Download this file

 PDS_VERSION_ID                     = PDS3                                   
 LABEL_REVISION_NOTE                = "J. MAFI (PPI), 1998-05-18"            
 RECORD_TYPE                        = STREAM                                 
                                                                             
 OBJECT                             = INSTRUMENT                             
 INSTRUMENT_HOST_ID                 = "VG1"                                  
 INSTRUMENT_ID                      = "CRS"                                  
                                                                             
 OBJECT                             = INSTRUMENT_INFORMATION                 
 INSTRUMENT_NAME                    = "COSMIC RAY SUBSYSTEM"                 
 INSTRUMENT_TYPE                    = "CHARGED PARTICLE ANALYZER"            
 INSTRUMENT_DESC                    = "                                      
                                                                             
  Instrument Overview                                                        
  ===================                                                        
    As its name implies, the Cosmic Ray Subsystem (CRS) was                  
    designed for cosmic ray studies [STONEETAL1977B].  It consists           
    of two high Energy Telescopes (HET), four Low Energy Telescopes          
    (LET) and The Electron Telescope (TET).  The detectors have              
    large geometric factors (~ 0.48 to 8 cm^2 ster) and long                 
    electronic time constants (~ 24 [micro]sec) for low power                
    consumption and good stability.  Normally, the data are                  
    primarily derived from comprehensive ([Delta]E[1], [Delta]E[2]           
    and E) pulse- height information about individual events.                
    Because of the high particle fluxes encountered at Jupiter and           
    Saturn, greater reliance had to be placed on counting rates in           
    single detectors and various coincidence rates.  In                      
    interplanetary space, guard counters are placed in                       
    anticoincidence with the primary detectors to reduce the                 
    background from high-energy particles penetrating through the            
    sides of the telescopes.  These guard counters were turned off           
    in the Jovian magnetosphere when the accidental anticoincidence          
    rate became high enough to block a substantial fraction of the           
    desired counts.  Fortunately, under these conditions the                 
    spectra were sufficiently soft that the background, due to               
    penetrating particles, was small.                                        
                                                                             
    The data on proton and ion fluxes at Jupiter were obtained with          
    the LET.  The thicknesses of individual solid-state detectors            
    in the LET and their trigger thresholds were chosen such that,           
    even in the Jovian magnetosphere, electrons made, at most, a             
    very minor contribution to the proton counting rates                     
    [LUPTON&STONE1972].  Dead time corrections and accidental                
    coincidences were small (❮ 20%) throughout most of the                   
    magnetotail, but were substantial (❯ 50%) at flux maxima within          
    40 R[J] Of Jupiter.  Data have been included in this package             
    for those periods when the corrections are less than ~ 50% and           
    can be corrected by the user with the dead time appropriate to           
    the detector (2 to 25 [micro]sec).  The high counting rates,             
    however, caused some baseline shift which may have raised                
    proton thresholds significantly.  In the inner magnetosphere,            
    the L[2] counting rate was still useful because it never rolled          
    over.  This rate is due to 1.8- to 13-MeV protons penetrating            
    L[1] (0.43 cm^2 ster) and ❯ 9-MeV protons penetrating the                
    shield (8.4 cm^2 ster).  For an E^-2 spectrum, the two groups            
    would make comparable contributions; but in the magnetosphere,           
    for the E^-3 to E^-4 spectrum above 2.5 MeV [MCDONALDETAL1979],          
    the contribution from protons penetrating the shield would be            
    only 3 to 14%.                                                           
                                                                             
    The LET L[1]L[2]L[4] and L[1]L[2]L[3] coincidence-                       
    anticoincidence rates give the proton flux between 1.8 and 8             
    MeV and 3 to 8 MeV with a small alpha particle contribution (~           
    10^-3).  Corrections are required for dead time losses in L[1],          
    accidental L[1]L[2] coincidences and anticoincidence losses              
    from L[4].  Data are given only for periods when these                   
    corrections are relatively small.  The energy lost in detectors          
    L[1], L[2] and L[3] was measured for individual particles.  For          
    protons, this covered the energy range from 0.42 to 8.3 MeV.             
    Protons can be identified positively by the [Delta]E vs.  E              
    technique, their spectra obtained and accidental coincidences            
    greatly reduced.  Because of telemetry limitations, however,             
    only a small fraction of the events could be transmitted, and            
    statistics become poor unless pulse-height data are averaged             
    over a period of one hour.                                               
                                                                             
