an overview of the rules that are applied to the
various tokensin the string.

1. Unlessthe substring JD or jd is present the string is assumed to be a calendar format
(day-month-year or year and day of year). If the substring JD or jd is present, the string is
assumed to represent a Julian date.

2. If the dulian date specifier is not present, any integer greater than 999 is regarded as
being ayear specification.

3. A dash *-' can represent aminus Sgn only if it precedes the firg digit in the string and
the string contains the Julian date specifier (JD). (No negative years, months, days, etc
are dlowed).

4. Numeric components of atime string must be separated by a character that isnot a
digit or decima point. Only one decima component is alowed. For example
1994219.12819 is sometimes interpreted as the 219th day of 1994 + 0.12819 days. The
SPICE time parsing software does not support such strings.

5. No exponentiad components are alowed. For example you can't input 1993 Jun 23
23:00:01.202E-4. Y ou have to explicitly lit al zeros that follow the decimd point: i.e.
1993 Jun 23 23:00:00.0001202

6. Thesingle colon (:) when used to separate numeric components of adring is
interpreted as separating Hours, Minutes, and Seconds of time.

7. If adouble dash (/) or double colon (::) follows apair of integers, those integers are
assumed to represent the year and day of year.

8. A quote followed by an integer lessthan 100 is regarded as an abbreviated year. For
example: '93 would be regarded as the 93rd year of the reference century. See TEXPYR
for further discussion of abbreviated years.

9. Aninteger followed by 'B.C.' or 'A.D." is regarded as a year in the era associated with
that abbreviation.

10. All dates are regarded as belonging to the extended Gregorian Caendar (the
Gregorian caendar isthe calendar currently used by western society).

11. If the 1SO date-time separator (T) is present in the string, only 1SO alowed token
patterns are examined for a match with the current set of tokens. If no match isfound the
search is abandoned and appropriate diagnostic messages are generated.

12. If two ddimiters are found in successon in the time gtring, thetime string is
diagnosed as an erroneous string. (Delimiters are comma, white space, dash, dash,
period, day of year mark)

Note the ddlimiters do not have to be the same. The pair of characters ™ ,-" counts as
two successive ddimiters.

13. White space and commas serve only to ddimit tokens in the input string; they do not
affect the meaning of any of the tokens.

14. When the sizes of the integer components do not clearly specify ayear but the name
of amonth is present (for example 'APRY) the following patterns are assumed

Year Mont h Day
Mont h Day Year
Year Day Month

15. When integer components are separated by dashes (/) asin 3/4/5. The integers are
assumed to be Month, Day, Year. Thusin our example '3/4/5' is assumed to mean 4th of
March in the year '05.

16. If aday of year marker is present (// or ::) and the size of the integer components
does not clearly specify the year (asin 45-33//) the gtring isinterpreted as Y ear Day-of-
Year. Thus 45-33// isinterpreted as the 33rd day of the year '45.

Once the various tokens have been determined and a meaning attached to them, the routines
STR2ET, UTC2ET, and TPARSE, use the tokens to congtruct the double precision number
giving the number of seconds past J2000 that corresponds to input string. However, not dl
tokens or token combinations are allowed by the routines.

STR2ET

Theroutine STR2ET isthe mogt flexible of the three time transformation routines. STR2ET
accepts the widest variety of time strings. To illudtrate the various features of STR2ET we begin
by considering the string

1988 June 13, 3:29:48
Thereisnothing in this string to indicate what time system the date and time belong to.
Moreover, there is nothing to indicate whether the time is based on a 24-hour clock or twelve
hour clock.

In the absence of such indicators, the default interpretation of this string isto regard the time of
day to be atime on a 24-hour clock in the UTC time system. The date is a date on the Gregorian
Cdendar (thisisthe caendar used in nearly dl western societies).

Labels (A.M. and P.M.)

If you add more information to the string, STR2ET can then make a more informed
interpretation of the time string. For example:

1988 June 13, 3:29:48 P.M
isgtill regarded as a UTC epoch. However, with the addition of the "P.M." [abdl it is now
interpreted as the same epoch as the unlabeled epoch 1988 June 13, 15:29:48. Smilarly

1988 June 13, 12:29:48 A M
isinterpreted as

1988 June 13, 00:29:48
on the 24-hour clock.

For the Record

12:00 A.M. corresponds to Midnight (00:00 on the 24-hour clock). 12:00 P.M. corresponds to
Noon (12:00 on the 24-hour clock).

Labels (Time Zones)

Y ou may add till further indicators to the string. For example

1988 June 13, 3:29:48 P.M PST
isinterpreted as an epoch in the Pacific Standard Time system. Thisis equivaent to

1988 June 13, 23:29:48 UTC
All of the stlandard abbreviations for U.S. time zones are recognized by the time parser.

EST --- Eastern Standard Time (UTC-5:00)
CST --- Central Standard Tinme (UTC-6:00)
MST --- Mountain Standard Tinme (UTC-7:00)
PST --- Pacific Standard Time (UTC-8:00)
EDT --- Eastern Daylight Time (UTC-4:00)
CDT --- Central Daylight Time (UTC-5:00)
MDT --- Mountain Daylight Time (UTC-6:00)
PDT Pacific Daylight Time (UTC-7:00)

In addition, any other time zone may be specified by representing its offset from UTC.

To specify an offset from UTC you need to create an offset labd. Thelabel sarts with the letters
"UTC followed by a "+ for time zones east of Greenwich and *-' for time zones west of
Greenwich. Thisisfollowed by the number of hours to add or subtract from UTC. Thisis
optiondly followed by a colon "' and the number of minutes to add or subtract to get the local
time zone. Thusto specify the time zone of Cacutta (whichis5 and 1/2 hours ahead of UTC)
you would specify the time zone to be UTC+5:30. To specify the time zone of Newfoundland
(whichis 3 and 1/2 hours behind UTC) use the offset notation UTC-3:30.

For the Record

L egpseconds occur at the sametimein al time zones. In other words, the seconds component of
atime gring isthe same for any time zone asis the seconds component of UTC. The following
are dl legitimate ways to represent an epoch of some event that occurred in the legpsecond

1995 December 31 23:59:60.5 (UTC)

1996 January 1, 05:29:60.5 (UTC+5:30 --- Calcutta Tine)
1995 Decenber 31, 20:29:60.5 (UTC 3:30 --- Newfoundl and)

1995 December 31 18:59:60.5 (EST)
1995 Decenmber 31 17:59:60.5 (CST)
1995 Decenber 31 16:59:60.5 (MST)
1995 Decenber 31 15:59:60.5 (PST)

Labels(TDT, TDT, and UTC)

In addition to specifying time zones you may specify that the string be interpreted as aforma
caendar representation in either the Barycentric Dynamicad Time system (TDB) or the
Terrestrid Dynamicd Time sysem (TDT).

In these systems there are no leapseconds; every day has exactly 86400 seconds. TDB times are
written as

1988 June 13, 12:29:48 TDB
TDT times are written as;

1988 June 13, 12:29:48 TDT
To add clarity or to override any changes you happen to make to the default behavior of ET2STR
(see below) you may add the labdl “"UTC" to any time gtring.

1998 Jun 13, 12:29:48 UTC
Note that the system label may be placed anywhere in the time gring. All of the following will
be understood by the time parsing software:

TDB 1988 June 13, 12:29:48

1988 June 13, 12:29:48 TDB
1988 June 13, TDB 12: 29: 48

UTC2ET

The routine UTC2ET can be thought of as averson of STR2ET thet dlows a narrower range of
inputs. It converts strings in the UTC system to TDB seconds past the J2000 epoch. 1t does not
support other time systems or time zones. In addition UTC2ET does not recognize times on a 12-
hour clock. Strings such as

1983 June 13, 9:00:00 A M
are treated as erroneous by UTC2ET.

TPARSE

Theroutine TPARSE can be thought of as anarrow verson of STR2ET that alows only TDB as
input. TPARSE converts strings on aformal time scale to seconds past the J2000 epoch.
TPARSE doesn't " know" anything about legpseconds. Since TPARSE does not make use of
legpseconds, it can be used without first loading a lespseconds kerndl.

Like UTC2ET, TPARSE does not recognize other time systems or time zones. Also it does not
recognize times on a 12- hour clock.

Unlike STR2ET and UTC2ET, TPARSE does not make use of the SPICE exception handling
subsystem. Erroneous strings are diagnosed viaa string---ERROR. If the string ERROR is
returned empty (blank) no problems were detected in the input string. If ERROR is returned by
TPARSE non-blank, it contains a diagnostic message that indicates problems with the input time

gring.

Changing Default Behavior

The three time string transformation routines can be adjusted at run time so that various built in
defaults can be changed without re-writing any of the code for the routines.

Abbreviated Years

All three gtring transformation routines tregt abbreviated years in the same fashion. The default
behavior isto map any abbreviated year into the range from 1968 to 2067. Thus the year 22
corresponds to 2022; 77 correspondsto 1977. However, you may reset the lower end of this 100
year range viathe routine TSETY R. For exampleif you would like to set the default range to be
from 1972 to 2071 issue the following subroutine call:

TSETYR (1972)
Note that this change affects the behavior of dl three string conversion routines.

Range of Time String Components

The routines TPARSE and UTC2ET accept time strings whose numeric components are outside
of the norma range of vaues used in time and caendar representations. For example strings
such as

1985 FEB 43 27:65:25 (equivalent to 1985 MAR 16 04: 05:25)
will be accepted as input. Y ou might wish to redtrict the range of input strings so that this
behavior is not alowed. The routine TPARCH is provided for this purpose. If you place the
following subroutine cal

TPARCH (' YES')
early inyour program, prior to any calsto UTC2ET or TPARSE, the components of calendar
strings will be restricted so that al caendar components will be in the “expected” range. (The
exact ranges for the components are spelled out in the header for TPARCH)

STR2ET does not accept time strings whose components are outside the norma range used in
conversation. Y ou cannot dter this behavior without re-coding STR2ET.

Default Time Systems and Time Zone

When a gring is presented without atime system or time zone label STR2ET assumesthat the
gring represents atime in adefault time zone or time system. If you take no action, the default
time sysem isUTC. (Thereis no time zone offset; UTC isthe same as UTC+00:00) Y ou can
override the default by smply including the time zone or time system of interest in the input time
string. However, under some circumstances you may find that you dmost dways use the TDB
time system. In such a case you would normdly need to include the TDB labd in the time string
every time you use STR2ET. Hence, the defaults used by STR2ET might be a hindrance rather
than a convenience. With this possibility in mind, STR2ET has been designed so that you may
dter its default behavior with regard to default time system or time zone. To change the default
time system or time zone use the routine TIMDEF.

(Kegp in mind that if you specify atime zone or time system labd in the input time string the
default time zone or system is not used. Thelabd in the string is used to determine the time zone
or time system.)

Changing the Time System

Three time systems are supported: UTC, TDB, TDT. To change the default system to one of
these three systems issue the gppropriate subroutine cal below:

TIMDEF (' SET', 'SYSTEM, 'UTC)
TIMDEF (' SET', 'SYSTEM, 'TDB')
TI MDEF (' SET', 'SYSTEM, 'TDT')

Note that setting atime system turns off any default time zone you may have set using TIMDEF.

Time Zones

All time zones are supported by STR2ET. The default time zone is smply Greenwich Mean
Time (UTC+00:00). To change the default behavior of STR2ET so that unlabeled strings are
assumed to be referenced to a particular time zone (for example Pacific Standard Time) issue the
subroutine cal below.

TIMDEF (' SET', 'ZONE', 'PST')
Note that setting atime zone turns off any default time system you may have set via TIMDEF.

Calendars

The default calendar used by STR2ET isthe Gregorian calendar. However, the Gregorian
caendar did not come into existence until October 15, 1582. To complicate metters, many
countries did not adopt the Gregorian caendar until centuries later. Prior to adoption of the
Gregorian caendar most western societies used the Julian calendar. The generation of successive
daysisidentica on the Julian and Gregorian caendars except for the determination of leap days
inthe last year of a century such as the year 1900. On the Julian calendar, alegp day isinserted
asthelast day of February every 4 years. on the Gregorian calendar, aleap day isinserted asthe

last day of February every 4 years with the possible exception of the last year of a century (such
as1900). The last year of acentury isalegp year only if the year is evenly divigble by 400. Thus
the year 2000 is alegp year on the Gregorian caendar but 1900 is not.

Both the Gregorian and Julian calendars can be extended forward and backward in time
indefinitely. The default behavior of STR2ET isto use the Gregorian calendar for dl epochs.
However, usng TIMDEF you can set the default calendar to one of three: GREGORIAN,
JULIAN, or MIXED.

TIMDEF (' SET', 'CALENDAR , ' GREGORI AN)
TIMDEF (' SET', ' CALENDAR , 'JULI AN)
TIMDEF (' SET', ' CALENDAR , 'M XED)

The "MIXED" cdendar assumes that caendar strings for epochs prior to October 6, 1582 belong
to the Julian Calendar; strings for later epochs are assumed to belong to the Gregorian Caendar.
The specification of acaendar, does not affect a previous setting of atime system or time zone.

Y ou can change the calendar used by STR2ET only through the routine TIMDEF, there are no
labels recognized by STR2ET for the various caendars.

Output Conversion

Times need to be printed out as well as read in. SPICE contains three routines for accomplishing
thistask: TIMOUT, ET2UTC, and ETCAL. All three convert a number of ephemeris seconds
past J2000 to atime string.

TIMOUT

TIMOUT (ET, PICTUR, OUTSTR)
where
ET

is adouble precison number containing the number of TDB seconds past J2000
corresponding to some epoch.
PICTUR

is a characters string that describes how the output string should be formatted. Itisa
“picture” of the format for output.
OUTPUT

is the string corresponding to ET and PICTUR.
To see how thisworks, consder the following example time string:

04:29:29.292 Jan 13, 1996
The value of PICTUR to useto cregte time strings that are smilar in gppearance to the example
dringis

PICTUR = ' HR MN: SC. ### Mon DD, YYYY ::RND
Mogt of this componentsin PICTUR arefairly obvious. The exception is the subsiring

'"::RND .
This substring tells TIMOUT to round the seconds portion of the output string instead of Smply
truncating. (Note that the case of the lettersis significant in pictur.) TIMOUT can produce
grings representing epochs in the time systems (UTC, TDB, TDT) or any time zone, and on
ether the Julian, Gregorian Calendar or Mixed Caendar. Y ou may round or truncate numeric
components.

The rules for congtructing pictur are spelled out in the header to TIMOUT. However, you may
very well never need to learn these rules. SPICE contains the routine TPICTR that can construct
atime format picture for you from a sample time string. Returning to the example aove, if the
following block of codeis executed, pictur will contain the format picture that will yield output
grings smilar to our example sring.

EXAMPL = '04:29:29.292 Jan 13, 1996’

TPICTR (EXAMPL, PICTUR, OK, ERROR)
The arguments ok and error are outputs from TPICTR. They are present because some strings are
not recognized astime strings. TPICTR recognizes the same set of time strings as does STR2ET,
UTC2ET and TPARSE. However, if you want your output string to bein a system other than
UTC you must supply the label for that system in your example string. TPICTR can congtruct
format pictures for strings that are not accepted by the string conversion routines. For example, if
you would like to suppress the year in a cdendar output format, you could use the following
example gtring:

EXAMPL = 'Jan 12, 02:28:29.### A M (PDT)'
Even though this gtring is ambiguous as an epoch (theré's no year specified), it is sufficient for
determining a picture that describes its format. If you decide to use TPICTR with inputs like this,
be sure to check the output flag OK. Even though you know whét isintended, TPICTR may have
problems with some ambiguous time strings.

ET2UTC

Theroutine ET2UTC is an older time formatting routine. It is not asflexible as TIMOUT. All
outputs are UTC outputs and only alimited set of formats are supported. On the other hand it is
easer tolearn how to use ET2UTC. ET2UTC isan inverse to UTC2ET: that isfollowing the
cdls

UTC2ET (UTCIN, ET)

ET2UTC (ET, 'C, 3, UTCouT)
utcout isidentica in content to (although probably formatted differently from) UTCIN. ET2UTC
can cregte time dringsin any of the following formats.