    HET and LET detectors share the same data lines and pulse-               
    height analyzers; thus, the telescopes can interfere with one            
    another during periods of high counting rates.  To prevent such          
    an interference and explore different coincidence conditions,            
    the experiment was cycled through four operating modes, each             
    192 seconds long.  Either the HETs or the LETs were turned on            
    at a time.  LET-D was cycled through L[1] only and L[1]L[2]              
    coincidence requirements.  The TET was cycled through various            
    coincidence conditions, including singles from the front                 
    detectors.  At the expense of some time resolution, this                 
    procedure permitted us to obtain significant data in the outer           
    magnetosphere and excellent data during the long passage                 
    through the magnetotail region.  Some of the published results           
    from this experiment required extensive corrections for dead             
    time, accidental coincidences and anticoincidences                       
    ([VOGTETAL1979A], [VOGTETAL1979B]; [SCHARDTETAL1981];                    
    [GEHRELSETAL1981]).  These corrections can be applied only on a          
    case-by-case basis after a careful study of the environment and          
    many self-consistency checks.  They cannot be applied on a               
    systematic basis and we have no computer programs to do so;              
    therefore, data from such periods are not included in the Data           
    Center submission.  The scientists on the CRS team will,                 
    however, be glad to consider special requests if the desired             
    information can be extracted from the data.                              
                                                                             
                                                                             
  Note                                                                       
  ====                                                                       
    Principal Investigator: R.E.  Vogt                                       
                                                                             
    The preceding section on instrumentation has been extracted              
    from the NSSDC documentation for the Voyager Cosmic Ray                  
    Subsystem (Reference_ID = NSSDCCRS1979). "                               
                                                                             
   END_OBJECT                       = INSTRUMENT_INFORMATION                 
                                                                             
   OBJECT                           = INSTRUMENT_REFERENCE_INFO              
   REFERENCE_KEY_ID                 = "GEHRELSETAL1981"                      
   END_OBJECT                       = INSTRUMENT_REFERENCE_INFO              
                                                                             
   OBJECT                           = INSTRUMENT_REFERENCE_INFO              
   REFERENCE_KEY_ID                 = "LUPTON&STONE1972"                     
   END_OBJECT                       = INSTRUMENT_REFERENCE_INFO              
                                                                             
   OBJECT                           = INSTRUMENT_REFERENCE_INFO              
   REFERENCE_KEY_ID                 = "MCDONALDETAL1979"                     
   END_OBJECT                       = INSTRUMENT_REFERENCE_INFO              
                                                                             
   OBJECT                           = INSTRUMENT_REFERENCE_INFO              
   REFERENCE_KEY_ID                 = "NSSDCCRS1979"                         
   END_OBJECT                       = INSTRUMENT_REFERENCE_INFO              
                                                                             
   OBJECT                           = INSTRUMENT_REFERENCE_INFO              
   REFERENCE_KEY_ID                 = "SCHARDTETAL1981"                      
   END_OBJECT                       = INSTRUMENT_REFERENCE_INFO              
                                                                             
   OBJECT                           = INSTRUMENT_REFERENCE_INFO              
   REFERENCE_KEY_ID                 = "STILWELLETAL1979B"                    
   END_OBJECT                       = INSTRUMENT_REFERENCE_INFO              
                                                                             
   OBJECT                           = INSTRUMENT_REFERENCE_INFO              
   REFERENCE_KEY_ID                 = "STONEETAL1977B"                       
   END_OBJECT                       = INSTRUMENT_REFERENCE_INFO              
                                                                             
   OBJECT                           = INSTRUMENT_REFERENCE_INFO              
   REFERENCE_KEY_ID                 = "VOGTETAL1979A"                        
   END_OBJECT                       = INSTRUMENT_REFERENCE_INFO              
                                                                             
   END_OBJECT                       = INSTRUMENT                             
   END