For mat Nanme Exanpl e

'C Cal endar '1979 JUL 04 14:19:57.184"
'D Day of Year '1979-114 // 14:19:57. 184"
'J Julian Date 'JD 2433282. 529"

"1 soC | SO Cal endar '1987-04-122T16: 31: 12. 814"
"1 SOD | SO Day of Year '1987-102T16:31:12.814'

In addition, you may specify the number of decimal placesin the fractiond part of the seconds
token or the Julian Date (three, in the examples above). Note that Julian Dates are prefaced with
the character string "JD' (and are UTC Julian Dates). This dlows strings generated by ET2UTC
to be used later asinputsto UTC2ET or STR2ET.

ETCAL

Theroutine ETCAL isa utility routine. It can produce outputs in asingle format with afixed
number of decimal places. Moreover, the caendar stringsit produces are on aforma calendar.
There are no legpseconds; each day has exactly 86400 seconds. Since it does not make use of
legpseconds, you don't need to load a legpseconds kernel prior to caling ETCAL. This makesit
well suited for producing diagnostic messages. Indeed, it was created so that more user friendly
diagnostic messages could be produced by those SPICE routines that require ET as an inpuit.

Converting Between Uniform Time Scales

We use the term uniform time scale to refer to those representations of time that are numeric
(each epoch is represented by a number) and additive. A numeric time system is additiveif given

the representations E1 and E2 of any pair of successive epochs, the time €l gpsed between the
epochsis given by the difference E2 - EL.

Conversion between uniform time scales can be carried out viathe double precison function
UNITIM. The uniform time scdes that are supported by thisroutine are:

" TAl' I nternational Atom c Tine.

' TDB' Barycentric Dynam cal Ti ne.
' TDT Terrestrial Dynam cal Tine.
"ET Epheneris tine

' JDTDB' Julian Date relative to TDB.
" JDTDT' Julian Date relative to TDT.
" JED Jul i an Epheneris date.

* In the @PICE system ET is synonynous to TDB.
** In the @PICE system JED i s synonynous to JDTDB.

L ocal Solar Time

Locd solar timeisaused to give people an idea of how high the sunisin the sky as seen from a
particular Ste on surface of a planet or satelite. When the Sun is on the zenith meridian, the loca
solar time is 12:00:00 noon. For points on the equator of a body, the Sun rises around 6:00:00
A.M. locd solar time; it sets around 6:00:00 P.M. local solar time.

Formally, the locd solar time a a Ste on a body is the difference between the planetocertric
longitude of the site and the planetocentric longitude of the Sun as seen from the center of the
body. The angular difference in these two longitudes is measured in hours, minutes, and seconds
in the same sense that hours, minutes and seconds are used to measure right ascension--- 24
hours in 360 degrees; 60 minutes in an hour; 60 seconds in aminute. When the sun in on the
zenith meridian the hour is defined to be 12. Findly, the hours increase from sunrise to sunset.

Because of these conventions, an hour of loca solar time will not be of the same duration asa
UTC hour. In the case of asite on Mars, asolar hour will be gpproximately 62 UTC minutes.

Locd solar time for a gpecific site can be computed using the routine ET2LST (ET to Loca
Solar Time).

Foundation Routines and Utilities

At the heart of the SPICE time software subsystem are the foundation" routines TPARTV and
TTRANS. TPARTYV isused to take gpart atime string and convert it to a vector of numeric
components. TTRANS serves the role of converting between the various numeric vector
representations of time. If you need to build your own time conversion routines, these routines
are agood place to begin.

In addition to the foundation routines, you may find helpful the following utility routines.

TEXPYR

converts two-digit abbreviated yearsto full years. Y ou set lower bound of the 100 year
mapping interva viathe routine TSETY R discussed earlier in this document.
TCHECK

takes a numeric vector representing the components of acaendar time and checksthat al
components are within the norma range used in conversation. Note that TCHECK
performs no action until you cal TPARCH with an argument of "YES".

TCHCKD

dlowsyou to determine if component checking has been enabled in TCHECK viaacdl
to TPARCH.
JUL2GR

converts the year, month, and day of an epoch on the Julian Calendar to the
corresponding year, month, day and day-of-year on the Gregorian caendar.
GR2JUL

converts the year, month, and day of an epoch on the Gregorian Calendar to the
corresponding year, month, day and day-of-year on the Julian calendar.
DELTET

computes the time difference TDB - UTC.
B1900

returns the Julian ephemeris date (TDB) of the epoch of the Besselian date 1900.
B1950

returns the Julian ephemeris date (TDB) of the epoch of the Bessdlian date 1950.
J1900

returns the Julian Date of 1899 DEC 31 12:00:00 (TDB)
J1950

returns the Julian ephemeris date of the epoch 1 Jan 1950 00:00:00 (TDB).

J2000

returns the Julian ephemeris date of the epoch 1 Jan 2000 12:00:00 (TDB).
J2100

returns the Julian ephemeris date of the epoch 1 Jan 2100 12:00:00
JYEAR

returns the number of secondsin a Julian year (365.25 Julian days).
SPD

returns the number of TDB secondsin a Julian day TDB (86400 seconds).
TYEAR

returns the number of secondsin atropica year (gpproximately the number of seconds
from one spring equinox to the next)

Example

The following program demongtrates use of the time conversion routines STR2ET, TPICTR,
TIMOUT and ET2UTC.

Note that the data necessary to convert between UTC and ET are loaded into the kernel poal just

once---typicdly during program initidization--- after which the converson may be performed at
any leve within the program.

PROGRAM EXAMPLE

C
C Convert between UTC and ET interactively, and convert ET
C back to UTC in cal endar format, DOY format, and as a
C Julian date.
C
C Requires a | eapseconds kernel .
C
| NTEGER FI LEN
PARAMETER (FILEN = 128)
| NTEGER LNSI ZE
PARAMETER (LNSIZE = 60)
CHARACTER* (8) ANSVER

CHARACTER* (FI LEN) KERNEL

OO0 OO0

OO0

o000

CHARACTER* (LNSI ZE) DOY

CHARACTER* (LNSI ZE) ERROR
CHARACTER* (LNSI ZE) EXAMP1
CHARACTER* (LNSI ZE) EXAMP2
CHARACTER* (LNSI ZE) JDUTC
CHARACTER* (LNSI ZE) PI CTRL
CHARACTER* (LNSI ZE) PI CTR2
CHARACTER* (LNSI ZE) PST
CHARACTER* (LNSI ZE) STR
CHARACTER* (LNSI ZE) uTC
DOUBLE PRECI SI ON ET
LOGI CAL oK

Get the nanme of the | eapseconds kernel file.

WRITE (*,*) 'We need to |oad a | eapseconds kernel .’
CALL PROWPT (' Kernel Name: ', KERNEL)

Load the | eapseconds kernel into the kernel pool.

CALL LDPOOL (KERNEL)

Create pictures for producing strings simlar to
t hose bel ow.

EXAMP1
EXAMP2

"Fri Oct 04, 08:57:28.000 (UTC) 1996'
"Fri Oct 04, 08:57:28.000 (PST) 1996'

CALL TPICTR (EXAMP1, PICTR1, OK, ERROR)
CALL TPICTR (EXAMP2, PICTR2, OK, ERROR)

Compute result for each new UTC epoch.

ANSVER = ' Y'
DO WHI LE ((ANSVER(1:1) .EQ 'Y)
JOR (ANSVER(1:1) .EQ 'y'))
WRITE (*,*) '
CALL PROWPT ('Enter a time: ', STR)

CALL STR2ET (STR, ET)
WRITE (*,*) '

WRITE (*,*) 'Input tine converts to ET "' [/
'(sec past J2000)', ET

CALL TIMOUT (ET, PICTRL, urc)

CALL TIMOUT (ET, PICTR2, PST)
CALL ET2UTC (ET, 'ISOC, 3, DOY)

CALL ET2UTC (ET, 'J', 7, JDUTC)
WRITE (*,*) ' '

WRI TE (*,*) 'ET converts back to'
WRITE (*,*) ' '

WRI TE (*,*) UTC
WRI TE (*,*) PST
WRITE (*,*) *
WRI TE (*, *) DOY
WRI TE (*,*) JDUTC

WRITE (*,*) ' '
CALL PROWPT ('Do you wish to continue? , ANSVER)

END DO

END

Appendix A. Background Material

The Toolkit directly supports three time systems. They are
1. Coordinated Universd Time (UTC)
2. Barycentric Dynamicd Time (TDB) aso caled Ephemeris Time (ET)

3. Spacecraft Clock Time (SCLK ---pronounced " ess clock™)

Coordinated Universal Time (UTC)

I nternational Atomic Time (TAI)

Before discussing Coordinated Universal Time we fed it ishdpful to talk about Internationa
Atomic Time (TAI or aomic time). Atomic time is based upon the atomic second as defined by
the “oscillation of the undisturbed cesum atom." Atomic timeis smply acount of atomic

seconds that have occurred since the astronomicaly determined ingtant of midnight January 1,
1958 00:00:00 at the Roya Observatory in Greenwich, England. Atomic timeis kept by the
Internationa Earth Rotation Service (IERS, formdly the Bureau Internationd L'Heure---BIH) in
Paris, France. The Nationa Bureau of Standards and the U.S. Nava Observatory set their clocks
by the clock maintained by the IERS.

Naming the seconds of TAI --- UTC

Coordinated Universal Timeis a system of time kegping that gives a name to each ingart of time
of the TAI system. These names are formed from the calendar date and time of day that we use
inour daily affairs. They condst of 6 components. year, month, day, hour, minutes and seconds.
The year, month and day components are the norma calendar year month and day that appear on
wal calendars. The hours component may assume any vaue from 0 through 23. The minutes
component may assume any value from 0 to 59. The seconds will usudly (but not dways) range
from 0 to 59.999... . The hour-minute-second string

' 00: 00: 00
ismidnight and isthe first ingtant of the cendar day specified by the first three components of
the UTC time.

In the SPICE system UTC times are represented by character strings. These strings contain: yesr,
month, day, hour, minute and second separated by delimiters (spaces or punctuation marks). The
various delimiters and substrings between the ddimiters are called the tokens of the string. A
typicd time gtring looks like

'5 OCTOBER 1986 7:20:16.122 (UTC)'
The tokens of the string and the associated UTC time components are

"5 --- day
'OCTOBER --- nonth

' 1986’ --- year

"7 --- hours

' 20 --- mnutes
'16. 122" --- seconds

The link between any token and its corresponding UTC component is determined by examining
the vaues of the tokens and comparing them to the other tokens. The precise rules used are

spelled out in great detall in appendix 2. For now, smply be assured that the following five
grings dl mean the same thing and are interpreted in the same way by SPICE Toolkit software.

'5 OCTOBER 1986
'1986 OCTOBER 5'
'1986 5 OCTOBER
'1986 10 5'
10 5 1986’

Tying UTC to the Earth's Rotation

The names given to TAI ingtants by the UTC system are governed by the earth's rotation. Idedly,
UTC strings having hours, minutes and seconds components al zero should correspond to
Greenwich midnight as determined by the observations of the trangts of dars (the time system
known as UT1). However, since the rotation of the earth is not uniform, thisidea cannot be
redized. The difference between Greenwich midnight observed astronomicaly and UTC
midnight is amost never zero. However, to keep the difference from becoming too large, UTC is
occasiondly adjusted so that the difference between the two midnights never exceeds .9 seconds.
Thus from a knowledge of UTC one can ways compute UT1 to better than 1 second accuracy.

L eapseconds

When Greenwich UT1 midnight lags behind UTC midnight by more than 0.7 seconds the IERS
will announce that aleap second will be added to the collection of UTC names. This legp second
has traditiondly been added after the last “"norma” UTC name of December 31 or June 30. Thus
when aUTC second is added the hours- minutes- seconds portion of the UTC name progresses as
shown here

.. DECEMBER 31 23:59:57
.. DECEMBER 31 23:59:58
.. DECEMBER 31 23:59:59
. DECEMBER 31 23:59:60

JANUARY 1 00: 00: 00

instééd of the usud progresson

. DECEMBER 31 23:59:57
. DECEMBER 31 23:59:58
. DECEMBER 31 23:59:59
. JANUARY 1 00:00:00

Should Greenwich UT1 midnight run ahead of UTC midnight by more than 0.7 seconds the
IERS will announce a negetive legp second. In this case one of the usua UTC hours-minutes-
seconds triples will be missing from thelist of UTC names. In this case the progresson will be:

. DECEMBER 31 23:59:57
. DECEMBER 31 23:59:58
. JANUARY 1 00:00: 00

S néé 1972 when legp seconds and the UTC system were introduced, a negative leap second has
not occurred.

The Leapseconds Kerndl (L SK)

The primary difficulty with UTC dringsisthet it is not possible to predict which atomic times

will correspond to times during a UTC legp second. Thus agorithms for converting between
UTC and time systems that Smply use a continuous set of numeric markers require knowledge
of the location of legp secondsin the list of names. Thisis the purpose of the LEAPSECONDS
kerndl supplied with the Toolkit. To convert between UTC times and any other system, you must
firgt load the leapseconds kernd viaacall to the routine LDPOOL.

EphemerisTime (ET)

Ephemeristime is the uniform time scale represented by the independert varigble in the
differentia equations that describe the motions of the planets, sun and moon. There are two
forms of ephemeristime: Barycentric Dynamicd Time (TDB) and Terrestrid Dynamica Time
(TDT). Although they represent different time systems, these time systems are closely related.

Barycentric Dynamical Time (TDB)

Barycentric dynamical timeis used when describing the motion of bodies with respect to the
solar system barycenter.

Terrestrial Dynamical Time (TDT)

Terredtrid dynamica time is used when describing motions of objects near the earth. Asfar as
measurements have been able to detect, TDT and TAI change a the same rate. Thus the
difference between TDT and TAI isacongtant. It is defined to be 32.184 seconds. At the zero
point of TAI, TDT hasavaue of 32.184.

The Relationship between TDT and TDB

TDB is believed to be in agreement with the time that would be kept by an atomic clock located
at the solar system barycenter. A comparison of the times kept by a clock at the solar system
barycenter with a TDB clock on earth would reved that the two clocks are in close agreement
but that they run at different rates a different times of the year. Thisis dueto rdativigtic effects.

At sometimesin the year the TDT clock appears to run fast when compared to the TDB clock, at
other times of the year it gppearsto run dow. Let TDBO be some fixed epoch on the TDB clock
and TDTO be afixed epoch onthe TDT clock (TDBO and TDTO do not necessarily haveto be
the same epoch). Any epoch, EPOCH, can be represented in the following ways. as the number
of seconds TDB(EPOCH), that have elapsed since TDBO on the TDB clock; or as the number of
seconds, TDT(EPOCH), that have elgpsed since TDTO onthe TDT clock. If we plot the
differences TDB(EPOCH) - TDT(EPOCH) against TDB(EPOCH) over dl epochs, we will find
that the greph is very close to a periodic function.

In SPICE the difference between TDT and TDB is computed as follows:

[1] TDB - TDT = K * sin (E)
where K isacongant, and E is the eccentric anomaly of the heliocentric orbit of the Earth-Moon
barycenter. This difference, which ignores smdl- period fluctuations, is accurate to about
0.000030 seconds. Thusto five decima places the difference between TDT and TDB isa
periodic function with magnitude approximately 0.001658 seconds and period equd to one
Sdered year.

The eccentric anomaly E isgiven by
[2] E=M+EBsin (M

where EB and M are the eccentricity and mean anomay of the hdiocentric orbit of the Earth+
Moon barycenter. The mean anomaly isin turn given by

[3] M= M + ML*t

wheret isthe epoch TDB expressed in barycentric dynamical seconds past the epoch of J2000.

ThevduesK, EB, MO, and M1 are retrieved from the kernel pool. These are part of the
legpseconds kerndl. They correspond to the " kerndl pool variables' DELTET/K, DELTET/EB,
and DELTET/M. The nomind vaues are:

DELTET/ K = 1.657D-3
DELTET/ EB = 1.671D-2
DELTET/ M = (6.239996D0 1.99096871D-7)

In the Toolkit ET Means TDB

When ephemeristimeis caled for by Toolkit routines, TDB is the implied time system.
Software that converts between the various time systems described here use TDB whenever
ephemeristimeiscdled for. We cdl thistime ET. (You can convert aUTC time stringto TDT
times, but you must make two subroutine cals instead of one.)

Ephemeristimeis given in terms of seconds past a reference epoch. The reference epoch used

throughout the Toolkit is the epoch J2000 (roughly noon on January 1, 2000). Using the Toolkit
software, you can find out how many seconds the J2000 epoch is from right now.

Naming the Seconds of Ephemeris Time

Although ephemeristime isaforma time, within the limits of measurementsit coincides with
atomic time. As such we should be able to rdate it to the expressons of time that we use use

everyday.

However, ephemeristimeis described as a count of ephemeris seconds past the ephemeris
reference epoch (J2000). For most of us the expression

- 312819349 seconds past the epheneris epoch J2000
bears little relationship to the time system we use to organize our lives. For thisreason, it is
common to give names to the various ephemeris seconds in a manner andogous to the UTC
naming of the seconds of TAI---asacaendar date and time of day. The above string corresponds
to

'1990 FEB 1 21:44:11 (TDB)'
Thereis an important ditinction between the names gven to ephemeris seconds and the names
used by the UTC system. The names assigned to ephemeris times never have legp seconds. The
“seconds component of the name s restricted to and includes al values from 0 to 59.999... .
Thus the time string above does not represent the same moment in time as does 1990 FEB 1
21:44:11 (UTC)" There are two reasons. First, ephemeristimeis ahead of atomic time by 32.184
seconds. Second, when alegp second occurs UTC strings fit an extra name into the sequence of
vadid UTC names. Thusit gppearsthat UTC namesfal behind ET names by a second after each
leapsecond. At the present time UTC time strings appear to be 62.184 seconds behind ET time
grings. This appearanceis due to the fact that the two naming conventions are not the same.
They amply have alot of namesin common.

It is both fortunate and unfortunate that there is a huge set of common names between cdendar
dates ET and cadendar dates UTC. Since there are relatively few legpseconds, atime given by an
ET nameis dways close to the timein the UTC system having the same name. Thus for

planning observations, you can know what day the observation will take place, whether or not
you are likely to need a coat and how to arrange your dally activities around the observation. But
for precise work you must pay atention to the difference between the two times systems. If in
planning the observation of a stellar occultation by an asteroid the difference between the two
naming sysemsis neglected, it is likely thet the observation will be missed.

The routine STR2ET will convert an ephemeris caendar date to seconds past the ephemeris
epoch J2000.

Some Consequences of L eapseconds

Thereisno way of predicting when future legpseconds will occur. Normally you can predict
whether there will be alegpsecond in the next few months, but beyond this predictions of
legpseconds are not religble. As aresult we cannot say with certainty when a particular future
UTC epoch will occur. For example, suppose you have atimer that you can set to " beep” after
some number of seconds have passed. If thistimer counts seconds perfectly without loosing or
gaining time over decades, you cannot et it today to beep at midnight (00:00:00) January 1
(UTC) ten years from now---the number of legpseconds that will occur in the next ten yearsis
not known. On the other hand, it is possible to set the timer so that it will beep a midnight
January 1 (TDB). The TDB system does not have legpseconds. It is only necessary to know an
agorithm (such as STR2ET) for converting calendar epochs TDB to seconds past some
reference epoch in order to determine how to set the timer to beep at the correct epoch.

Any given Legpseconds Kernd will eventually become obsolete. Sometime after the crestion of
any Legpseconds Kernel there will be new legpseconds. When future leapseconds occur the old
Leapseconds Kernd will no longer correctly describe the relationship between UTC, TDT and
TDB for epochs that follow the new legpsecond. However, for epochs prior to the new

legpsecond, the old kernel will aways correctly describe the relationship between UTC, TDT
and TDB.

Computing UTC from TDB (DELTET)

Beow are afew epochs printed out in calendar format in both the TDT and UTC time systems.

1996, Oct 11, 12:01:02.1840 (TDT)
1996, Oct 11, 12:00:00.0000 (UTC)

1996, Oct 12, 12:01:02.1840 (TDT)
1996, Oct 12, 12:00:00.0000 (UTC

1996, Oct 13, 12:01:02.1840 (TDT)
1996, Oct 13, 12:00:00.0000 (UTC)

1996, Oct 14, 12:01:02.1840 (TDT)
1996, Oct 14, 12:00:00.0000 (UTC)

1996, Oct 15, 12:01:02.1840 (TDT)
1996, Oct 15, 12:00:00.0000 (UTC

At least in October i996, it's clear that if you have either TDT or UTC you can construct the
corresponding representation for the same epoch inthe UTC or TDT system by simply
subtracting or adding 62.184 seconds.

If you don't worry about what happens during alegpsecond you can express the above idea as:

[4] Del taTDT = TDT - UTC
For al epochs except during UTC legpseconds the above expression makes sense. DeltalDT is
amply astep function increasing by one after each legpsecond. Thus DetaTDT can be viewed as
asep function of either UTC or TDT.

If you rearrange this expresson, you can get

[5] UTC = TDT - Del taTDT
Since, TDT can be expressed as seconds past J2000 (TDT), the above expression indicates the
UTC can be expressed as some count of seconds. This representation is referred to by the
dubious name of "UTC seconds past J2000." If you write down the UTC cdendar time string
corresponding to an epoch and count the number of seconds between that calendar expresson

and the UTC cdendar expression ™ January 1, 2000 12:00:00" and ignore leapseconds, you get
the value of UTC in the expression above.

In practice this expression is broken down as follows:

[6] UTC = TDT - DeltaTA - DeltaAT
where

DeltaTA = (TDT - TAI)
and

Del taAT = DeltaTDT - DeltaTA
The vaue DdtaTA is acondant, its vaue is nrominaly 32.184 seconds. DeltaTA isastep
function. These two variables appear in the legpseconds kerndl.

If we combine equation [6] above with equation [1] from the section ~ The Relationship between
TDT and TDB" we get the following expresson

[7] TDB - UTC = DeltaTA + DeltaAT + K*sin(E)
Thislast valueis cdled DdtaET and is computed by the SPICE routine DELTET. The various
vauesthat are usad in the computation of DeltaET are contained in the Leapseconds Kerndl.
Indeed, a Leapseconds Kernel consists of precisdly the information needed to compute DeltaET.
Below isasample Leapseconds kerndl.

\ begi ndat a
DELTET/ DELTA T_A = 32.184
DELTET/ K = 1. 657D 3
DELTET/ EB = 1. 671D 2
DELTET/ M = (6.239996D0 1.99096871D-7)
DELTET/ DELTA_AT = (10, @972-JAN-1
11, @972-JUL-1
12, @973-JAN-1
13, @974-JAN-1
14, @975- JAN- 1
15, @976- JAN- 1
16, @977-JAN-1
17, @978- JAN-1
18, @979-JAN-1
19, @980- JAN-1
20, @981-JUL-1
21, @982-JUL-1
22, @983-JUL-1
23, @985- JUL- 1
24, @988-JAN-1)
\ begi nt ext
DELTET/ DELTA T_A corresponds to DeltaTA in equation [7].
DELTET/ K corresponds to K in equation [7].

DELTET/ EB corresponds to EB in equation [2].

DELTET/ M corresponds to M0 and ML of equation [3].
DELTET/ DELTA_ AT corresponds to DeltaAT of equation [7].
Note that this expression gives the
points on the UTC scale at which
Del t aAT changes.

Although NAIF recommends againd it, you could modify thisfile to ater the converson. For
example, until 1985 JPL's Orbit Determination Program (ODP) set used a vaue of 32.1843817
for DdtaTA, and some older CRS tapes were created using this vauein the conversion from
TAIl to TDT. Thevaue returned by DELTET can be made compatible with these tapes by
replacing the current vaue (32.184, exactly) with the older value. Also, JPL'S Optica
Navigation Program (ONP) set does not use the periodic term (K sin E) of the difference TDB-
TDT. Setting the value of K to zero diminates this term.

Problems With the Formulation of DeltaET

Aswe pointed out above, the expression (TDT - UTC) ismeaningful aslong asyou stay away
from leapseconds. If you write down the TDT and UTC representations for an epoch that occurs
during alegpsecond you will have something like this:

1996 Jan 01, 00:01:01.6840 (TDT)
1996 Dec 31, 23:59:60.5000 (UTC)

Given these two epochs, it isno longer clear what we should assgn to thevalue TDT - UTC,
Thus athough equation [7] above provides a ssimple expression for computing the *difference
between UTC and TDB", the expresson fails to tell us how to convert between TDB (or TDT)
and UTC during legpseconds. For this reason the SPICE system does not use DeltaET when
converting between TDB (or TDT) and UTC. Instead, the table of offsets corresponding to
DdtaAT in the leapseconds kernd is converted to an equivalent table as shown below.

Day Number of 1971-DEC- 31 TAl seconds past 2000 at
begi nni ng of 1971- DEC- 31

Day Number of 1972-JAN-01 TAl seconds past 2000 at
begi nni ng of 1972-JAN-01

Day Number of 1972-JUN- 30 TAl seconds past 2000 at
begi nni ng of 1972- JUN- 30

Day Number of 1972-JUL-01 TAl seconds past 2000 at
begi nni ng of 1972-JUL-01

Day Number of 1972- DEC- 31 TAl seconds past 2000 at
begi nni ng of 1972- DEC- 31

Day Number of 1973-JAN-01 TAl seconds past 2000 at
begi nning of 1973-JAN-01

Day Number of 1973-DEC- 31 TAl seconds past 2000 at
begi nni ng of 1973- DEC- 31

where the day number associated with a particular calendar date is the integer number of days
that have passed since Jan 01, 0001 A.D. (on the extended Gregorian Caendar).

Given an epoch to be converted between UTC and some other time system (call this other system
'S), we decompose the conversion problem into two parts:

1. converting between UTC and TAl,
2. converting between TAI and syslem S,

To convert between TAI and UTC, we examine the above table to determine whether or not the
epoch in question falls on a day containing a legpsecond or during a day that is 86400 secondsin
length. Once the length of the day associated with the epoch has been determined, the conversion
from UTC to TAI (or from TAI to UTC) is gtraight forward. (See the routine TTRANS for
details)) Having settled the problem of converting between TAI and UTC, the converson
between TAI and system Sis carried out using the anaytic expressons (equations [1], [2] and
[3]) given above.

Spacecr aft Clock (SCLK)

Mogt spacecraft have an onboard clock. This clock controls the times at which various actions
are performed by the spacecraft and its science insiruments. Observations are usudly tagged with
the spacecraft clock time when the observations are taken.

Each spacecraft clock can be constructed differently. For Galileo the SPICE spacecraft clock
timeslookslike

p/rrrrrrrr:rrmt:e

p - partition nunber

r - rimecounts

m - mnor franme

t - real tine interrupt
e - nod eight count

When asking for the matrix which describes the pointing for some structure or instrument used to
perform an observation, you will usualy request this information by supplying the spacecraft

clock gtring that was used to tag the observation. This string must usudly be related to UTC or
ET. Consequently it is necessary to load afile of ~spacecraft clock coefficients' that enables
SPICE software to transform the spacecraft clock string into one of the other time systems. This
file of spacecraft clock coefficientsis loaded with the routine LDPOOL.

A more detailed discussion of Spacecraft Clock is contained in the Required Reading file
SCLK.REQ that is included with the SPICE Toolkit.

Julian Date

The Julian date system is a numerica time system that alows you to easily compute the number
of days between two epochs. NAIF recognizes two types of Julian dates. Julian Ephemeris Date
(JED) and Julian Date UTC (JDUTC). Aswith cdendar dates used for ephemeristime and
cdendar dates UTC, the digtinction between the two systemsis important. The names of the two
systems overlap, but they correspond to different moments of time.

Julian Ephemeris Date is computed directly from ET viathe formula

JED(ET) = J2000() + ET/SPD()
where J2000 is a congtant function that returns the Julian Ephemeris Date of the reference epoch
for ET, and SPD isaconstant function that gives the number or seconds per day.

Julian Date UTC has an integer value whenever the corresponding UTC time is noon.

We recommend againg using the JDUTC system as it provides no mechaniam for talking about
events that might occur during alegpsecond. All of the other time systems discussed can be used
to refer to events occurring during aleap second.

The abbreviation JD

Julian date is often abbreviated as ~JD." Unfortunately, the meaning of this string depends upon
context. For example, the SPICE routine UTC2ET trests the string *2451821.1928 JD" as Julian
Date UTC. On the other hand, the SPICE routine TPARSE treats the same string as Julian Date
TDB. Consequently, for high accuracy work, you must be sure of the context when using strings

labelled in thisway. Unless context is dear, it's usudly safer to labd Julian Date strings with one
of the unambiguous labds JDUTC, JDTDB, or JDTDT.

Appendix B. Parsing Time Strings

This appendix gives a detailed account of how the routine TPARTV parses time strings.
TPARTYV isthe “foundation" routine relied upon by STR2ET, UTC2ET, TPARSE and TPICTR
to accomplish the task of andyzing and assigning meaning to the components of atime sring.

This appendix is not for everyone. Unless you need to understand in greet detail how parsing of

gringsis performed, you can safdy skip this appendix. The discusson below is quite technica
and mirrors very closely the codein TPARTYV that handles the parsing of time strings.

An Outline of the Par ser

The firg gep in processing atime sring isto scan it from left to right identifying various
substrings. If asubstring is encountered that cannot be identified, attempts to further processthe
string are abandoned.

Having identified the componentsin the string as integers, months, weekdays, time systems, etc.
Aninternd representation of the string is congtructed. This representation issmply aligt of the
identified subgtringsin the order they are encountered. Each itemin thelist is called a token.

Working with the list of tokens, various rules are gpplied to remove some tokens and combine
othersinto new tokens. The process of combination and remova of tokens continues until all
tokens belong to a specid set of ~“meaningful” tokens or until no further combinations and
removals can be performed. If processing stops before al tokens are meaningful, a diagnostic
message is created and the string is regarded as un-parsable. If dl of the tokens are meaningful, a
compatibility check is performed on the tokens to make sure that they unambiguoudy specify an
epoch.

Onceitisclear that an unambiguous epoch has been specified, the substrings corresponding to
the meaningful tokens are converted into numeric representations or are noted so that the time
conversion software can properly interpret the numeric components.

Almogt al of thework of manipulating tokensis carried out by SPICE private routines. These
routines are not considered part of the SPICE public interface. Fed free to read and copy these
routines. However, we strongly recommend that you not call these routines in your own code
since we do not guarantee backward compatibility of these routines in future releases of the
Toolkit.

Tokenizing the Input String

Thefirgt step in parsang atime gring is to decompose it into recognizable substring components.
This decompaosition is done as follows:

Sarting with the next unexamined character (on the first passthisisthe first character in the
gring), scan from Ieft to right looking for one of the following classes of subgtrings:

1. amaxima sequence of digits forming an unsigned integer.

2. amaxima sequence of space characters

3. atab character

4. aweekday (or abbreviation of aweekday of at least 3 |etters)
5. amonth name (or abbreviation of a month name of at least 3 letters)
6. atime zone (standard U.S. abbreviations)

7. apogtive UTC offsat specifier ('UTC+')

8. anegaive UTC offsat specifier ('UTC-")

9. atimesysem (TDT, TDB, UTC)

10. aneraspecifier ('A.D.", B.C., "AD', BC")

11. al2-hour clock specifier ('A.M., 'P.M.", "AM', 'PM")

12. aJdulian date specifier (*JD")

13. aday of year specifier (;' or /')
14. aperiod .

15. adash -

16. adash /'

17. acolon '

18. al€ft parenthesis ('

19. aright parenthesis)’

20. asingle quote character ()

Once the next substring has been identified, its boundaries and classfication are stored in the
next available location in the buffer reserved for the tokenized representation of the time giring.

The steps above are then repeated until the entire substring has been tokenized or afailure to
recognize some subgtring occurs. If afallure occurs the location in the string is noted and a
diagnostic message is crested indicating the failure in the attempt to parse the siring.

When the tokenization isfinished, there will be alist of tokens from which a string can be
congtructed that lists the class of each token. Each class of token is represented by asingle
character. By placing these charactersin astring asmple list of token classesis maintained. The
characters used for the remainder of this discussion are listed below.

Q stands for the quote character

[stands for the left parenthesis character

] stands for the right parenthesis character

, stands for the commma character

- stands for the dash character

. stands for the decimal point character

[/ stands for the slash character

: stands for the colon character

N stands for one of the synbols AM or P.M

O stands for the synbol UTC+

Z stands for a time zone such as PDT, PSD, CDT,
b stands for a block of white space (spaces or tabs)
d stands for the day of year marker (// or ::)
e stands for the era (B.C. or A D.)

j stands for Julian date

m stands for a nonth

o stands for the synbol UTC

s stands for a tinme system (UTC, TDT, TDB)

t stands the |1SO date-T-tinme separator

w stands for the day of the week

[

stands for a sequence of digits
Thusthe ligt of token classfications corresponding to

1995 Jan 12 12:28:28'
will be

"ibnbibi:iii’

Combining and Removing Tokens

Once an interna tokenized representation of the time string has been created, the internal
representation is manipulated so that the meaning of the tokensis gradudly discovered.

There are 3 basic operations that can be performed on the tokenized representation:

1. A token can be “removed" from the representation based on its classification. This
remova can be wholesdle asin ““remove al tokens corresponding to the blank character”,
or it can be pogtiona asin “remove the last token classified as a blank.”

2. A sequence of tokens can be combined into a single new token with a potentialy new
classfication. For example you might have a subsequence of token classfications such as
“II" in the tokenized representation that corresponds to an unsigned integer, a period, and
another unsigned integer. Under suitable circumstances this sequence 'i.i' might be
replaced by "n' (for number).

3. A singletoken can be reclassfied. For example you might have a token whose
cassficationis i for "unsgned integer’ and have it reclassfied as an hour "H'

Initial Token Processing

The firgt phase of processing the tokenized time discovers any UTC offsetsin the input string,
abbreviated months, decima numbers, and removes white space. The process proceeds as
folows

1. Token sequences that represent UTC time offsets are combined to form a single token
with anew classfication. (The character used for this new kind of tokenis "Z'.)

2. Months or weekdays that are followed by a period are combined to form asingle
token (month or weekday respectively). The motivation for this combination isto alow
abbreviaions such as “"Jan." It aso dlows strings such as ™ January.”

3. Theright most sequence of tokens of the form “i.i", (integer- period-integer) or “i."
(integer-period) is combined to form asingle token “"n" (number). This combingtion is
performed only once in the token resolution process.

4. All blanks (""b") are removed from the tokenization.

Julian Dates

The gtring is now examined to seeif the Julian date pecifier "JD' is present. If so the following
operations are performed. If no Julian date specifier is present, the steps below are skipped and
processing resumes under the section ~" Calendar Dates.”

1. Any token sequence of theform “[g]' (left parenthesis - time system - right
parenthesis) is transformed to the sequence *s*'. The ™' token isthen removed. This
leavesjudt the time system (TDT, TDB, or UTC) specification in the tokenization.

- - Note: Whenever acharacter in the token classification is replaced by ™', the next step
isto remove dl tokens classified as ™*' from the token list. In the remainder of the
discussion, we will not add the sentence describing the remova of dl asterisks. 1t will be
implicit that the asterisk is dways removed after it is placed in the token list.

2. If the token sequence [j]' (Ift parenthesis - Julian date Specifier - right parenthesis) is
present, it is replaced by “*j*

3. If no number token, "n', (see above) is present in the tokeni zation, the left most integer
('1") isreclassfied asanumber ('n').

4. If the token sequence *-n' (dash - number) gppearsin the token lig, it is combined
and classfied asanumber ('n). Thisdlows for the input of negative Julian dates.

5. The Julian date specifier j' is noted and removed from the token list.
6. Any system token ('S) present in the token list is noted and removed.

7. The numeric components of the string are converted to double precison vaues and
the token ligt is checked for unresolved tokens. (The only thing that should be in the
token ligt at this point is asingle numeric token.)

8. The parsng process halts. Either the string was successfully parsed and a double
precison value for the Julian date has been constructed or there were unresolved tokens
in the token list and a diagnostic message has been created.

Calendar Dates

If the Julian date oecifier was not present in the token list, we assume that the string and token
list represents some calendar date format. One consequence of this assumption is that the dash ™
is now assumed to be just a punctuation mark and not part of some number. 1SO formats are
given fird priority in the scheme of token resolution. Note that SO formats do not dlow the
inclusion of time systems, time zones, eras, or 12-hour clocks.

Any integer class tokens (i) whose corresponding substrings represent integers grester than or
equa to 1000 arereclassified asyears (Y?).

| SO Formats

If the 1SO separator token "T' is present, the string is treated as an SO format string. If the token
list matches one of the token patternsin the left column it is transformed to the corresponding
item in the right column by removing punctuation and making the indicated transformations.

Y-i-iT YD
Y-i-iTi YnmDH
Y-i-iTi:i YnDHM
Y-i-iTi:izi YnDHVS
Y-i-iTi:i:n YnDHVS
Y-i-iTi:n YnDHM
Y-i-iTn YmDH
Y-iT Yy
Y-iTi YyH
Y-iTi:i Yy HM
Y-iTicizi ..., Yy HVS
Y-iTizi:n Yy HVS
Y-iTi:n YyHM
Y-iTn YyH
i-i-iT YD
P-i-iTi ... YmDH
i-i-iTici ..., YmDHM
i-i-iTizici YmDHVS
i-i-iTizi:n YmDHVS
i-i

YrDH

Yy

YyH

Yy HM

Yy HVS

Yy HVS

Yy HM

YyH

Y Year

m Mont h

D Day of Mnth
y Day of Year
H Hour

M M nut e

S Second

If the token list containsthe ISO separator (T but the list does not match one of the patters
shown above, the input string is regarded as erroneous.

Other Calendar Formats

If the 1SO separator is not part of the token list, we next do what we can to recognize years and
note the presence of modifiers (time zone specification, era, 12-hour clock etc.)

1. If atwo digit integer is preceded by the quote character (), the pair of tokensis
combined to asingle token and reclassfied as ayear.

2. Thefallowing token transformations are performed:

el
K
[N
1z
[s]"
e, --
3. Eraa weekdays, AM/PM, time zones, time systems are noted and removed from the

[T N |
VVVYVYV

V

token ligt.

e'
g
N
kg
CxgH
"Ye'

(parenthesi zed era to era)

(parent hesi zed weekday to weekday)

(parent hesized AMPM to AMPM
(parenthesized tinme zone to tine zone)
(parenthesized tine systemto tinme system
(integer-era to Year-era)

4. The dring is examined for redundant commas, dashes, dashes periods, etc. If any are
found the string is regarded as erroneous.

Built in Representations

Having processed the token list to this point, we check to see if what remainsis one of thosein a
large st of immediately recognized token lists. The complete list is shown below. Asin the case
of 1SO formats, the left item is the token lig, the right item is the transformation after removing
delimiters. Note that the letter “d' stands for a day-of-year delimiter (/' or ™::").

Y-i-it......... YnD ifiliiziin.. ... nMDYHVS
Y-i-iti........ YnDH ifiliin. nDYHM
Y-i-itizi...... YrmDHM ifiliin. nDYHM
Y-i-itizizi YnDHMS Pcicii-i-Yo.o.o.. HVSDY
Y-i-iti:i:n YnDHMS PciciililyY.oo. HVSDY
Y-i-iti:n...... YnDHM [I I A I A I HVSNDY
Y-i-itn........ YnDH Priciimy..... L. HMSDmY
Y-il.. . . Yy PcicimyY..o.o.... HVSDY
Y-ilicio....... Yy HM icini-i-Y.o.o ... HVSDY
Y-ilicicio.. ... Yy HVS icinililY.. ... HMVSDY
Y-iliziin...... Yy HVS icicnilili... .. HMVSDY
Y-ilitno....... YyHM iriinimy..... .. HMSDmY
Y-id.o.o...L L. Yy icionmY....... HVSDY
Y-idizi........ YyHM Pcii-i-Yo ..., HVITDY
Y-idizizi.o..... Yy HVS I I I O HVhDY
Y-idi:i:n...... Yy HVS [I A O T HVIhDY
Y-idi:n........ Yy HM [I 11 HVDmY
Y-it..o.o oo Yy PrimyY.o.o oo HVDY
Y-iti.o. ..., YyH irni-i-Y.ooo.... HVITDY
Y-iticio....... YyHM irnililY.ooo L. HVITDY
Y-iticizio..... Yy HVS irnifili.oo HVITDY
Y-itizi:n.o..... YyHVS icnimY. ... HVDmMY
Y-iti:n........ Yy HM inmY......... HVhDY
Y-itn.......... YyH iyd............ yY

Yid............ Yy iYydizi......... yYHM
Yidi:io........ Yy HM iYydizici....... y YHMS
Yidizicio...... Yy HVS iYdi:i:n....... y YHMS
Yidi:i:n....... Yy HVS iYdi:n......... yYHM
Yidi:n......... Yy HM Y. nDY

Yii.o..oooooo.... YnD Y nDYH
Yiii........... YnDH I (A nDYHM
Yiii:i.o........ YnDHM I (A A nDYHMS
Yiiizicio.. ..., YnDHMS iiYizizno.o.o.... nDYHMS
Yiiizion,...... YnDHMS iiYiino.o.ooo..L. nDYHM
Yiii:no........ YnDHM iiyn.o....oooL nDYH
Yiiii.......... YnDHM iid... Yy

Yiiiii......... YnDHMS pidici....o.. Yy HM
Yiiiin.o........ YnDHMS pidicici....... Yy HVS
Yiiin.......... YnDHM iidizizn....... Yy HVS
Yiin........... YmDH iidi:n....... .. YyHM
Yim........... YDm iim...o YDm

Yim ..o YDH im . YDH
Yim i .. YDmHM pim i YDmHM
Yimcici...o.... YDrHMS pimocici.o. YDrHMS
Yim:iin....... YDHMS iim:izn....... YDHMS
Yim:n......... YDHM iim:n......... YDHM
Yim........... YDnH imi........ .. YDHM

Yin............ YnD imaii......... YDmHVS
Ym YD fimin......... YDmHMS
Ymi........... YnDH iimn.......... YDHM
Ymicii......... YnmDHM fibm. ... YDH
Ymiicicio..o.o... YmDHMS imY. ... Dmy
Ymiizi:n.o...... YmDHMS imYi...o. DmYH
Ymi:n......... YmDHM imYi i DmYHM
Ymn.o.......... YmDH imYicici. ... DmYHVS
Ym............ YnD imYici:n.o...... DmYHVS
Ynm........... YDm imyi:n......... DmYHM
i-Y o yY imyn........... DmvyH
i-Ylicio.ooo yYHM im.. YD
i-Ylicici.o..... y YHVS im:iziY.o...... DnHMSY
i-Yiziin.o.o.... y YHVS im:i:nY....... DrHVBY
i-Yi:n........ yYHM im:iY......... DmHMY
i-Yd........... yY im:nY......... DmHMY
i-Ydici......L yYHM imi........... YnDH
i-Ydicici...... y YHMS imizi......... YnDHM
i-Ydi:i:n...... y YHMS imicici... ... YnDHMS
i-Ydi:n........ yYHM imizizn....... YnDHMS
[e DY imi:n......... YmDHM
i-i-Yii..o.o.. .. nDYHM imii.......... YmDHM
i-i-Yitici.o.o.o.. nDYHVS imiii......... YnDHVS
i-i-Yi:i:n..... nDYHVS imiin......... YnDHVS
i-i-Yiin....... nDYHM imin.......... YnDHM
P-i-it... YnD imn........... YnDH
P-i-iti........ YnmDH im............ YnD
P-i-itici...... YmDHM inY............ DY
P-i-1tizizi YDHVS inm........... YDm
I-i-i1tizi:n YmDHVS myY............ DY
P-i-iti:in...... YnmDHM myYi........... nmDYH
i-i-itn...... .. YnDH mYi:i......... nDYHM
[1 A Yy HM mYi:izi....... nDYHVS
=il Yy HVS mYi:i:n....... nDYHVS
i-iliciine..... Yy HVS mYi:n......... nDYHM
i-iliino..o... L. Yy HM myn........... nDYH
i-idici...... . YyHM mi............ DY
P-idicici.... .. Yy HVS miziziyY....... nDHMSY
i-idiziino... .. Yy HVS mi:i:nY....... nDHMSY
i-idi:n........ YyHM mi:iY......... nmDHMY
P-it.. Yy mi:nY......... nDHMY
[I O YyH mii........... nDYH
P-itici....o.... Yy HM miizi......... nDYHM
P-iticici... ... Yy HVS miizizi....... nDYHVS
i-iticion...... Yy HVS mii:i:n....... nDYHVS
i-ition... ... YyHM mii:n......... nDYHM
P-itn. ... YyH miii.......... nDYHM
ifilY. o nDY miiii......... nDYHVS
ifilYli:n.o..... nDYHM miiin......... nDYHVS
il nDYHM miin.......... nDYHM
il nDYHVS min........... nDYH
ifi/Yiziino..o.. nDYHVS myY............ nDY
il nDY mi............ nDY
ifiliici.o. . nDYHM nmy............ Dmy

(A A N T E I nDYHMS

If the token list agrees with one of the itemsin the above ligt, the double precison vaue
corresponding to each token is computed and the parsing process halts with success.

Last Resort Production Rules

If the token list did not match one of the built-in patterns above, severa checks are performed to
seeif thereis redundant information in the token list (duplicate time systems, eras, etc.) If any
such duplicate items are located, the input string is diagnosed as erroneous.

Assuming that the error checks just discussed do not produce an error diagnods, the string is
processed according to the following rules:

1. Commas, dashes, and dashes are removed from the token list. The resulting token list
is then compared once more againg the list of token patterns above. If thereisa
successful match, the parsing process halts with success.

2. Thefadllowing list of transformations are attempted in the order indicated.

'"DH*MS (days, hours, mnutes, seconds)
"DH*MS (days, hours, mnutes, seconds)
"HEM S (hours, mnutes, seconds)
"HMS (hours, mnutes, seconds)

'H*M (hours, m nutes)

> '"HM (hours, m nutes)

n'
i ---
3. All colons are removed from the token list.

i

i
ion'

it

L T N |
VVVVYV

4. Thefollowing lig of transformations are attempted in the order indicated.

'<miH -> 'nDY" (nmonth, day, year)
<mit ->'nD (rmont h, day)

"Siim -> 'SYDnl (seconds, year, day, nonth)
i -> "' Dl (day, nonth)

"mY>' -> 'nDY" (nonth, day, year)
"Ym ' ->'YnD (year, nonth, day)
"Sm ' -> 'snD (seconds, nonth, day)
" Mmi’ ->'"MD' (minutes, nonth, day)
imy' -> 'DnY' (day, nonth, year)
inH -> 'DnH (day, nonth, hour)
"Yid -> 'Yy*' (year, day-of-year)
"iyd -> 'yY*' (day-of-year, year)
"Ydi' -> "Y*y' (year, day-of-year)

The characters '<' and '>' nean that the transformation is
performed only if the token |list occurs at the beginning or
end respectively of the the token |ist.

5. Thetoken lig is now examined to determine whether any unresolved numeric tokens
remain. If unresolved numeric tokens are present, the input string is diagnosed as
erroneous. If no unresolved components remain, the token list is checked for consstency.
For example there can be only one of each type of token, and there must be a sufficient
number of tokens present to unambiguoudy determine the epoch.

Conclusion

As can be surmised from the preceding discussion, it is very difficult to give acomplete lig of all
token patterns that might yield a parsed time string. Nevertheless, we fed that the approach taken
and the transformations applied will yield correct and consistent interpretations of the many

way's people choose to represent time.

